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Abstract

Background: Given the complex mechanisms underlying biochemical processes systems biology researchers tend
to build ever increasing computational models. However, dealing with complex systems entails a variety of
problems, e.g. difficult intuitive understanding, variety of time scales or non-identifiable parameters. Therefore,
methods are needed that, at least semi-automatically, help to elucidate how the complexity of a model can be
reduced such that important behavior is maintained and the predictive capacity of the model is increased. The
results should be easily accessible and interpretable. In the best case such methods may also provide insight into
fundamental biochemical mechanisms.

Results: We have developed a strategy based on the Computational Singular Perturbation (CSP) method which
can be used to perform a “biochemically-driven” model reduction of even large and complex kinetic ODE systems.
We provide an implementation of the original CSP algorithm in COPASI (a COmplex PAthway SImulator) and
applied the strategy to two example models of different degree of complexity - a simple one-enzyme system and
a full-scale model of yeast glycolysis.

Conclusion: The results show the usefulness of the method for model simplification purposes as well as for
analyzing fundamental biochemical mechanisms. COPASI is freely available at http://www.copasi.org.

1 Background
Biochemical systems are inherently high dimensional
due to the large number of interrelated cellular compo-
nents and processes, the temporal organization of which
spans time scales of several orders of magnitude. Aiming
at a comprehensive understanding of the dynamic beha-
vior of such systems has led to the development of an
ever increasing number of computational models which
are in the majority of cases formulated on the basis of
ordinary differential equations (ODEs) [1]. Even though
the purpose of computational models is to facilitate
understanding and analysis of the underlying biochem-
ical mechanisms, this again becomes cumbersome with
the growing complexity of modern models. Therefore, it

is important to identify those parts of the biochemical
systems and of the model that are responsible for the
observed physiological behavior. This necessitates the
development of methods for the rational simplification
of computational models and to make them comfortably
accessible to the community.
Numerous methods have been developed to simplify

(bio)chemical reaction networks (see review [2]). For
biochemical systems many of the reduction methods
aim at analyzing the steady state behavior either heuris-
tically [3] or employing mathematical analysis (e.g. sen-
sitivities [4,5]). Since biochemical systems usually do not
reside in a steady state time-dependent approaches have
recently been proposed (see for example [6,7]). Most of
these use a mathematical analysis of the different time-
scales occurring in the biochemical systems, e.g. the
Intrinsic Low-Dimensional Manifolds (ILDM) method
[8-11] and the Computational Singular Perturbation
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(CSP) method [12-14]. Apart from the advantage of a
time-resolved analysis, these methods can provide useful
insights, such as the support of the detection of fast
reactions and species as well as the identification of
potential rate controlling reactions. However, a disad-
vantage of the above methods is that the reduced mod-
els are systems of mathematically transformed
differential or differential algebraic equations (DAE)
which may not relate one-to-one to biochemical species
and reactions hampering the biochemical interpretation.
In contrast, the methods based on steady-state or partial
equilibrium approximations keep the one-to-one rela-
tion and are therefore simple to biochemically interpret.
In this paper, we focus on deriving simplified bio-

chemical models by discarding fast reactions and spe-
cies. For this purpose we present a reduction strategy
which is based on the CSP algorithm developed by Lam
and Goussis [14]. The algorithm examines the time
scales of ODE systems and supports the separation of
the biochemical network into fast and slow subsystems.
This is achieved through the elimination of the detected
quasi-stationary species and quasi-equilibrium reactions.
The original CSP algorithm is implemented in the

software COPASI [15] making it accessible to the scien-
tific community. COPASI is a platform-independent,
user-friendly software tool that allows easy access to
powerful numerical methods for simulation and analysis
of biochemical reaction networks.
We apply the simplification strategy to two different

systems to exemplify its use. Thus, as a simple system,
we present the derivation of the Michaelis-Menten
Kinetics. As a realistic case, we analyze the glycolysis in
Saccharomyces cerevisiae [16] in three different dynamic
regimes. We show that several variables can be elimi-
nated still keeping the original dynamics intact. Further-
more, regulatory mechanisms cause different players to
participate with different relative importance in the
dynamics of the system.

Time Scale Separation Analysis
In order to explain the basic notions of a time scale
decomposition we start with a first-order kinetics sys-
tem. Then, the differential equations describing the sys-
tem dynamics y are linear:

d y
d t

= J · y

with constant and diagonalisable Jacobian J. By using
the set of right eigenvectors A of J as the new basis we
can decompose the Jacobian [17] and transform the ori-
ginal equations into:

x = A−1 · y, � = A−1 · J · A.

The components of the transformed concentration
vector x are called modes. Because Λ is a diagonal
matrix of real or complex eigenvalues li of J, the trans-
formed ODE system is fully decoupled:

d xi

d t
= λi xi, i = 1, . . . , N.

Thus, the modes xi ∼ eλ
it evolve independently of

each other. The reciprocals of ℜ(li):

τi = − 1
�(λi)

have a dimension of time and are called time scales
(TS). Ordering them w.r.t. magnitudes τ1 <τ2 < ... <τN
leads to approximate speed ranking of the modes [14].
The modes corresponding to fast time scales (eigenva-
lues with large negative real part) approach 0 very
quickly and can be eliminated from the system for t ≫
τM , where τM is a fast time scale.
Two additional aspects are worth being emphasized

here. First, although the transformed representation of
the system dynamics in terms of modes provides a sys-
tematic basis for the decomposition of the reaction net-
work, it does not guarantee reducing the number of
biochemical species or reactions in the system, since
many different species might contribute to one and the
same transformed equation. So, there is no straightfor-
ward relation to reduction methods commonly used in
biochemistry such as the quasi steady state (QSS)
approximation or the quasi equilibrium (QE)
assumption.
An additional aspect of TS decomposition is that it is

based on the local analysis of the system dynamics. For
general nonlinear problems however the Jacobian is
time-dependent. Its eigenvalues and eigenvectors change
with time. Hence, in order to obtain a reasonable char-
acterization of the systems dynamics the time scale
decomposition has to be applied repeatedly at many
time points through the evaluation time of the reaction
system.

2 Results
2.1 CSP in COPASI
Consider a system consisting of K biochemical reactions,
the dynamics of which is determined by a system of N
ordinary differential equations:

d y (t)
d t

= g(y(t)) =
R∑
r=1

srFr(y) (1)

here y is the N-dimensional concentrations vector, sr(r
= 1, . . . , R) are the N-dimensional stoichiometric vec-
tors and Fr(y) is the rate of the r-th reaction.
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The main idea of the CSP method is to split the N-
dimensional space of the vector g into two subspaces, a
fast and a slow subspace:

g = gfast + gslow.

In general, an N-dimensional vector may be expressed
in terms of any set of N linearly independent basis vec-
tors (e.g. [17]). The objective of the CSP method is to
express g in a new basis, one that is tuned to the
dynamics of the system, where the fast and slow compo-
nents evolve independently of each other.
The subspace gfast relates to the fast time scales of the

system. If its contribution is negligible (according to
some error criteria), the original system (Eq. 1) simpli-
fies to the system of the following differential algebraic
equations (DAEs):

dy
dt

≈ gslow, i = M + 1, . . . ,N,

gfast ≈ 0, i = 1, . . . ,M.
(2)

This DAE system does not contain the fastest time
scales of the original model. Hence, it is much less stiff
than the original system and can be simulated easily.
Nevertheless such a simplification does not guarantee
the reduction of the number of species and reactions
("real” system reduction) as explained above. Therefore,
a similarly important aspect of our strategy is the identi-
fication of QSS metabolites and QE reactions by means
of CSP data (see [14] and below).
The Algorithm
Let us differentiate equation (1) with respect to time
and get the following form with the Jacobian J:

dg
d t

= J · g (y), J =
∂g
∂y

. (3)

Now we (again) focus on the choice of an appropriate
basis ai, i = 1, . . . , N, but in contrast to the approach
of time scale separation, these linearly independent vec-
tors do not have to be eigenvectors of the Jacobian J
(not even orthogonal). Then g always has the unique
representation:

g =
N∑
i=1

ai f i

where ai f
i is a so-called reaction mode, the amplitude

fi is given by:

f i(y) ≡ bi � g =
R∑
r=1

Bi
rF

r , i = 1, 2, . . . ,N,

Bi
r ≡ bi � sr , i = 1, 2, . . . , N, r = 1, 2, . . . , R.

(4)

The notation ⊙ abbreviates the standard scalar pro-

duct, i.e. here bi � aj =
∑N

n=1 b
i
na

n
j . The set of N row

vectors bi are the inverses of ai; together they satisfy the
following orthonormal condition:

bi � aj = δij , i, j = 1, 2, ...,N.

The CSP provides an algorithm to determine the
number of fast modes M, and to compute the sets of
linearly independent ai and bi, such that

g =
M∑
i=1

aif i +
N−M∑
i=1

aif i.

Differentiating equation (4) with respect to time we
get:

d f
dt

= � · f, f = B · g, (5)

� =
(
dB
d t

+ B · J
)

· A, A = B−1 (6)

where A and B are matrices consisting of the column
vector ai and row vector bi as basis vectors.
For linear problems the matrix Λ is time independent.

In this case the choice of eigenvectors of the Jacobian as
the new basis leads to the diagonal matrix Λ (see
above). The corresponding amplitudes f evolve indepen-
dently of each other with their own characteristic time
scale τi. For general nonlinear systems, however, Λ is
time dependent and usually not diagonal. The CSP
method provides an iterative procedure of refinement of
basis vectors ai and bj. When recursively applied, the
refinement procedure weakens the coupling between the
M fast and the N - M slow amplitudes. The matrix Λ
built from the final refined set of basis vectors is block-
diagonal and the fast amplitudes are uncoupled from
the slow ones approximately, so that the residual cou-
pling can be neglected.
The process starts with an arbitrary initial guess for

the basis vectors ai and the assumption that the first M
basis vectors span the M-dimensional fast subdomain.
The corresponding time scales should be much faster
than some characteristic time scale of interest, then M
is to be selected to provide a gap between the slow
(time of interest) and fast time scales:

τM

τM+1
� ε. (7)

When for the final set of basis vectors the sum of M
fast reaction modes falls below some user-specified
threshold:
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|
M∑
i=1

aif iτM| < yerror = εrel · yj + εabs (8)

these can be eliminated from the initial system (Eq. 1),
because their contributions to g are negligible. As a con-
sequence, the evolution of the reduced system depends
on the slow modes only (see Eq. 2).
Implementation
The CSP algorithm was implemented as an integral part
of the COPASI software in C++ and is freely available
with the current releases of the package. In this imple-
mentation, the CSP algorithm is applied to the models
for which linear dependencies due to conservation rela-
tionship are eliminated. This is achieved by the analysis
of the stoichiometric matrix and is performed by
COPASI automatically.
The following CSP parameters have to be defined by

the user.
Intervals The user specifies the number of time points
for which the CSP analysis is carried out by setting the
time interval. The time interval should be large in com-
parison with the user’s time scale of interest.
Ratio of time scale separation ε This parameter speci-
fies the gap between the time scales related to the fast
and slow modes (Eq. 7).
Error tolerance Absolute εabs and relative error εrel are
set to control when a fast mode is considered to be
exhausted (Eq. 8).
The CSP algorithm described above provides local

information at certain time steps. To obtain global fea-
tures of the system behavior the analysis must be per-
formed at all points in the range of interest. For this
purpose the CSP step involves numerical integration
using the LSODA solver [18]. LSODA is part of the
ODEPACK library [19]. It solves ODE systems with a
dense or banded Jacobian when the problem is stiff, but
it automatically selects between non-stiff (Adams) and
stiff (BDF) methods. The Jacobian is generated
numerically.
When the CSP algorithm at time point t has been per-

formed and both final refined sets of basis vectors ai(t)
and bi(t) are available the M(t) is set to the number of
fast exhausted modes and τM(t) is then the time scale of
the slowest of fast reaction modes at time point t.
The CSP output data (see below) can either be

exported to a text file (save as Report in COPASI) for
the use in other software (gnuplot, Octave etc.) or dis-
played in the graphical user interface as tables. In this
case a color coding is used where the numbers are addi-
tionally visualized by different shades of color. This
makes it easy to immediately spot e.g. the most impor-
tant contributions to a specific mode for a large model
(where the result tables are correspondingly large).

We also use three dimensional bar graphs for visualiz-
ing the matrices employing the qwtplot3D library
(http://qwtplot3d.sourceforge.net) integrated in COPASI.
These bar graphs can be turned and zoomed interac-
tively. Furthermore single rows or columns of the
matrix can be highlighted. An additional diagram shows
the distribution of the time-scales of the different modes
at chosen points of time (Figure 1). Applying the time
slider in the graphical user interface it is very simple to
switch between the results for different time points.
Therefore the user can easily get an overview of the
time-dependent changes of the time-scale separation.
CSP Data used for model analysis
The CSP algorithm supplies the modeler with local CSP
output data [14] that relates the time scales to species
and reactions of the original biochemical system. The
data is computed by the help of the refined sets of basis
vectors ai(t) and bi(t). The user is provided with the
CSP output at each defined time point during the inter-
val of interest and can use it to reduce the model in a
rational way. The CSP output data are displayed in
COPASI in a number of matrices. Here we briefly
explain the most important CSP output data which are
available in COPASI:
Time scales The analysis of time scales evolution can
provide useful information about the system dynamics.
The fast dissipative time scales relate to the eigenvalues
of the Jacobian with large negative real parts. The explo-
sive modes are associated with positive eigenvalues.
Modes with equal time scales correspond to pairs of
complex conjugate eigenvalues indicating oscillatory
components in the system behavior.

Figure 1 COPASI visualization of the time scale distribution.
Full glycolysis model of Hynne et al. [16], [Glcx]0 = 14 mM, t = 25
min. The coincident bars on the graph correspond to equal time
scales.
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Radical Pointer (RP) The CSP Radical pointer identi-
fies the species for which the QSSA can be justified.
Whenever the i-th diagonal element of m-th fast mode
projection matrix Qm = amb

m is not a small number,
species i is said to be a CSP radical.
Participation Index (PI) and QE reactions The relative
level of participation of the r-th elementary reaction to
the n-th CSP reaction mode can be represented by the
mode participation index, Pi

r , defined as follows:

Pi
r ≡ Bi

rF
r

R∑
r=1

|Bi
rFr| + |b

i � yerror
τM+1

|
,

where i = 1, . . . , N, r = 1, . . . , R.
Importance Index (II) The relative importance of the
contribution of the r-th elementary reaction to the rate
of change of the i-th element of y can be represented by
the importance index, Iir :

Iir ≡ si,s1owr Fr

R∑
r=1

|si,s1owr Fr| +
∣∣∣∣yerrorτM+1

∣∣∣∣
,

i = 1, . . . , N, r = 1, . . . , R. An effective stoichio-
metric vector of the r-th elementary reaction,

rslowr = (I − Q(M)) � sr is computed using the fast sub-

space projection matrix Q(M) =
M∑
m=1

Qm . The reaction

with the largest Iir for the species yi is the rate control-

ling reaction.
CSP - based model reduction
In this paragraph we summarize the most important
steps in the reduction of the kinetic mechanism based
on the results of the CSP algorithm described above.
Model reduction is mainly the outcome of a sequence
of QSSA for species and QEA for reactions which leads
to the lumping or elimination of corresponding vari-
ables. The QSSA identifies species whose production
and destruction rate are in approximate balance. Mathe-
matically it means that the right-hand side of the corre-
sponding differential equation is zero. The QE
assumption corresponds to reactions whose forward and
reverse rates are nearly equal (see for instance, [20]). In
either case an approximate algebraic relation (equation
of state) is obtained between participating species.
As described in the previous paragraph the CSP

method provides the numerical data (RP, PI and II) that
are an effective diagnostic tool allowing the detection of
species which can be approximated by an equation of
state, as well as the determination of the relative level of
participation of distinct reactions to the modes.

In contrast to the original CSP method [14] we intro-
duce and use the “subspace” radical pointers and the
“subspace” participation indices rather than the indivi-
dual mode RP and PI. This is based on the fact, that
even though the matrix Λ (Eq. 6) built by the help of
the final refined set of the basis vectors is block-diagonal
and the fast modes are decoupled from the slow ones,
the fast and slow modes could be coupled between
themselves. So, it appears to be more reasonable to con-
sider a projection of the CSP indices on the full fast and
slow subspaces.
We consider the sum of all CSP radicals as selected by

M fast modes and define the species with the largest
“fast subspace” radical pointers as QSS. Similarly the
sum of Participation indices over all slow and fast
modes should be considered separately in order to
detect the fast reactions. The normed PIs over fast and
slow subspaces are:

PIfastk =

M∑
i=1

PIik

N∑
i=1

PIik

, PIslowk =

N∑
i=M+1

PIik

N∑
i=1

PIik

, (9)

We declare the reaction k as QE, if it is active in the
fast and does not influence the slow space:

PIfastk � PIslowk at all time points, where the CSP analysis

was carried out.
Practically, there exist only very few guidelines in the

literature for deriving model simplifications based on
the QEA and QSSA. Therefore, we would like to quickly
summarize the procedure for the CSP-based model sim-
plification:

1. First, a time scale of interest should be selected.
This can for instance correspond to the time resolu-
tion of the experiment which is the basis for the
model. The aim of the model simplification is to
reduce all scales that are faster than this chosen
scale.
2. Second, user defined parameters have to be
selected in COPASI as explained above. Since the
CSP information will be available for every time
interval and is the basis for the time-dependent
model reduction, the time interval should be large
enough in comparison with the time scale of
interest.
3. Third, performing the CSP and analyzing the
results in order to find the QSS species and QE
reactions.
4. Fourth, solving the corresponding algebraic equa-
tions of state and eliminating the respective variables
from the reaction networks. The kinetic laws for
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slow reactions should be modified by substitution
with explicit expressions for CSP radicals.
5. Fifth, parameter adjustment (e.g. by parameter
estimation) with respect to quasi equilibrium con-
stants of eliminated reactions in order to achieve the
desired accuracy.

It is worth mentioning that during the simplification
the existing conservation laws have to be preserved. The
algebraic equations should be solved under conditions
that the equations of moieties are fulfilled.

2.2 Application examples
We have applied the method to two models. All infor-
mations and scripts needed to reproduce the figures in
this subsection are available in Additional Files 1, 2, 3.
Michaelis-Menten Kinetics
As in [10] we start our discussion with the simplest
enzymatic reaction mechanism, the irreversible Michae-
lis-Menten kinetics:

Substrate
S +

Enzyme
E

k1⇔
k−1

Complex
C

k2−→ Product
P +

Enzyme
E.

The model was build in COPASI and consists of the
two reactions R1 (S +E ⇔ C) and R2 (C ® P +E). In
order to illustrate the handling of the CSP based model
reduction we consider two limit situations for the

dimensionless parameters: St =
k2
k−1

→ 0 and

Mr =
E0
S0

→ 0 (here E0 and S0 are initial enzyme and

substrate concentrations, respectively). We used the fol-
lowing CSP parameter values: ε = 0.01, εrel = 10-5, and
εabs = 10-10. In both cases, a clear time-scale separation
occurs.
(i) Mr ® 0 (E0 ≪ S0): This is the standard situation

for Michaelis-Menten kinetics. The motion on the fast
time-scale is dominated by the complex C decoupled
from the substrate S. On the slow part, the changes of
substrate and complex are balanced. The quasi steady
state assumption for complex C leads then to the
Michaelis-Menten kinetic law.
The CSP method allows the distinction between slow

and fast modes (for times t >0.03). The Radical Pointer
from the CSP data shows that the complex C dominates
the fast mode. The contributions of both reactions to
the slow and fast modes are comparable (see Figure 2,
which displays the evolution in time of Radical Pointer
and Participation Indices). Thus, the QSSA for the com-
plex C is justified in this case.
(ii) St ® 0 (k2 ≪ k-1). This limit means that an equi-

librium between the enzyme E, the substrate S and the
enzyme-substrate complex C is established quickly. The

slow step is the breakdown of C to produce the product
P and the enzyme E.
The CSP analysis leads to the occurrence of two inde-

pendent dynamical modes. After the short transient
phase (t <0.006, when no reduction is possible) the con-
tribution of C to the fast mode is larger than the one of
S (nevertheless no real dominance occurs). Over the
time the contribution of both variables becomes equal
(Figure 2). Thus, the QSSA for complex C is incorrect.
Nevertheless, there is a clear separation of reactions in

the modes. The reaction R2 of product formation domi-
nates clearly the slow mode. Both reactions are active in
the fast mode (see Figure 2). Thus, the reaction

R1 : S + E
k1⇔
k−1

C is always practically in equilibrium and

the QEA for reaction R1 is correct and leads to a similar
equations as for “standard” Michaelis-Menten kinetics
(compare [21] and [10]):

dP
dt

=
k2E0S
Ks + S

, with equilibrium constantKs =
k−1

k1
.

The reader is referred to Additional File 1 for more
details of the reduction of the Michaelis-Menten
kinetics.
Glycolysis in Saccharomyces cerevisiae
We now use the CSP method to examine a more com-
plex model for simplification purposes. We take the
quantitative model of yeast glycolysis developed by [16]
as an application example which has been also used
before in similar studies [13,22].
The model is based on ODEs and consists of 24 reac-

tions among 22 metabolites with a total of 59 kinetic
parameters. The reaction scheme is depicted in Figure
3. From the reaction stoichiometries two moiety conser-
vations are derived:

NAD + NADH = const;

ATP + ADP + AMP = const.

The complete model is available for download in
SBML format at the BioModels database [23] (BIOMD
61) or JWS online [24] (http://jjj.biochem.sun.ac.za/data-
base/hynne/Hynne.xml), the latter version being used in
this study. For model details the reader is also referred
to [16]. However, there are some model properties we
want to mention here explicitly.
The model reproduces experimental data observed in

intact yeast cells in a continuous-flow stirred tank reac-
tor. Here, the mixed flow glucose concentration, [Glcx]0,
is a bifurcation parameter which means that depending
on its value the system behavior changes qualitatively.
To be concrete, this glycolysis model exhibits two sta-
tionary (<9.6 mM; 16.7 <[Glcx]0 <18.5 mM) and two
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oscillatory state regimes (9.6 ≤ [Glcx]0 ≤ 16.7; ≥ 18.5
mM). Please refer to Figure eight in [16] for the bifurca-
tion diagram. Notably, the first oscillatory regime has
not yet been observed in experiments. So, we consider
this as an important model property.
First step: CSP Analysis in COPASI When performing
a model reduction analysis it is indispensable to deter-
mine beforehand which properties of the system are to
be maintained in the simplified model. We aimed at
preserving (within an acceptable error range) the follow-
ing features in order of priority:

1. A Hopf bifurcation occurs at some value of [Glcx]
0.
2. Bifurcation points w.r.t. [Glcx]0 change only little,
i.e. different dynamic regimes (including the first
oscillatory domain) appear at values of [Glcx]0 close
to the corresponding values in the full system.
3. Steady state levels of metabolite concentrations.
4. Periods of the oscillations.
5. Amplitudes of the oscillations.

We, therefore, perform the CSP analysis on the differ-
ent dynamic regimes separately, i.e. using three different
initial conditions for [Glcx]0, namely 9 mM (steady
state), 14 mM and 24 mM (first and second oscillatory
state, respectively). All other parameters of the model
are taken as in [16].
For each CSP analysis we simulate the system for a

time period from 0 to 100 min, thereby taking also the
initial transients into consideration, and inspect 250
time points along the trajectory which yields a time
interval of 0.4 min. At each time point a full set of CSP

data is computed. Example time course trajectories of
the concentrations of ATP and NADH are shown in
Figure 4. The CSP parameters Ratio of mode separation,
Relative Error and Absolute Error are set to 0.99, 1e-3
and 1e-4, respectively.
In the following, we present the CSP output data

(Time Scales, Radical Pointer, Participation Index,
Importance Index and so on, see 2.1) one after the
other. For each type of data, we point out the major dif-
ferences between the three dynamic regimes which we
interpret as glucose-dependent phenomena. If appropri-
ate, special emphasis is given to time-dependent
differences.
Since the amount of data produced in this compre-

hensive analysis exceeds the scope of the paper we pre-
sent each CSP output data with compelling examples.
The complete set of data is provided in Additional file 2.
Time scales
The full model exhibits in total 20 different time scales
with values that span about seven orders of magnitude
(from min to ms). Figure 1 shows the time scale distribu-
tion (logarithmic values) of the full model exemplarily for
[Glcx]0 = 14 mM at time step 25. Notably, the time scale
values change over time. In the steady state regime ([Glcx]

0 = 9 mM), we observe two eigenvalue pairs corresponding
to the 8th and 9th as well as 15th and 16th time scales that
consist of complex conjugates (τ8 = τ9, τ15 = τ16) indicating
the system’s intrinsic oscillatory vicinity. We see that the
real part of these eigenvalue pairs become equal at a cer-
tain point in time during the initial transient (Figure 5(a)).
In both oscillatory state regimes, after the initial tran-

sients, the values of time scales become oscillating and
show in part substantial amplitudes which sometimes

(a) Mr → 0 (b) St → 0

Figure 2 Michaelis Menten model. Left: Mr ® 0 (S0 = 100; E0 = 1; k1 = 1; k-1 = k2 = 100). Right: St ® 0 (S0 = 100; E0 = 100; k1 = k-1 = 100; k2 =
1). Time evolution of the Radical Pointer (RP) in the fast mode (top), Participation Indexes (PI) of reactions R1 and R2 in the fast (middle) and slow
mode (bottom). The RP of product P in the first case Mr ® 0 is similar to RP of substrate S (the both lines overlaid).
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also overlap with the values of adjacent time scales. As
an example, Figures 5(b) and 5(c) show the time evolu-
tion of the 15th to 18th time scales for [Glcx]0 = 14 and
24 mM, respectively.

Number of fast modes M (Figure 5(d)): As explained
above, each time scale corresponds either to a fast or
slow so-called mode in the CSP analysis. Like the values
of the time scales the number of modes constituting the

Figure 3 Reaction scheme for the glycolysis model of S. cerevisiae. Fast reactions are marked in red, reduced (or lumped) metabolites in
blue.
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(a) 9 mM (b) 14 mM (c) 24 mM

Figure 4 Simulated time courses of [ATP] and [NADH] in the three different dynamic regimes at concentrations of [Glcx]0 from time t
= 0 min to t = 100 min. In Figure (b), (c) the subinterval from t = 96 min is drawn to a larger scale.

(a) 9 mM (b) 14 mM

(c) 24 mM (d) Fast modes

Figure 5 Time evolution of the time scales 15 to 18 in the three dynamic regimes (a)-(c) at concentrations of [Glcx]0 from time t = 0
min to t = 100 min. In Figure (b), (c) the subinterval from t = 96 min is drawn to a larger scale. (d) Time evolution of the number of fast
modes M in the three different dynamic regimes.
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entire fast or slow subspace changes over time. Since for
model reduction only the fast modes are relevant we
focus on these. Initially, all three dynamic regimes show
seven fast modes. In the steady state regime, after a
highly variable transient, M settles to 17. In contrast, M
varies between 7 and 9 for the first and between 9 and
10 for the second oscillatory regime. Consequentially,
we do not fix the number of fast modes in our CSP ana-
lysis but rather take their varying number over time into
account in search for QSS metabolites (see RP) and QE
reactions (see PI).
CSP Radical Pointer
Figure 6 shows how Radical Pointers are visualized in
COPASI. Five metabolites (BPG, GAP, PEP, F6P and
NAD) are fast in all of the three dynamic regimes.
CSP Participation Index (PI)
When comparing the normed sum of PIs for the three
different regimes, four different categories of reactions
can be identified depending on their respective PIs, e.g.
the reaction can always be classified as fast or it changes
its role between regimes. A heuristic threshold value
based on our analysis and experience is chosen. Thus, if

the normed sum of PIs over all fast modes exceeds 0.7,
the reaction is defined as fast.
1. “fast - fast - fast”: vGAPDH, vlpPEP, vPK, vPGI,

vALD, vTIM and vAK are fast in all regimes. These
reactions, therefore, may be approximated as QE and
eliminated in a simplified model. Not surprisingly, the
known fast reactions vPGI and vTIM turn up in this
group. Interestingly, the group also contains all reactions
that either produce energy or redox equivalents, i.e.
ATP and NADH, respectively. Obviously, especially in
case of reactions being at the edge of the threshold,
model reduction still has to be done with care.
2. “fast - slow - slow”: vHK, vPFK, vPDC, glycerol pro-

duction, glycogen production, and ATP consumption
are reactions that belong to this group which switch
from fast to slow with increasing [Glcx]0. These reac-
tions (except vPDC) share the property of consuming
energy and redox equivalents, i.e. ATP and NADH,
respectively. The continuous flow transport reactions
between the outside and the chemostat (vinCN, vinGlc)
as well as vlacto also belong to this group.

Figure 6 COPASI bar graph visualization of the Radical Pointers. Full glycolysis model of [16], [Glcx]0 = 24 at time t = 0. The 3D columns
display the values of Radical Pointer as bars. One bar corresponds to one species (row) and one fast reaction mode (column).
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3. “fast - slow - fast”: vADH and the transport reac-
tions across the cell membrane (vGlcTrans, vdifACA,
vdifEtOH, vdifGlyc) behave differently from all others as
they are fast for low and high concentrations of [Glcx]0.
Participation in slow modes seems to be limited to the
first oscillatory regime.
4. “slow - slow - slow”: All reactions from the chemo-

stat to the outside (voutEtOH, voutGlyc, voutACA) are
slow in all regimes.
A typical example of time evolution of the normed PIs

for each class of reactions is given in Figure 7.
CSP Importance Index (II)
The majority of reactions exhibit significant importance
on a number of metabolites (Normed Importance Index
>0.1). Exceptions are vPGI, vALD, vTIM, vlpPEP, vPK,
vconsum, vAK and vdifACA, where Importance Indices

are of values less than 0.1 for all metabolites. The weak
importance of the first five reactions (already indicated
as QE by the normed PIs) further confirms that they
may be removed from the model. In some cases, the
importance index changes in between regimes, depend-
ing on [Glcx]0. Examples for glucose-sensitive impor-
tance are vinGlc (important at low and unimportant at
high glucose concentrations), vHK, vPFK and vGAPDH
(unimportant at low and important at high glucose con-
centration). Obviously, the importance index gives simi-
lar information as control coefficients derived from
MCA, a fact that we studied and verified (data not
shown). However, the CSP IIs give a richer picture of
the control distribution compared to MCA.
Second Step: Model Reduction Based on the time scale
separation analysis we suggest four steps to derive a

(a) vlpPEP (b) vPFK

(c) vGlcTrans (d) voutACA

Figure 7 The time evolution of the normed sum of Participation Indexes (PI) for vlpPEP (a), vPFK (b), vGlcTrans (c) and voutACA (d).
Upper, middle and lower panel relate to [Glcx]0 = 9 mM, 14 mM and 24 mM, respectively. Blue and green curves show the contribution to the
entire fast and slow subspace, respectively.
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simplified minimal model. A short description is given
in the following. For any detail the reader is referred to
Additional file 3. Each simplification step concerns a
subset of the original model scheme which we call Mod-
ule, hereafter.
Module 1. QEA for vPGI, AE for F6P. The normed

PI revealed that PGI can be approximated as QE and
the Radical Pointer of the 5-th fast mode identifies F6P
as CSP Radical, for which the algebraic equation holds

KPGI ≈ F6P
G6P

.

So, in order to eliminate F6P from the system and to
lump PGI together with PFK we need to modify the
chemical equation of the PFK reaction to

G6P + ATP → FBP + ADP

as well as the kinetic rate law to

V5m · (KPGI · G6P)2(
K5 ·

(
1 + κ5 ·

(
ATP

AMP

))2

+ (KPGI · G6P)2
) .

Module 2. QEA for vALD and vTIM. The normed PI
revealed that vALD and vTIM can be approximated as
QE, for which the equations hold

KALD ≈ GAP · DHAP
FBP

and KTIM ≈ GAP
DHAP

.

The metabolites which are either substrate or product
of the two reactions are FBP, DHAP and GAP. The lat-
ter is identified as CSP Radical (see Radical Pointer of
the 2-nd fast mode). In order to lump vALD and vTIM
together we introduce a pool metabolite which we name

trioseP = GAP +DHAP + FBP

and express any of the three metabolites in terms of
trioseP. The new chemical equations of the associated
reactions are:

PFK : G6P + ATP → 2 · trioseP + ADP,

GAPDH : trioseP +NAD → BPG +NADH,

Glycerol branch : trioseP +NADH → Glyc +NAD.

Module 3: QEA for vlpPEP. The equilibria for the
vlpPEP reaction is expressed as:

KPEP ≈ BPG · ADP
PEP · ATP .

BPG is identified as CSP Radical in the first mode and
at the same time PEP in the 4-th mode. Again, we intro-
duce a pool metabolite

BPG PEP = BPG + PEP

and reduce the vlPEP reaction from the network. The
new chemical equations of the associated reactions are:

GAPDH : trioseP +NAD → BPG PEP +NADH,

PK : BPG PEP + 2ADP → Pyr + 2ATP.

Module 4: QEA for vPK. The vPK reaction is mod-
eled as irreversible. So, the QEA leads to its lumping
together with vPDC and to eliminating pyruvate from
the network. The new chemical equation for vPDC is:

BPG PEP + 2ADP → ACA + 2 A TP.

In summary, after these four simplification steps the
full model (original values in parentheses) has been
reduced eventually to 17 (22) species and 19 (24) reac-
tions with a total of 43 (59) parameters (the reduced
reaction network is depicted on the Figure 8).
Third step: Parameter adjustment and verification of
the reduced model Due to the fact that the meaning of
parameters has been changed in the course of model
reduction these parameters (e.g. K4eq) need to be
adjusted in order to obtain the full original behavior.
This can be simply achieved by parameter scanning
around the initial value. It is worth emphasizing here,
that not all parameters have to be refitted, only the ones
that result from the simplification of the lumping terms
(e.g. quasi equilibrium constants resulting from the
QEAs).
Finally we evaluate the reduced model by comparing

its dynamic properties with the ones of the original full
model. Comparative simulations are shown in Figure 9
and reveal that the reduced model captures the essential
dynamics of the full model quantitatively very well -
except for the amplitudes and the exact location of the
bifurcation points for the first oscillatory regime. This
discrepancy is of (only) quantitative nature and it does
not occur if the full model is reduced by just three reac-
tions (instead of five) as presented in Additional file 3.

3 Discussion and Conclusions
In this paper, we have presented a strategy for model
simplification and reduction based on the CSP method.
For this purpose and in order to make the method pub-
licly available we implemented the original CSP algo-
rithm in the COPASI software.
The CSP method is restricted to ODE models. Pre-

viously described simplification routines based on CSP
mainly focus on the conversion of ODEs into DAE sys-
tems. In contrast, we use the CSP method to simplify
models by lumping those reactions together that could
be identified as being in QE. In addition, algebraic equa-
tions are used for species that are identified by Radical
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Pointers. Accordingly, we redefine chemical equations
and kinetic rate laws of affected reactions. We demon-
strated the usability of this approach using the COPASI
implementation of the CSP method for a simple one-
enzyme reaction and for a rather complex model of
yeast glycolysis [16].
The time scale separation analysis of the glycolysis

model revealed five reactions (vPGI, vALD, vTIM,
vlpPEP, and vPK) for which the simplification strategy
can be applied. We demonstrated that the resulting
reduced model is capable of maintaining characteristics
of the full model within an acceptable error range:
(i) same dynamic regimes, e.g. Hopf bifurcation point

at [Glcx]0 = 18.5 mM; (ii) similar steady state levels of
metabolite concentrations; (iii) similar periods for both
and amplitudes for the second oscillatory regimes.
Studying different dynamics underlines again (as in

[11]) the importance of time-resolved analyses since the
contribution of the players in the system may vary over
time and in between different dynamical regimes. This

is ignored if either steady state data (or single time
point data in general) or single dynamic regimes are
studied.
Compared to our previous work on the ILDM method

[10,11] - or the ILDM method in general - the CSP
allows a more straightforward interpretation of its
results with respect to the identification of QSS species
and especially QE reactions. In addition, the Importance
Index of CSP allows to analyze the impact of individual
reactions on the dynamics of the species in the system.
An interesting outcome of our analysis is that it is

possible to follow the general inherent temporal organi-
zation of the entire system when analyzing the distinc-
tive time scales. Thus, we could observe that for the
second oscillatory regime, all time scales oscillate in
phase, partially overlapping each other which indicates
that the whole system shows slower or faster dynamics
in the course of a period.
Moreover, the number of fast modes changes over

time and is also different for different dynamic regimes.

Figure 8 Modified part of the reaction scheme for the reduced glycolysis model of S. cerevisiae.

Surovtsova et al. BMC Systems Biology 2012, 6:14
http://www.biomedcentral.com/1752-0509/6/14

Page 13 of 16



Both factors prohibit the use of a fixed number of
modes for time scale decomposition.
Furthermore, we suggest that the results of the CSP

analysis can also be used for studying the relative
importance of different reactions for the dynamics of
the system. As an example, we observed that the overall
participation of PFK in the slow modes increases with
increasing glucose levels. In a simple way, this may be
explained by the increasing energy charge (ATP concen-
tration) which inhibits the PFK. Therefore, the relative
importance of the PFK to the slower modes of the sys-
tem increases.
Another beneficial result of the simplification process

is of course that the number of system parameters is
considerably reduced, especially concerning parameters
which are involved in processes on a faster time scale
than the time scale of interest which are then usually

hard to identify. Therefore, using this process less sys-
tem parameters will be unidentifiable.
Our study is not the first trying to reduce the original

glycolysis model by [16]. [13] analyzed exclusively the
limit cycle of the second oscillatory regime ([Glcx]0 = 24
mM) employing CSP without taking into account transi-
ent behavior. In contrast, we analyzed the model with
original initial values taking into consideration also the
initial transient time period. In addition, there are major
methodological differences. First, our approach focuses
on simplifying the underlying biochemical reaction net-
work rather than on approximating the ODE system
with a DAE system. Second, we do not fix the number
of fast modes. Third, we compute the normed sum of
PIs over the entire fast subspace in order to justify QEA.
A completely different approach was taken by [22].

Their sole criterium for the reduction was the

(a) 14 mM (b) 24 mM

(c) 14.7 mM (d) 24 mM

Figure 9 Time courses of [ATP] and [NADH] in the two oscillating regimes at concentrations of [Glcx]0 as indicated. The upper diagrams
show the simulation of the full model, the lower the ones of the reduced system.
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fulfillment of a Stuart-Landau equation which is in prin-
ciple only valid in the vicinity of a Hopf bifurcation and
therefore does not offer a general strategy for system
reduction.
Obviously, there are some relations between CSP out-

put data and sensitivity analyses like metabolic control
analysis (MCA). Learning e.g. about the impact of indi-
vidual reactions on systems properties like dynamics
could in principle also result from sensitivity analyses.
We did a preliminary comparison of the results of our
CSP analysis and a conventional MCA for the steady
state. This resulted in a similar global picture, but the
CSP gave a more fine-grained picture w.r.t. the relative
importance of reactions on species. In addition, the
time-resolved analysis for oscillations is not possible
with MCA.
With all the mentioned benefits of using CSP for sys-

tems analysis, there are also problems and limitations
arising from this approach. We employed several heuris-
tic thresholds for the discrimination of the reactions and
species mainly contributing to the fast subspace of the
system. These were based on our experience and
obviously, this might not be optimal for arbitrary sys-
tems. Thus, other systems might demand slightly altered
thresholds. This is underlined by the fact that we
observed one reaction - AK - that in principle fulfilled
all of our criteria for elimination, but in the end, it
turned out to be impossible to eliminate from the sys-
tem without introducing a large error. Therefore, it is
always important to carefully check the behavior of the
reduced system. The CSP can only support this process
in a rational way, but does not allow for a fully auto-
mated analysis.
Even though, accordingly, scientists will always have to

be on top of this method, it would be useful to support
the reduction of the system in a stronger way than just
providing the CSP. A semi-automated reduction which
then quickly allows to be checked for error compared to
the original model would reduce workload considerably
and is currently planned to be included in the software.
An additional planned extension of the software is the
support of different compartment sizes (if multi-com-
partment models are analyzed) which is currently not
the case.
All in all, we were surprised that taking into account

different dynamic regimes only allowed the elimination
of 5 reactions and 5 species of the glycolysis model
which is considerably less than previous attempts that
focused on particular regimes. This once again supports
the view that it is crucial to define which systems beha-
viors should be reproduced by the simplified model
before entering reduction strategies and these initial
decisions might result in different models in the end.

Additional material

Additional file 1: Michaelis Menten Kinetics: Includes a more detailed
simplification procedure of Michaelis Menten kinetics.

Additional file 2: CSP output data for glycolysis model: Includes the
complete set of CSP output data (time resolved TS, RP, PI and II) for the
glycolysis model.

Additional file 3: simplification of glycolysis model. Additional
material related to the simplification of the glycolysis model. This
includes a list of original and modified reactions, kinetics laws and
parameters.
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