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Abstract

similar to the optimal CR.

Background: Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo
neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to
understanding the system-level regulatory mechanism of neural network behaviors.

Results: In this study, artificial pulsed neural networks were established using spike response models to capture
fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter
perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its
connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation.
This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to
possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network
does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the
number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very

Conclusions: In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and
APFL serves a pivotal network motif required to maximize the occurrence of SBA.

Background

In the brain development, neurons are assembled together
via numerous synapses to build up complicated neuronal
networks performing specific behaviors, such as transient
or sporadic activity, synchronized bursting activity (SBA),
and hyper-excitable activity. One of the most prominent
behaviors in cortical networks is the synchronized bursting
spikes occurring in the brain development and maturation
[1-3]. The behavior is not only found in ex vivo cultured
cortical networks [4] but also in the brain regions of sev-
eral in vivo animal models like visual cortex [5], hippo-
campus [6], and auditory neocortex [7]. In particular,
under iz vivo conditions, SBA is considered highly related
to a variety of crucial biophysical functions, such as atten-
tional selection [8-10], cognitive motor processes [11],
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visual pattern recognition [12], auditory object perception
[13].

Although SBA is an unique phenomenon in neuronal
networks, characteristics of the neural networks causing
SBA remain unknown, in contrast to the study on the
function significance of the SBA [14]. Presently, large
random ex vivo cortical networks are more appropriate
experimental model systems in the studies on the univer-
sal mechanisms governing the formation and conserva-
tion of neural network activities. Experiments using ex
vivo cultured neural networks have demonstrated that
the adjustment of synaptic connections is highly corre-
lated with the development of neuronal network behavior
such as the evolution of spontaneous electrical activity
[15,16]. In the matured phase of an ex vivo cultured
neural network, each neuron builds up synaptic connec-
tions with 10-30% of other neurons within the neural
network [17,18]. Another line of evidence has indicated
that the electrical activity of neurons can directly affect
the outgrowth of neurites, and such reconfiguration of
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neuronal networks in turn causes adaptive adjustment of
the neuronal electrical activity [19]. This behavior-depen-
dent regulatory mechanism precisely drives and controls
networks to grow, prune, and finally converge to a proper
connective ratio (CR) (10-30%).

According to the above described connectivity charac-
teristics of ex vivo cultured neural networks, two inter-
esting questions arise: why do such a matured neural
network keep its CR within a fixed range (10-30%); and
what biological significance and associated implications
does this fixed CR have? To answer these intriguing
questions, we hypothesize that the CR is associated with
the facilitation of synchronized bursting network beha-
viors, since synaptic connections are always found corre-
lated with network behaviors in ex vivo experiments.
Spike response models [20-23] were used to construct
randomly connected artificial pulsed neural networks.
The connective weights between two neurons were ran-
domly selected, and the CR of the networks was
increased progressively to mimic the process of develop-
ment of cultured neural networks. The correlation
between network behavior and structure was investi-
gated using simulations. Subjecting the simulations to
parameter perturbations revealed that, for a network
with an excitatory ratio (ER) at 80-90% (a realistic ratio
for ex vivo networks), the CR of the network always lies
in a range of 10-30% when the occurrence of SBA
reaches its highest expectation. This value is consistent
with the matured CR of ex vivo neuronal networks with
the inhibitory synaptic ratio at 10-20% [24,25]. This
result reveals that the networks are evolved to form
such a CR for optimizing the occurrence of SBA rather
than randomly connected.

This study also explored the relationship between the
occurrence of SBA and the composition of network motifs
in the neural networks [26,27]. We found that SBA can be
found only in the networks containing an all-positive-
interaction feedback loop (APFL) [2]. For networks con-
taining APFLs, the number of APFLs also demonstrates an
optimal range corresponding to the maximized occurrence
of SBA, close to the CR. Thus, we infer that the APFL may
serve a crucial network motif underlying to maximize the
occurrence of SBA.

For a pilot study in real neural networks, we have
employed the neural network of nematode worm C. ele-
gans [28,29]. The nervous system of C. elegans consists of
302 neurons and the number of neurons is almost same
for different individuals. Each neuron in C. elegans’ ner-
vous system has distinct properties in view of morphol-
ogy, connectivity, and position, and therefore it can be
labelled specifically. The neural network of C. elegans is
highly clustered like regular lattices and also has small
characteristic path lengths like random graphs. So, it is
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well represented by small-world networks [30,31]. We
investigated the egg-laying circuit of C. elegans including
11 neurons or neuron classes to examine our major
claims [32,33]. As a result, we found that the egg-laying
circuit has 17.3% CR and 10.5% ER which lie within the
aforementioned evolved ranges. We also found that three
two-node APFLs included in this circuit contribute to
inducing a much higher level of SBAs in contrast to the
randomly connected networks with the same number of
network nodes.

Results

The optimal CR at the maximal occurrence of SBA

To unravel the biological significance of the CR of
matured neural networks (10-30%), we first investigated
the relationships between CR, ER, and the occurrence of
SBA. Spike response models (SRM) can be used to
simulate random ex vivo cortical networks so that their
fundamental dynamical properties can be modeled [34].
The detailed simulation protocols for the artificial
pulsed neural networks constructed by SRM are intro-
duced in the Methods section. The connective weights
among neurons were randomly assigned in a certain
range to obtain a result that was irrelevant to the speci-
fic value of connective weights. For each CR and ER,
1,000 randomly connected pulsed neural networks were
constructed to generate various network behaviors
which were then further classified into four major cate-
gories with respect to the proposed criteria in the sec-
tion entitled “The typical behaviors of spike neural
networks”.

The SBA properties of networks were investigated at
two different scales: small networks with 12 nodes and
large networks with 60 nodes. We recorded and calcu-
lated the expectation and standard deviation of SBA
occurrence over the 1,000 networks (with a stereotyped
CR and ER). Figure 1 shows the relationships among CR,
ER, and the occurrence of SBA in the 12-node networks
(Figure 1, a-1, a-2, a-3) and the 60-node networks (Figure
1, b-1, b-2, b-3). The mean and standard deviation of the
occurrence of SBA were calculated over the 1,000 spike
neural networks in each possible combination of CR and
ER. The interesting profiles concerning the relationship
between CR and the occurrence of SBA are found when
the ER was equal to 0.9, which coincides with the experi-
mental observation in cultured neural networks [25]. Fig-
ures 1 a-3 and b-3 show an optimal CR of 15% in the 12-
node networks and 10% in the 60-node networks, respec-
tively. This relation between CR and SBA suggests that
the direction of evolutionary selection of CRs (not only
in artificial pulse neural networks but also in in vitro
neural networks) is to maximize the possibility for syn-
chronized bursting behavior by networks.
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Figure 1 The relationship between the occurrence of SBA and CR (or ER) for 12-node networks and 60-node networks. (a-1), (a-2) The
relationships among CR, ER, and the occurrence of SBA for 12-node networks from two different perspectives. The occurrence of SBA in 1,000
randomly connected networks was evaluated on each point of a lattice composed of CRs (0:0.05:1) and ERs (0:0.1:1). The surface points represent
the mean value of the occurrence of SBA, while the upper and lower red bars show their standard deviations over 1,000 simulations. (a-3) The
relationship between CR and the occurrence of SBA for 12-node networks when ER equals 0.9, which is consistent with the actual biological
level. (b-1), (b-2) The relationship among CR, ER, and the occurrence of SBA for 60-node networks from two different perspectives. The
occurrence of SBA in 1,000 randomly connected networks was evaluated on the same lattice as (a). The surface points represent the mean value
of the occurrence of SBA, while the upper and lower red bars show their standard deviations over 1,000 simulations. (b-3) The relationship
between CR and the occurrence of SBA for 60-node networks when ER equals 0.9 (the biological level).
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The optimal number of APFLs causing maximal
occurrence of SBA

The existence of APFLs was shown to be a prerequisite for
inducing SBA for 2, 3, and 4-node pulsed neural networks
[2]. SRM simulations (2, 3, and 4-node small networks)
indicated that only those networks containing APFLs
could produce SBA. Other networks containing only nega-
tive feedback loops or double-negative positive feedback
loops (referred to the section entitled “Definition of net-
work motifs and feedback loops” for its definition) and
those without any feedback loop, could not generate SBA
irrespective of synaptic efficacy. We were intrigued by
these observations and further investigated the relation-
ship between APFLs and the occurrence of SBA in larger-

scale networks. Figure 2 provides detailed descriptions of
this relationship in both 12-node and 60-node networks.
Statistical tests on these relationships were carried out for
all 1,000 simulations on the same lattices, ERs (0:0.05:1) x
CRs (0:0.1:1), shown in Figure 1 a-1, a-2 and Figure 1 b-1,
b-2.

Figures 2 a-1 and a-2 show the correlation between two
typical network behaviors, SBA and hyper-excitable activ-
ity (HEA), and the total number of 2, 3, and 4-node APFL
motifs in 12-node pulsed neural networks (see Figure 2 a-
1, a-2). When the number of APFL motifs increases, the
mean of SBA occurrence initially increases, then reaches
a peak (maximum SBA occurrence of 4.3, corresponding
to four APFLs in the 12-node networks), and finally
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and the occurrence of 2-channel HEA for the 60-node networks.

Figure 2 The relationship between the total number of 2, 3, and 4-node APFL motifs and the occurrence of SBA or HEA for the 12-
node networks and 60-node networks. (a-1) The relationship between the total number of 2, 3, and 4-node APFL motifs and the occurrence
of SBA for the 12-node pulsed neural networks. (a-2) The relationship between the total number of 2, 3, and 4-node APFL motifs and the
occurrence of 2-channel HEA for the 12-node networks. (b-1) The relationship between the total number of 2, 3, and 4-node APFL motifs and
the occurrence of SBA for the 60-node pulsed neural networks. (b-2) The relationship between the total number of 2, 3, 4-node APFL motifs
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returns to zero (after 37 APFLs in the 12-node networks,
see Figure 2 a-1). However, the occurrence of HEA
always increased with the increase in the number of
APFL motifs (see Figure 2 a-2). If the number of APFLs
exceeded 37 in a 12-node network, the occurrence of 2-
channel HEAs (see the section of ‘Simulation protocols”
for its definition) approached the maximum, C}2, which
corresponds to the case in which all pairs of channels are
hyper-excitable. Thus, the decreased the occurrence of
SBA can be explained by the increase of HEA occurrence
when APFLs are sufficiently enriched in a network. A
similar result was obtained in 60-node networks (see Fig-
ures 2 b-1 and b-2). The maximum 2-channel SBA
occurrence was 727, corresponding to 400 APFL motifs
(2, 3, 4-node) in the 60-node networks. When the num-
ber of 2, 3, 4-node APFL motifs exceeded 900, HEA fully
dominated, and all other behaviors including SBA van-
ished from the 60-node networks. Notably, the first points
(mean = 0 and standard deviation = 0) in Figures 2 a-1
and b-1 imply that no SBA occurs when no APFL motif is
present in the network. Therefore, the APFLs is necessary
to trigger SBA in a pulsed neural network.

Figures 1 and 2 clearly indicate that SBA occurs signifi-
cantly within an optimal range of CR and APFL number.
In fact, the simulations demonstrate that the number of
APFL motifs increases along with the increase of ER and

CR in randomly generated synthetic networks (data not
shown). Therefore, we infer that the primary factor indu-
cing the maximal occurrence of SBA may be the forma-
tion of a suitable number of APFLs in neural networks.

The relationship between the number of 2, 3, or 4-node
APFLs and the occurrence of SBA

We also investigated the relationship between the distribu-
tion of each type of APFL and the level of SBA. In the 12-
node neural networks, we found that 2-node APFLs are
significantly enriched compared to 3-node or 4-node
APFLs for all levels of SBA (Figure 3 a-1). Figure 3 b-1
shows the relationship between the number of 2, 3, or 4-
node APFLs and the occurrence of SBA for 60-node
pulsed neural networks. The number of 2-node APFLs sig-
nificantly exceeds the number of 3-node or 4-node APFLs
only when the occurrence of SBA exceeds a high level
(1,200 events). Therefore, the number of 2-node APFLs
dominates the total number of APFLs subject to a high
level of SBA occurrence in both small- and large-scale
networks.

How is SBA inhibited when each type of APFL motif
is absent from the pulsed neural networks? Figure 3 a-2
shows the occurrence of SBA when one type or a com-
bination of APFL motifs is not present in the 12-node
networks. With the exclusion of more types of APFL
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Figure 3 The influence of 2, 3, or 4-node APFL motifs on inducing SBA. (a-1) The number of 2, 3, or 4-node APFL motifs with respect to
the level of SBA (12-node networks). (a-2) The occurrence of SBA along with the absence of particular APFL motifs or combinations of motifs in
12-node networks. (b-1) The number of 2, 3, or 4-node APFL motifs with respect to the level of SBA (60-node networks). (b-2) The occurrence
of SBA along with the absence of particular APFL motifs or their combinations in 60-node networks.

motifs, both the mean and standard deviation
approached zero. For example, if we take the absence of
2, 3, 4, 5, and 6-node APFLs into account, the occur-
rence of SBA is only 3.418 x 107 + 0.0101 (mean fre-
quency and standard deviation). Thus, the loss of more
types of APFL motif gradually inhibits the occurrence of
SBA. In 60-node networks, the observed trend slightly
differs in that the exclusion of 2-node APFLs completely
prohibits the occurrence of SBA (see the first point in
Figure 3 b-2). This fact implies that 2-node APFLs may
function dominantly in the inhibition of SBA in large-
scale networks, compared with 3-node and 4-node
APFLs.

A case study of the egg-laying circuit of C. elegans

We investigated the egg-laying circuit of C. elegans com-
posed of 11 neurons or neuron classes for a pilot study of
real neural networks [32,33]. We identified that this cir-
cuit contains three two-node APFLs as indicated by the
bi-directional red arrows (Figure 4). In addition, we

Figure 4 The egg-laying circuit of C. elegans. Each node
represents a neuron or a neuron class. The arrows represent
excitatory synaptic connections and the line bars denotes inhibitory
synaptic connections. In this network diagram, all outer connections
are excluded for simplicity.
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found that the CR of this circuit is 17.3% and the ER of it
is 10.5%.

We carried out simulations over two network groups
for 20,000 times with different synaptic weight perturba-
tions. One group of networks are randomly connected
with any CR between 0 and 1, and the other group of
networks have the same topological structure as shown
in Figure 4. Two-sample ¢-test was carried out for these
two groups to examine whether the real biological neural
network induce higher SBAs compared to the randomly
connected neural networks. Details are as follows: Let
vector x denote the SBAs of 20,000 randomly connected
networks and vector y represent the SBAs of the egg-lay-
ing neural network of C. elegans with the 20,000 synaptic
weight perturbations. Assuming that the variances of x
and y are unknown, it becomes the Behrens-Fisher

F-7
\/s,%/nx +55/ny
~t(n, + n, - 2) where s, = 4.3695 and s, = 6.9421 are the
standard deviations of x and y; ¥ = 1.0131 and [ =
4.9804 are the means of x and y; n, and #, are the num-
bers of data of x and y. The p-value for the null hypoth-
esis Hp : X >y is less than 0.0001 which is much less
than the significance level o = 0.05. Therefore, the null
hypothesis H, should be rejected and the alternative is
accepted.

problem [35]. The ¢-test statistic is T=

Discussion

The present study unraveled the direction of neural net-
work development to facilitate a relatively high level of
SBA. Thus, the CR range of a mature cultured neural
network may represent a delicate design and not the
result of random selection. In addition, such biological
interpretation of the optimal CR may be further applic-
able to in vivo situations, since the distribution of cell
types in ex vivo networks is often similar to those found
in vivo [25,36]. Some evidence indicates that neural net-
works first develop toward certain connective structures
and then form specific functions by adjusting their
synaptic efficacies according to the external stimulus
[37]. Our simulations suggest that neurons may connect
with each other at a 10-30% CR to achieve the highest
possibility of SBA occurrence in the early stage, and
then, based on such an optimal CR range, the con-
structed networks further recruit and control SBA by
chemically adjusting their synaptic efficacies.

We showed that our main results are quite robust to
variations of network scales, network topological proper-
ties, and simulation parameters. We carried out simula-
tions (see Simulation protocols) for a variety of neural
networks with 10-300 nodes and found that the mean
value of all the optimal CRs is 13% (with a standard
deviation 0.0181) which lies within the evolutionarily

Page 6 of 11

selected range of CR (10-30%). In addition, note that the
networks used for simulations in the early part (1,000
networks were constructed for each CR and ER) were
based on random connections and therefore various
possible topological structures were already taken into
account. So, we confirmed that our results hold regard-
less of particular connective forms. We have also inves-
tigated the possible influences by perturbation of
parameters {7y 7,,, A,y 7} (over a range from -95% to
250% perturbations of the original simulation para-
meters). For instance, the mean of all the optimal CRs
for 10-node networks with the parameter perturbations
was 18.67% (with a standard deviation 0.0183). In this
way, we could also confirm that our results, the evolu-
tionarily selected range of CR of 10-30%, still hold
against the parameter perturbations.

Conclusions

In this study, we investigated the underlying cause of
the evolutionarily selected CRs of neural networks. Arti-
ficial pulsed neural network simulation has shown that
an optimal CR range (10-30%) maximizes the occur-
rence of synchronized bursting behaviors (when ER =
0.9), which is consistent with previous ex vivo experi-
mental observation, in which the CRs of cultured corti-
cal networks consistently lie in a range of 10-30% with
an ER of 80-90%.

Employing time-series data from multi-electrode array
experiments, we identified some APFL motifs in cultured
cortical networks of E18 Sprague-Dawley rats [2]. To
further unravel the crucial role of the APFL motifs, we
investigated the relationship between specific network
structures (network motifs) and network behaviors in
artificial pulsed neural networks. This study can readily
be used to capture the fundamental dynamical character-
istics of cultured neural networks. We found that the
existence of APFL motifs is a necessary condition of SBA,
not only for small-scale networks but also for large-scale
networks. To recruit a high level of SBA, networks must
have an optimal number of APFL motifs. Therefore, we
infer that the formation of the appropriate number of
APFLs is related to the maximal occurrence of SBA,
whereas the optimal CR is only a necessary condition to
achieve the required APFLs.

Furthermore, we investigated the distribution of each
type of APFL motif (2, 3, or 4-node) at different SBA
levels. In both 12-node and 60-node networks, the 2-
node APFL motif dominated among APFL motifs at high
SBA levels. More importantly, the contribution of each
type of APFL motif to SBA was demonstrated by com-
paring the inhibitory effect of each APFL motif against
SBA. For large-scale networks, the exclusion of 2-node
APFLs almost fully prohibits the occurrence of SBA,
implying that compared to other APFL motifs, 2-node
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APFL motifs may be crucial for neural networks to pro-
duce SBA.

Methods

Definitions of network motifs and feedback loops

A network motif is defined as an enriched sub-network
pattern in complex networks that occurs more fre-
quently than in randomized networks [38-41]. Here, this
concept was extended to a more general definition. A
motif refers to any sub-network with a particular struc-
ture. To relate the structure of various distinct network
motifs and their dynamic behaviors, a range of different
network structures can be considered, and their correla-
tions to specific dynamic behaviors investigated. This
paper focused on synchronized bursting activities.

A feedback loop (FBL) is defined as a network motif
composed of network nodes (neurons) and closed direc-
ted paths (synapses). The example network shown in
Figure 5a contains five FBLs (Figure 5b). FBL1, FBL2
and FBL3 are positive feedback loops (PFLs); FBL4 and
FBL5 are NFLs. The sign of a feedback loop is deter-
mined by ('), where ¢ is the total number of inhibitory
interactions contained in the loop. Moreover, if a posi-
tive feedback loop contains only positive interactions
like FBL1 and FBL2, it is referred to as an all-positive-
interaction feedback loop (APFL).

Pulsed neural networks

To infer the relationship between a type of feedback
motif and its network behaviors, typical network motifs
were constructed based on pulsed neural networks, and
their network responses to randomly assigned initial
states and simulation parameters were observed. The
pulsed neural networks, also called the third generation
of artificial neural networks, are based on spiking neu-
rons, or “integrate-and-fire” neurons [22,23]. These neu-
rons utilize recent insights from neurophysiology,
specifically the use of temporal coding to pass informa-
tion between neurons [11,42,43], which closely mimic
realistic communication between neurons. Therefore,
pulsed neural networks are commonly applied to study
the properties of neural networks.
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For a spiking neuron i, the membrane voltage can be
denoted by a state variable x;. Once x; reaches a thresh-
old 9, the neuron is fired; the moment of crossing the

threshold is represented by a firing time tf . The set of

all firing times of neuron i, commonly called a spike
train, is described as

@; = {tF

ui(tﬁz>=8;lsk§n} 1)

where ' is the most recent spike before the current
time t. Two different processes contribute to the value
of x;. The first contribution is a negative-value function
v (t— tf‘) indicating an immediate “reset” after each fir-
ing time in @;. In the biological context, Wi is used to
account for neuronal refractoriness. The second contri-
bution is inputs from pre-synaptic neurons j € A; where

A= {j |j presynaptic to i} (2)

A pre-synaptic spike at time t]k increases (or
decreases) the state x; of post-synaptic neuron i for
t > t]’? by summing up a weighted kernel function as
wie(t — t]k) The signs can be reflected in synaptic effi-
cacy, w;;, using w;; > 0 for excitatory synapses and w;; <
0 for inhibitory synapses. The kernel ¢; describes the
response of x; due to pre-synaptic potentials at t]k,

which can be viewed as a combined effect of the axonal
transmission and membrane transmission properties of
neurons. Therefore, the state of neuron i at current time
t is given by a linear superposition of the two main pre-
viously mentioned contributions,

x() = Y Wit—t)+ Y Y wyey (t - th> 3)

IlkG‘:I:‘i ]‘6‘1’,‘ I;(ECD]'

The models described by (1)-(3) are referred to as
SRMs [22]. They, together with the connectivity topol-
ogy of neural networks, form a simple mechanism of
simulating biological neural networks. Frequently, noise
was introduced into the SRM by adding an effect of a

FBL2

Yegvy

Figure 5 Illustration of feedback loops and APFLs. (a) An example network composed of five different feedback loops. An interaction
between nodes is represented by arrows to denote excitatory regulation and blunt lines for inhibitory regulation. The sub-networks colored in
red denote the two APFL motifs. (b) Five feedback loops (FBL) contained in the network shown in (a).

FBL3 FBL4 FBL5
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stochastic current If‘”’“ (t) to the right-hand side of (3).
Then (3) can be altered to

xi(0) = YWt — )+ 303 wiey (z - t]k) + / G —s)ds  (4)
0

3 ji ke
tfea; jeVi ea;

where the kernel function e(s) mimics the dynamic
from the local noise current stimulation to the mem-
brane voltage of neuron i. As usual, several typical
mathematical formulations were adopted (illustrated in
Figure 6) to describe refractoriness ¥;, post-synaptic
potential ¢;, and membrane dynamics e;. For instance,
let

) [ew(=" 72— o= "B |12 (5)

1
T/ Tm

&ij(t) = 1-(

where 1, and 1, are time constants describing axonal
transmission dynamics and membrane dynamics, respec-
tively, and A, is axonal transmission delay. H(t - A,,) is
the Heaviside step function which vanishes for ¢ < A,
and set £ > A, equal to 1.

One typical membrane voltage reset function is

t
—Sexp(— . ), fort > Thefractory

i(t) = (6)

—0o0, fort < Trefmctow

where Tefiacioryis the absolute refractory period of
neuron i. During such a period, the neuron cannot be
fired regardless of the membrane voltage. For the
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membrane dynamical function, the following equation
can be used:

) = | ew(= () @)

m

Networks of different sizes can exhibit similar network
behaviors (or dynamics) if their neurons are supplied
with the same average inputs [22]. To make networks of
two sizes comparable with respect to the same average
input of each neuron, the networks must have weight
scopes scaled by the number of network nodes. For
example, take an n;-node network as a nominal case
with an allowed weight scope of [-Wax, Winax]. Then
the weight scope of an #n,-node network should be

[_Wmaxr Wmax]
(= 1)/ (m—1)"
network (n; = 12) was set as the nominal network.
Thus, the weight scope of the other network (7, = 60)
was scaled by the factor (60 - 1)/(12 - 1) = 5.

assigned as In practice, the smaller

The typical behaviors of spike neural networks

Four typical spontaneous network behaviors appeared
during the simulations: transient response activity
(TRA), SBA, asynchronized bursting activities (ASBA),
and HEA [44-47]. TRA is a non-sustained firing phe-
nomenon, while both SBA and ASBA demonstrate regu-
larly separated clusters of spikes during their full
durations. The two cases can be differentiated using a
synchrony index (SI) [48,49]. SI is defined based on a

08
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Figure 6 The functions describing the dynamics of a spike neuron. (a) The kernel g;(t) describing the response of x(t) caused by a pre-
synaptic spike at t = 0, with A, = 50 ms, T, = 3.5 ms, and 1, = 8 ms. (b) The function y; (t) reflecting refractoriness after a spike emitted at t =
0, with 8 = 0.1 and 7 = 40 ms. (c) The kernel e(t) representing the dynamics from local current stimulation to the membrane voltage of a

neuron. The time constant is identical to t,,, in (a). (d) The membrane voltage x; (t) firing at time tf when it reaches a threshold voltage 6 = 0.1.

After firing, it is reset by the function w(t) and then re-accumulates via the pre-synaptic spike inputs wijsij(t - t]k)
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cross-correlation coefficient, which is often used to
quantify the temporal relationship of a pair of neurons.
Suppose the spike trains of the two cells in a duration
of T seconds are denoted by x(¢) and y(¢t) (0 < t < T).
Their discrete-time forms x(k) and y(k) can be obtained
by dividing 7 into # bins (7/bin width; k = 1 ... n) and
then counting the number of spikes in each bin width.
In our simulations, T = 2 s, and bin width = 20 ms. The
simulations showed that our results are quite robust
with respect to arbitrary choices of 7" and bin width.
The cross-correlation coefficient r between x(k) and y(k)
is calculated as follows:

SSyy
Sl=r= (8)
V/8SxxSSyy
n 2 n 2
woe o (5o (B
=) X — SSy =2 v =
k=1 n k=1 n
n n
and 1 (kX; x) (kX; y>
§Sy = 3 ay— T /N
k=1 n

By its definition, r is a value in the range of [0, 1]. If r
exceeds a threshold (0.7 was used in our simulations),
the two spike trains are considered synchronized with
each other. Otherwise, they are considered asynchro-
nized. In the case of HEA, all nodes permanently fire
with an interval of absolute refractory period Tiefiactory-
Notably, hyper-excited spike trains also have a high SI,
which is quite similar to SBA. However, they fire as clo-
sely as possible without any perceivable intermittence
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during their final steady state. Figure 7 illustrates these
four typical activities using a simple 2-node PFL motif.
For a larger-scale network with n nodes, k-channel
SBAs (2 < k < mand k € Z) can be calculated by the
same criteria. For simplicity, only 2-channel SBA was
selected in this study to represent the level of k-channel
SBAs, considering that measurements greater than 2-
channel do not change the final results and major con-
clusions of the study. Similarly, 2-channel HEA was
selected in to represent the level of k-channel HEAs
either.

Simulation protocols

Simulations were carried out using SRMs for the randomly
connected networks where all neurons were assumed to
have an identical parameter set {7, 7,,, Aux T 0}, and the
synaptic efficacies w;; were randomly chosen from a uni-
form distribution [-1, 1] (see the section of ‘Pulsed neural
networks’ for further details on SRM). For a randomly
generated network with # neurons and m synaptic con-
nections (suppose that 71, denotes excitatory connections
and m-m, represents inhibitory connections), the CR is
defined as the percentage of the number of existing synap-

tic connections of the network divided by that of the fully
m

n(n—1)°
Here, only a single connection between two different neu-
rons is allowed for simplification. Hence, the possibility of
self-connection of one neuron and multiple connections
between any pair of neurons are excluded. The ER is
referred to as a quotient of excitatory synaptic number

connected network with node number #, i.e.,

over the total number of synaptic connections, i.e.,

b c
-1 T T T T T = 1 "
c ' ! c 1
20-5- --------- [ L i P 80-5 ‘I ~|‘I 1 l I | “H
2 R ¥ R YRR ¥ Ja B 402 04 06 08 1
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Figure 7 Four possible network behaviors for a 2-node PFL motif with various synaptic efficacies. The initial state of the network is taken
as (1,1). (a) The scheme of a 2-node PFL motif. (b) Transient response activity. (c) Synchronized bursting activity. (d) Asynchronized bursting
activity. (e) Hyper-excitable activity.
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To investigate the relationships among CR, ER, and
the occurrence of SBA, simulations with both synaptic
efficacies and network structures randomly perturbed
were carried out using different combinations of CR and
ER. Classification of four typical network behaviors
(TRA, SBA, ASBA, and HEA) can be found in the sec-
tion entitled “The typical behaviors of spike neural net-
works”. For each ratio pair (CR, ER), 1,000 randomly
connected artificial neural networks were constructed,
and simulations based on these networks were carried
out. For each constructed network (corresponding to
one simulation), the total number of APFL motifs (2, 3,
and 4-node) and the occurrences of k-channel SBA and
HEA (2 < k < n and k € 7Z) were investigated to show
the correlations between APFL number and such typical
behaviors. Our simulations demonstrated that the
change of k or inclusion of more (greater than 4) node
motifs had no effect on evaluating the dynamical charac-
teristics of networks. In practice, only the 2-channel
SBA and 2-channel HEA were evaluated and used to
measure the levels of synchronization and hyper-excita-
tion in networks. The correlation between the occur-
rence of 2-channel SBA or 2-channel HEA and network
topological characteristics was obtained from the statis-
tics of the occurrence of such behaviors with various
CRs, ERs, and randomly assigned synaptic efficacies.
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