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Abstract

Background: Toxins A and B (TcdA and TcdB) are Clostridium difficile’s principal virulence factors, yet the pathways
by which they lead to inflammation and severe diarrhea remain unclear. Also, the relative role of either toxin
during infection and the differences in their effects across cell lines is still poorly understood. To better understand
their effects in a susceptible cell line, we analyzed the transciptome-wide gene expression response of human
ileocecal epithelial cells (HCT-8) after 2, 6, and 24 hr of toxin exposure.

Results: We show that toxins elicit very similar changes in the gene expression of HCT-8 cells, with the TcdB
response occurring sooner. The high similarity suggests differences between toxins are due to events beyond
transcription of a single cell-type and that their relative potencies during infection may depend on differential
effects across cell types within the intestine. We next performed an enrichment analysis to determine biological
functions associated with changes in transcription. Differentially expressed genes were associated with response to
external stimuli and apoptotic mechanisms and, at 24 hr, were predominately associated with cell-cycle control
and DNA replication. To validate our systems approach, we subsequently verified a novel G;/S and known G,/M
cell-cycle block and increased apoptosis as predicted from our enrichment analysis.

Conclusions: This study shows a successful example of a workflow deriving novel biological insight from
transcriptome-wide gene expression. Importantly, we do not find any significant difference between TcdA and
TcdB besides potency or kinetics. The role of each toxin in the inhibition of cell growth and proliferation, an
important function of cells in the intestinal epithelium, is characterized.
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Background

C. difficile, a Gram-positive, spore-forming anaerobe,
colonizes the human gut and causes infections leading
to pseudomembranous colitis. This opportunistic patho-
gen flourishes in antibiotic-treated and immunocompro-
mised patients and is frequently spread in hospitals,
although community-acquired Clostridium difficile
infection (CDI) cases have also increased [1]. The
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emergence of hypervirulent strains that possess more
robust toxin production and increased sporulation has
been correlated with outbreaks across Europe and
North America [2]. In most areas, the number of cases
has increased in the past decade. The number of
patients hospitalized in the US with CDI doubled to
approximately 250,000/year (from year 2000 to 2003)
and fatalities increased at a similar rate [3]. The US
healthcare costs for CDI are estimated to be over $1 bil-
lion/year [4]. As TcdA and TcdB appear to be responsi-
ble for many of the clinical manifestations of CDI,
understanding the intracellular and systemic effects of
each toxin is critical to developing and improving strate-
gies for treatment and prevention.
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In light of the multiple events and pathways involved
in the development of CDI, we chose to examine the
toxins’ effects from a systems perspective, focusing on
epithelial cells in vitro. Both TcdA and TcdB bind to
cells [5], enter an endosome by clathrin-mediated endo-
cytosis [6], translocate and then cleave their catalytic
domain into the cytosol which glucosylates and so inac-
tivates Rho family proteins [7]. The disruption of these
crucial signaling regulators begins to explain cytotoxic
effects such as deregulation of the cytoskeleton and the
breakdown of the epithelial barrier [8]. However, other
processes are likely affected by the trafficking and pro-
cessing of these toxins. In addition, secondary effects of
Rho glucosylation in relation to pathologies of CDI have
not been fully elucidated.

We therefore investigated the transcriptional profile of
HCT-8 [9] cells treated with TcdA or TcdB and identified
pathways and cellular functions associated with differen-
tially expressed genes. With respect to toxins, in vitro ana-
lyses of gene expression in host cells have been performed
with type A botulinum neurotoxin, lethal toxin [10] and
edema toxin [11] from Bacillus anthracis, pertussis toxin
[12], Shiga toxin type 1 [13], and several others. Such stu-
dies provide lists of differentially expressed genes or
classes of genes that serve as a resource for the generation
of new hypotheses. In this regard, we used bioinformatics
analyses to identify cellular functions altered by TcdA and
TcdB that are relevant to pathogenicity. The correct iden-
tification of the majority of functions found to be affected
in previous research regarding TcdA and TcdB confirmed
our analysis and experimental design, and experiments
reported herein validated changes in cell function that
were suggested by altered gene expression.

Among the genes that TcdA and TcdB affect, many are
involved in the regulation of the cell cycle and induction
of apoptosis. Bacterial factors such as cytotoxic necrotizing
factor and cytolethal distending toxins that disrupt normal
cell cycle progression have been described as “cyclomodu-
lins” [14]. In addition to effects of TcdA and TcdB on cells
in the G,/M phase which have been described previously
[15-18], we found that TcdA and TcdB affect expression
of cyclins and cyclin-dependent kinase (CDK) inhibitors
controlling the G;-S transition. Our experiments establish
that alterations of cell cycle implicated in our analysis of
gene expression do, in fact, occur in toxin-treated cells. In
addition to effects on cell cycle, we also present the other
cellular functions associated with differentially expressed
genes, some of which enable novel hypotheses on the cel-
lular activity and function of these toxins.

Methods

Cell Culture

HCT-8 cells were cultured in RPMI-1640 supplemented
with 10% heat-inactivated fetal bovine serum (Gibco)
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and 1 mM sodium pyruvate (Gibco). The cultures were
maintained at 37°C/5% CO, up to passage 35. Toxin A
and Toxin B, isolated from strain VPI-10643, were a
generous gift from David Lyerly (TECHLAB Inc,,
Blacksburg, VA).

Microarrays
HCT-8 cells (5 x 10°/flask) were grown overnight at 37°
C/5% CO,. Media were replaced with 2.5 ml fresh
media and toxin was added (100 ng/ml). At the end of
the indicated incubation period, cells were washed with
5 ml PBS (Sigma) and total RNA was isolated using the
QIAshredder and RNeasy mini kits (Qiagen), according
to the manufacturer’s instructions. An RNase inhibitor
was added (RNasin, Promega) and samples were stored
at -80°C. RNA integrity was assessed using an Agilent
2100 BioAnalyzer prior to cDNA synthesis and RNA
labeling using either the 3° IVT expression or one-cycle
target labeling methods (Affymetrix). Biotin-labeled
RNA was hybridized to Human Genome U133 Plus 2.0
chips, washed, stained and scanned using a GeneChip
System 3000 7G (Affymetrix). Data from three indepen-
dent microarray experiments were deposited into the
NCBI Gene Expression Omnibus repository (GSE29008).
Microarray signal intensities were normalized using
the gcrma package [19]. Treatment and control groups
were contrasted with linear models; a Benjamini-Hoch-
berg correction was applied across all the probes and
the nestedF method within the limma software package
was used for multiple testing across all contrasts [20,21].
The Gene Ontology (GO) annotation database was used
to map gene symbols to GO categories [22]. A gene
symbol was considered differentially expressed if at least
one of the probe sets annotated to it was significant. A
probe set was considered significant if the p < 0.1 and
the magnitude of the fold change was above 1.5.
Enriched GO categories were identified with the topGO
package using Fisher’s exact test to calculate p-values
and the elim algorithm [23].

Flow Cytometry

HCT-8 cells were grown overnight to 50% confluence,
media were removed and replaced with fresh media, and
toxin was added at the concentrations denoted in the
text and figures. At 24 h and 48 h, non-adherent cells
were removed and saved on ice. Adherent cells were
treated with 1 mL of 0.25% trypsin and 1 mL of Accu-
tase with EDTA for 30 min at room temperature and
joined with the non-adherent cells in 5 mL PBS. After
centrifugation, resuspension for counting cells, and
another round of centrifugation, the dissociated cells
were resuspended to 2 x 10° cells/mL and 0.5 mL was
added to 5 mL of 70% ice-cold ethanol for fixation.
Afterward, the fixed cells were resuspended in 5 ml PBS
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with 2% Bovine Serum Albumin and then resuspended
and incubated for 30 min in a solution to stain DNA
(PBS with 10% Triton X-100, 2% DNasefree RNase,
0.02% propidium iodide(PI)). Single-cell fluorescence
was measured with a Becton Dickinson FACSCalibur
flow cytometer. The proportion of cells in each stage of
the cell cycle was calculated using ModFit cell cycle
analyzer. The 24 h-samples were imaged with an Amnis
Imagestream imaging flow cytometer, which photo-
graphs the bright field and fluorescent channels from
every cell individually [24]. Using Amnis software, a
bivariate gate—based on the contrast of the brightfield
image and the area of nuclear stain—differentiated apop-
totic and non-apoptotic cells [25]. All other image fea-
tures were taken from the Amnis software.

Results

Transcriptional Responses

Overall, the changes in gene expression are consistent as
time progresses, but the number of differentially
expressed genes increases (Figure 1A). Specifically, at 2
h and 6 h, there are 4 and 134 probe sets differentially
expressed (relative to control) for TcdA and 57 and 294
for TcdB, respectively (Figure 1C). Many more are dif-
ferentially expressed by 24 h-1,155 and 1,205 in TcdA-
and TcdB-treated cells, respectively. In order to validate
these data, qRT-PCR was performed on 10 representa-
tive genes (r = 0.89 by Pearson correlation; Additional
File 1; Additional File 2, Figure S1 A). Since the glucosy-
lation of Rho family proteins occurs within one hour of
toxin treatment [26], many of the differentially
expressed genes at 24 h may reflect secondary effects
from the initial toxin action or possibly other unknown
activities and processing of the toxin.

Though the transcriptional responses to the two tox-
ins are similar overall, a notable difference between the
two toxins is that TcdB-induced changes occur more
rapidly (Figure 1A). At the later time points, however,
the overall transcriptional response induced by TcdA
becomes more similar to the TcdB-induced transcrip-
tional changes (see correlations in Figure 1B). Among
the most affected genes, immediate early-response genes
such as JUN, KLF2, and RHOB are upregulated 2 h
after toxin treatment and remain increased compared to
untreated cells through 24 hr (Additional File 2, Figure
S1 B). While identification of the most-affected genes
provides important insight, focusing on a small subset
risks overlooking other toxin effects key to the disease
process. We therefore analyzed the expression data in
the context of broad functional categories.

Functions associated with differentially expressed genes
We employed the GO database, which contains exten-
sive annotation of biological functions associated with
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Figure 1 Overall transcriptional response of HCT-8 cells to
TcdA and TcdB. A. A heatmap shows the number of differentially
expressed probe sets at 2 h, 6 h, and 24 h. The color scale
represents the fold change (binary log scale) of genes relative to
untreated cells at the same time point. “A, 2 hr” indicates the gene
expression of cells after 2 h of TcdA treatment. TcdA and TcdB
concentration is 100 ng/ml. B. The correlation of transcriptional
profiles between TcdA and TcdB at the indicated time points are
displayed in a correlation matrix. The values represent the Pearson
correlation coefficient calculated from the fold change of all the
probe sets within the microarray. C. The number of differentially
expressed genes used to identify enriched GO categories was
determined from a linear model (Methods).

specific genes, to identify cellular phenotypes associated
with changes in gene expression. The terms in this data-
base are separated into three ontologies: Molecular
Functions, Cellular Components, and Biological Processes
(detailed descriptions at http://www.geneontology.org).
A GO category—here defined as all the genes associated
with a single GO term—with a proportion of differen-
tially expressed genes greater than would be expected by
chance is considered overrepresented or enriched
(Methods). While some enriched categories might have
been anticipated, others provide novel insights. Within
the Biological Processes ontology, the most significantly
enriched categories at 2 and 6 hr are listed in Figure
2A. Within the Cellular Component ontology, the mito-
chondprial outer membrane and the apical junction com-
plex category are enriched most significantly at 6 h
(Additional File 3, Figure S2 A). Interestingly, many of
the functions related to the enriched categories have
been linked with toxin treatment in previous work. One
or both of the toxins induce activation of caspases
[17,27-29], damage mitochondria and cause the release
of cytochrome c [30,31], increase oxygen radicals and
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expression of cytokines [32-34], alter MAPK signaling
[35-37], and disrupt the organization of tight junctions
[8]. Hence, our analysis of gene expression as summar-
ized in Figure 2 is consistent with the previously
reported cellular responses to these toxins.

The most significantly enriched categories for each
toxin at the later time points are related to cell cycle
and DNA replication (Figure 2B). Categories such as tel-
omere maintenance and nucleosome assembly provide
more specific connections between the toxins and
changes in DNA replication. A more extensive list
reveals that several categories related to microtubule
organization during cell division are also enriched
(Additional File 3; Figure S2 B). By 24 hr, there are
changes related to virtually all elements of the cell cycle,
but those controlling G; and S phases are more signifi-
cantly affected. Though many of the genes within the
enriched categories were not among the most differen-
tially expressed genes, the abundance of differentially
expressed genes involved in the same functions provides
evidence for toxin effects on control of cell cycle at the
G; phase. Cyclins and other proteins necessary for
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Figure 2 Gene ontology categories associated with
differentially expressed genes. A. The most significantly enriched
GO categories (Fisher Exact Test, topGO elim algorithm [23], see
Methods) at 2 h and 6 h are displayed in a heat map. The color
intensity in each cell corresponds to the p-value (Fisher Exact Test)
for the GO category that is enriched. The dendrograms were
generated from a hierarchical clustering of GO Groups according to
Resnik similarity [49]. B. The most significantly enriched GO
categories at 24 h were determined similarly.
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progression from the G; phase into and through the S
phase are downregulated (Figure 3A). Cyclin proteins
expressed at different points are central in coordinating
entry into or exit from different phases. They specifically
bind and activate particular CDKs which then phosphor-
ylate downstream targets effecting progression [38].
Inhibitors of cyclin-CDK complexes from the INK4
family (p15, p16, p18, and p19) and Cip/Kip family (p21,
p27, and p57) may suppress cyclin-CDK signaling [39].
Expression of many of these and other genes, such as
CDC6 and CDC25A that are required for progression
from G, to the S phase, is altered by TcdA and TcdB.
The decreased expression of G; cyclins along with the
increased expression of inhibitors of G;-associated
cyclin-CDK complexes suggest altered regulation of the
cell cycle specifically in G;. We also measured expres-
sion of genes and proteins (Additional File 1 Additional
File 4) after 6 and 24 hr of treatment with 0.1, 1, and 10
ng/ml of TcdA or TcdB in confluent and subconfluent
cultures, which confirmed a consistent alteration of cell
cycle genes and proteins across a variety of conditions.

Effects of TcdA and TcdB on the Regulation of Cell Cycle

The functional changes suggested by altered gene and
protein expression were then investigated by quantifying
the proportion of cells in each phase of the cell cycle
before and after toxin treatment. To focus on actively
growing cells and avoid the effects of contact inhibition,
subconfluent cultures were used. After 24 hr of 0.1 or 1
ng/ml TcdB treatment, the distribution of cells across
the cell cycle changes significantly, with only a small
increase in the proportion of cells with less than a G/
G; amount of DNA—cells that are presumably dead or
dying (Figure 3B). In agreement with our gene expres-
sion analysis, the percentage of Go/G; cells increased
from 67% in untreated cells to 91% and 94% in cultures
treated with 10 ng/ml TcdA and 1 ng/ml TcdB, respec-
tively (Figure 3C). The magnitude of increase in the Go/
G, proportion is also concentration-dependent. The
effect on cell cycle by the combination of TcdA and
TcdB is comparable to those produced by TcdB alone
(Figure 3C), indicating that, with respect to their influ-
ence on cell-cycle arrest, the toxins are neither synergis-
tic nor antagonistic. As with gene and protein
expression, TcdB is more potent or faster-acting than
TcdA. Taken together, these data establish that the
toxin-induced alterations in genes associated with cell
cycle correlate with a block at the G;-S interface. In
other studies, a G,/M arrest has been reported in
human cell lines treated with different concentrations of
TcdA or TcdB [16-18]. This G,/M arrest has been
linked with a deregulation of the cell structure resulting
in an inability of cells to complete cytokinesis [40]. We
therefore investigated the cell cycle effects and
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Figure 3 The altered gene expression of G; phase cell cycle
regulators at 6 h and changes in the distribution of cells
within the cell cycle. A. A schematic of cell cycle regulation with
proteins placed next to the phase of cell cycle with which they are
associated (p19 and p21 are the products of the CDKN2D and
CDKNTA genes, respectively). Gray, blue, and red indicate genes
with unchanged, increased, or decreased expression, respectively,
post toxin treatment. B. Cells in a subconfluent culture were treated
with the indicated concentrations of toxin for 24 h. The DNA
content of cells in each condition was quantified by PI fluorescence.
The histograms of the area of PI fluorescence are normalized to the
total number of cells (denoted as normalized cell count) in the
sample such that the area under each histogram is equal to 1. In
this way, the proportions of cells in each phase of the cell cycle
may be compared for different size samples. The scale of the
vertical axis is the same in each histogram. C. The percentage of
cells in each phase of the cell cycle was calculated using ModFit LT
software. Sub-Go/G; cells were not included in the calculations.

morphology of cells treated for 24 hr with higher con-
centrations of TcdA (100 ng/ml) and TcdB (10 and 100

ng/ml).

Our analysis of single-cell images from toxin-treated
cultures reveals two unanticipated observations: (1) a
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biphasic distribution of apoptotic cells with respect to
stage of cell cycle and (2) two populations of cells at the
G,/M interface. Cells with a high-contrast bright-field
image and a low area of PI fluorescence are classified as
apoptotic (Figure 4A). Typically, apoptotic cells are asso-
ciated with a PI fluorescence level less than that of the
Go/G; population. Here, a significant portion of the
toxin-treated cells between the Gy/G; and G,/M cell
populations (typically associated with/attributed to the
S-phase) are apoptotic (Figure 4B). Thus, the accumula-
tion of toxin-treated cells with S-phase levels of PI-
fluorescence is not the result of progression from G;
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Al Ratio = 1.07 Al Ratio = 2.05
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Major Axis Intensity / Minor Axis Intensity
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Figure 4 Distribution of apoptotic versus non-apoptotic cells
within the cell cycle and characteristics of G2/M phase, toxin-
treated cells. A. Cells were classified as either apoptotic or non-
apoptotic based on the contrast of their brightfield image and the
area of PI fluorescence. Representative images of a cell in each class
are shown (100 ng/ml TcdB). B. Histograms of the area of Pl
fluorescence of each cell show the location of apoptotic and non-
apoptotic cells within the cell cycle. The percentage of G,/M cells
represents the proportion of non-apoptotic cells with a Go/M level
of DNA. C. Non-apoptotic G/M phase cells were analyzed to
determine the number of distinct nuclei. For this analysis only, cells
with an area of PI fluorescence 1.85 times greater than the PI
fluorescence area at the Go/G; peak were considered to be G,/M
cells. The major and minor axis intensity values are the length of
the axis weighted by the intensity of the image along the axis.
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but rather the apoptosis of G,/M cells. Even 24 hr after
the addition of 100 ng/ml of TcdB, apoptosis does not
dominate or override effects on cell cycle. At the highest
concentration tested (100 ng/ml), 68.6% of TcdB-treated
cells are still classified as non-apoptotic (Figure 4B). Of
the total number of non-apoptotic cells, the proportion
in the G,/M phase increases as the concentrations of
either TcdA or TcdB increases, indicating an inhibition
of progression from G,/M phase, in addition to the G;-
S block discussed above.

In order to understand the differences between toxin-
treated and control cells in G,/M, we determined sev-
eral cellular characteristics (circumference, area, and
others) of individual cells using an imaging flow cyt-
ometer. The feature that best distinguishes toxin-treated
from untreated cells is the intensity-weighted aspect
ratio of the PI fluorescence image. When an ellipse is fit
around the image, an aspect ratio near one indicates a
circular nucleus and a higher aspect ratio indicates an
elliptical nucleus or multiple nuclei (Figure 4A). Upon
visual inspection, a high aspect ratio is due typically to
binucleation. The higher proportion of binucleated cells
in toxin-treated cells (Figure 4C) indicates that the G,/
M block is attributable to a failure to complete cytokin-
esis [40]. Therefore, in addition to demonstration of a
G;-S block, our results show an inhibition of progres-
sion at the G,-M transition, which is congruent with
previous findings [15-18] in other cell types treated with
different toxin concentrations. Importantly, these G,/M
effects were observed at the same concentration of toxin
used for microarray analysis (100 ng/ml). Again, TcdA
elicited a similar response to TcdB at the same concen-
tration, yet to a lesser extent, thus showing consistency
from gene and protein expression to cell function.

Discussion

Understanding the differences between these two toxins
is particularly relevant in determining their roles in C.
difficile infection. Toxin A appears to be the dominant
virulence factor in animal studies, yet Toxin B has
higher enzymatic activity in vitro and is more potent
when injected into Don cells and for human cells stu-
died in vitro [26,41]. In a hamster model, Kuehne et al.
found that strains of C. difficile producing only TcdA or
TcdB are comparable in their virulence, while Lyras et
al used a TcdA mutant to show that TcdB was the key
virulence factor [42,43]. In this study, we used a systems
approach to understand the effects of TcdA and TcdB
on a human colonic epithelial cell line. We observed
that the responses to these two toxins are strikingly
similar, with the response to TcdB occurring more
rapidly. Investigation of one of the biological conse-
quences of these changes in gene expression revealed
toxin effects at both the G;-S and the G,-M transitions.
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In order to explore the interactions between C. diffi-
cile and intestinal epithelial cells, Janvilisri et al. exam-
ined the transcriptional responses of Caco-2 cells and C.
difficile organisms during an in vitro infection [44].
Because expression was measured at no more than 2 hr
post-infection, most of the changes in gene expression
were slight, yet they identified functions such as cell
metabolism and transport associated with affected
genes. We focused on cells treated with TcdA or TcdB
at a concentration and time course in which the cell
morphology is strongly affected. The effects of TcdA
and TcdB on gene expression in host cells have been
interrogated in other studies focusing on individual
pathways, but until now, an analysis of the comprehen-
sive global transcriptional response induced by either
TcdA or TcdB alone had not been performed.

Our systems approach identified a disruption of the
cell cycle not readily apparent from a ranked list of
genes. This approach overcame difficulties in decipher-
ing the particular relevance of genes known to be
induced by several stimuli or genes whose expression
leads to many possible cellular phenotypes. JUN is over-
all the most differentially expressed gene in our data,
and, considering TcdA or TcdB as a cellular stress, its
dramatic increase in expression is consistent with it
being characterized as a stress-response gene. However,
increased JUN expression has also been associated with
the promotion of G; progression, protection from apop-
tosis after ultraviolet radiation, and even induction of
apoptosis [45]. Clearly, multiple events may lead to the
same changes in expression of an individual gene. The
identification of functions associated with many of the
differentially expressed genes thus provides better evi-
dence of actual biological functions important to the
toxin response.

These results have clarified the effects of TcdA and
TcdB at each stage of the cell cycle. In studying Rho sig-
naling, Welsh et al. showed that combined Rho, Rac,
and Cdc42 inhibition by TcdA (200 ng/ml) in fibroblasts
led to decreased cyclin D1 expression and an inability of
serum-starved cells, stimulated with fetal calf serum and
treated with toxin, to progress past the G; phase [46].
Importantly, we show that a strong G; arrest occurs in
unsynchronized, proliferating epithelial cells. Only when
treated with higher concentrations (100 ng/ml TcdA, 10
ng/ml TcdB) of toxin did we begin to observe the inhi-
bition of cell division at the G,/M phase in a significant
proportion of cells. With regard to cell death, others
have shown an increased susceptibility of S-phase cells
to toxin treatment [47]. We did observe an increase in
the proportion of apoptotic S or G,/M phase cells. At
low concentrations (10 ng/ml TcdA, 1 ng/ml TcdB), the
decrease in the proportion of S-phase cells, however,
could not be entirely accounted for by death of cells at
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a particular point in the growth cycle. Rather, many
non-apoptotic cells remained in the Go/G; phase.

Conclusion

Our results have several implications in reference to the
role of these toxins in pathogenicity. In a host, the gut
epithelial cells normally turn over every 2-3 days [48].
Disruption of this cellular renewal process, and therefore
cell cycle, impairs the maintenance of the epithelial bar-
rier. The ability of both TcdA and TcdB to arrest
growth at the Go/G; phase and the G,-M transition, by
likely different mechanisms (G; arrest occurs even at
low toxin concentrations and is associated with altered
protein signaling; G, arrest is likely associated with dis-
organization of the cytoskeleton), places each toxin in
the category of cyclomodulins. As has been previously
shown however, control of cell proliferation is certainly
not their only or necessarily primary effect (e.g., inflam-
mation, disruption of tight junctions). The high similar-
ity in the gene expression induced by these two toxins
indicates that, qualitatively, their effects and the overall
cellular responses are comparable. The rate of internali-
zation and/or the rapidity of inactivation of Rho-family
proteins in different hosts may partially account for the
different rates in the onset of gene expression. Though
we did not observe synergy or antagonism between the
two toxins, it is possible that each could differentially
bind various cell types and therefore act synergistically
within a host. Clearly, the response to each toxin is a
complex process involving the activation and inhibition
of several pathways in different cell types. The integra-
tion and use of the data we present here have and will
continue to aid the organization of these multiple effects
into a central framework for interrogating toxin activity.

Additional material
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