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Abstract
Background: Modeling the dynamics of intracellular regulation networks by systems of ordinary differential
equations has become a standard method in systems biology, and it has been shown that the behavior of these
networks is often tightly connected to the network topology. We have recently introduced the circuit-breaking
algorithm, a method that uses the network topology to construct a one-dimensional circuit-characteristic of the
system. It was shown that this characteristic can be used for an efficient calculation of the system’s fixed points.

Results: Here we extend previous work and show several connections between the circuit-characteristic and the
stability of fixed points. In particular, we derive a sufficient condition on the characteristic for a fixed point to be
unstable for certain graph structures and demonstrate that the characteristic does not contain the information to
decide whether a fixed point is asymptotically stable. All statements are illustrated on biological network models.

Conclusions: Single feedback circuits and their role for complex dynamic behavior of biological networks have
extensively been investigated, but a transfer of most of these concepts to more complex topologies is difficult. In this
context, our algorithm is a powerful new approach for the analysis of regulation networks that goes beyond single
isolated feedback circuits.
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Background
Describing the dynamic behavior of molecular interac-
tions in a cell or cell compartment by chemical reaction
kinetics has become a standard approach in systems biol-
ogy for metabolic pathways as well as for regulatory
networks. Since qualitative knowledge about these inter-
actions is often available from experiments, literature or
databases, which can be represented as network graphs,
several different graph-based approaches have been devel-
oped to analyze the behavior of the networks. These
methods operate solely on the graphs without detailed
knowledge of the kinetic rates. They show for example
that certain subnetwork structures are necessary to gen-
erate complex behavior such as oscillations, hysteresis or
multistationarity. Thus, such behavior can be excluded for
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relatively small and simple networks that lack these sub-
networks. So far, most of these approaches have the fol-
lowing limitations for practical use: First, they only allow
to make statements for relatively simple graph topolo-
gies, and second, they are often restricted to very spe-
cific model classes such as metabolic networks of the
form ẋ = Sv(x) with stoichiometric matrix S and (often
polynomial) flux vector v(x) [1] or regulatory networks
whose Jacobian matrices have constant signs on the off-
diagonal elements [2-5]. Similar analysis methods that
work for more complex graph topologies or more gen-
eral network model classes are rare. On the other hand,
it has been shown in various contexts that interrelated
feedback structures contribute to the robustness of intra-
cellular regulation processes [6-13]. In most studies this
is demonstrated by analyzing a specific model via sim-
ulations with varying parameter values, for example via
Monte Carlo simulations. Although the conclusions from
these studies are very helpful and valuable, it is not clear
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to which extend they can be generalized to other net-
work models. These results, which show the importance
of feedback in regulation processes, provide a further
basis for the need of new methods that can deal with
interrelated feedback in dynamic network models in a
more general way. We expect that the more complex the
graph topologies, the more does the system’s behavior
depend on the kinetic rate laws, and less can be con-
cluded from the structure alone. Thus, these newmethods
can probably not be completely independent of equations
and parameters.
A new approach in this direction has been introduced

in our previous work [14] for a general class of regula-
tory network models. We introduced the circuit-breaking
algorithm (CBA), a method which operates on the graph
topology to construct a one-dimensional characteristic
that inherits important information about the behavior
of the system. In particular, we demonstrated that the
zeros of this characteristic are related to the system’s fixed
points.
In this paper we extend this work and show that the

characteristic contains information about stability of the
fixed points and can furthermore be used to detect bifur-
cation point candidates. The paper is structured as fol-
lows: We give a brief overview over our network model
class and the circuit-breaking algorithm and show how
it works on a network for cellular differentiation of
hematopoietic stem cells [15]. Based on these results, we
investigate relations between the stability of fixed points
and the slope of the circuit-characteristic that is con-
structed by the CBA. It is shown that a negative slope
at a zero of the characteristic does generally not contain
any information about the stability of the respective fixed
point, while a positive slope implies that the fixed point is
unstable, at least for certain graph topologies. We demon-
strate results on biological networkmodels for tryptophan
regulation in Escherichia coli [11] and the repressilator
model [16].

Results and Discussion
The circuit-breaking algorithm
Here we introduce the regulatory network model class and
summarize the concept of the CBA. For details we refer
to [14]. Since the formal description of the algorithm is
very technical and needs a lot of indices, we will thereafter
directly show how it works on a concrete network exam-
ple, from which we hope that it makes the general concept
easier understandable.
We consider regulatory networks models that are

described by a system of first order ordinary differential
equations

ẋ = f (x), x ∈ R
n, f ∈ C1 (1)

with underlying interaction graph (I-graph) G(V,E) that
illustrates the dependence structure of the variables, i.e.

ej→i ∈ E ⇔ ∃ x ∈ R
n such that

∂ ẋi(x)
∂xj

�= 0 (2)

and

ei→i ∈ E ⇔ ∃ x ∈ R
n such that

∂ ẋi(x)
∂xi

> 0. (3)

Trajectories of the system should be bounded, a biologi-
cally plausible assumption which also implies that the sys-
tem has at least one fixed point. It is sometimes useful for
the analysis to introduce sign-labels of edges in the I-graph
if the corresponding partial derivative is monotone, which
means that the influence of a component on another one
is purely activating or purely inhibiting regardless of the
state of the system. Contrary to many other methods, the
CBA does not rely on this monotonicity assumption.
Given a regulatory network model, i.e. a differential

equation system ẋ = f (x) and the I-graph topology
G(V,E), the CBA consists of the following steps:

1. Find strongly connected components of G(V,E):
The first step of the CBA is a partitioning of the vertex
set V into strongly connected components (SCC), i.e.
the maximal strongly connected subgraphs, which we
denote by Gk(Vk ,Ek), k = 1, . . . ,K . The new graph
GSCC(VSCC ,ESCC), which is obtained by shrinking all
vertices of a SCC to one single vertex and drawing an
edge eSCCi→j between two vertices vSCCi and vSCCj of this
graph when there exist vertices vi ∈ Vi and vj ∈ Vj

that are connected with an edge ei→j in the original
graph G(V,E), has a hierarchical topology without
any circuits. This fact is illustrated in Figure 1.

Figure 1 Division of vertices into strongly connected
components. An example of a graph G(V,E) and it’s partitioning into
strongly connected components (left). Within a strongly connected
component, each pair of vertices is connected via a path. If each SCC
is contracted to a single vertex, the resulting graph is circuit-free
(right) (if it contained circuits, the SCCs are not maximal, since all SCCs
in the circuit could be merged to a larger SCC) and thus has a
hierarchical order.
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We numerate the SCCs according to this hierarchical
order in the network. Fixed point coordinates of the
system can iteratively be calculated for each SCC,
starting with the SCC on top and following the
hierarchical structure downwards. In this scheme the
fixed point coordinates of the SCCs upstream serve
as constant input u for subsequent SCCs. An
example for this concept of iterative fixed point
calculation for SCCs is given in [14]. We denote
these sets of fixed points of SCC k with input u by
uFk . For the sake of simplicity we skip the index u in
the following, but bear in mind that the fixed point
set Fk has to be calculated for each input u.

2. Construct characteristics for each SCC in
dependence of input u and calculate the fixed points
from it’s zeros:
The core of the CBA is the construction of a
one-dimensional characteristic ck(κk

1 ) for a SCC
Gk(Vk ,Ek) for each input u. This is done in the
following way:

(a) Find the set C of all elementary circuits and
list them as set of vertex subsets

(b) Find a minimal circuit-covering vertex set Ṽ
such that at least one element of each subset
in C is contained in Ṽ and setm = |Ṽ |.
Collect the rest of the vertices in the set V̂ .
Relabel vertices such that Ṽ = {v1, . . . , vm}
and V̂ = {vm+1, . . . , v|Vk |}.

(c) Break all circuits by removing all edges that
point to vertices of Ṽ . Mathematically, this is
done by setting these variables to fixed input
values κ = (κ1, . . . , κm), i.e. xi = κi. The
result is an acyclic or hierarchical graph
topology.

(d) The fixed point coordinates of variables in V̂ ,
denoted by F(κ) = {x̄p(κ)}p=m+1,...,|Vk |, can
be calculated in dependence of these inputs κ .

(e) The circuits are iteratively closed by releasing
the vertices in Ṽ one after another, starting
backwards with vm. This translates into
shifting the respective vertex vi from the set
Ṽ to V̂ , reducing the vector κ by the same
element, and solving the implicit equation of
the form

fi(xi, κ , F(κ)) = 0 (4)

for xi to get the set x̄i(κ) of fixed point
coordinates of the variable xi in dependence
of the vector κ . The set F(κ) has to be
updated accordingly. Equation (4) has to be
solved numerically. For i = 2, . . . ,m we
denote the expression on the left hand side of
equation (4) partial circuit-characteristic.

The number of input variables of these
characteristics is reduced by one in each step,
since κ is reduced by one element in each
step. Thus, when releasing the last vertex v1 in
Ṽ , f1(x1 = κ1, F(x1 = κ1)) : R → R is a one-
dimensional characteristic that is called the
circuit-characteristic c(κ1) of the respective
SCC. It’s zeros correspond to the fixed point
coordinates of variable x1, denoted by {x̄1}. If
we leave the current SCC and go to the next
one, we refer to this characteristic as ck(κk

1 ).
(f) The corresponding fixed point coordinates of

the other variables can be calculated
iteratively by inserting the values of the set
{x̄1} into the partial circuit-characteristics in
reverse order. These coordinates are then
collected in the set F of fixed point
coordinates of the SCC k. If we leave the SCC
k, we refer to this set as Fk .

The structure of the CBA is illustrated in Figure 2 with a
flow chart.

Application of the CBA to a model for hematopoietic stem
cell differentiation
To motivate the subsequent investigations on the char-
acteristics of regulatory network models and it’s relation
to fixed points and their stability, we consider a network
model for the cellular differentiation of hematopoietic
stem cells described in [15]:

ẋ1= eN − x1 =r1 − x1
ẋ2= 5x1

1+x1
1

1+x43
− x2 =r2(x1, x3) − x2

ẋ3= 5x4
1+x4

1
1+x42

− x3 =r3(x2, x4) − x3
ẋ4= eM

1+x42
− x4 =r4(x2) − x4

ẋ5=
(

x1x4
1+x1x4 + 4x3

1+x3

)
1

1+x42
−x5 =r5(x1, x2, x3, x4)−x5

ẋ6=
(

x1x4
1+x1x4 + 4x2

1+x2

)
1

1+x43
−x6 =r6(x1, x2, x3, x4)−x6

(5)

This model describes the interplay between the two
lineage-specific counter-acting suppressors Gfi-1 (x2) and
Egr(1,2) (x3) during cellular differentiation for the neu-
trophil and macrophage cell fate choices, respectively.
These are activated by their transcription factors C/EBPα

(x1) and PU.1 (x4), respectively. Together, they regulate the
expression of lineage-specific downstream genes, which
are not further specified in the model and denoted by
Mac (x5) and Neut (x6). The model was build based on
chemical reaction kinetics that describe interaction of
the molecular species. The cellular state is assumed to
be directly correlated to the fixed point concentrations
of the transcription factors, as described further below.
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Figure 2 Flow chart of the Circuit-Breaking Algorithm. Flow chart of the Circuit-Breaking Algorithm. Blue boxes indicate that these calculations
are done within a SCC of the graph, yellow boxes describe the iterative closing of the circuits within this SCC by releasing vertices in the set Ṽk one
after another. The green boxes refer to actions on the full graph G(V,E).
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Furthermore, the model was non-dimensionalized after
some simplifications by rescaling time and protein con-
centrations. The two parameters that are left, eN and eM,
are the rescaled synthesis rate of the transcription fac-
tor C/EBPα, which is not regulated in the model, and the
maximal rescaled synthesis rate of the transcription factor
PU.1.
Figure 3 shows the bifurcation diagram of all six vari-

ables with bifurcation parameter μ = eM and condition
eN = eM that was created using xpppaut. For eM = 0 the
system has a globally stable fixed point at x=0. The sys-
tem undergoes a saddle-node bifurcation at e∗M ≈ 0.3221.
It has a globally stable fixed point for eM < e∗M and two
stable fixed points divided by an intermediate unstable
one for eM > e∗M. It can also be seen that the sta-
ble fixed point branch that exists for all eM represents

the neutrophil state, since the fixed point coordinates
of the neutrophil specific proteins (x1, x2, x6) increase
monotonically along this branch. The macrophage state is
represented by the stable fixed point branch that appears
at e∗M.
Now we use the CBA to construct the characteristic of

this system and compare this with the information of the
bifurcation diagram. As can be seen in Figure 4, the I-
graph of system (5) consists of four strongly connected
components given by V 1 = {x1},V 2 = {x2, x3, x4},V 3 =
{x5} and V 4 = {x6} with circuit sets C1 = C3 =
C4 = ∅,C2 = {{x2, x4, x3}, {x2, x3}}, and minimal circuit-
covering vertex sets Ṽ 1 = Ṽ 3 = Ṽ 4 = ∅ and Ṽ 2 = {x2}.
We start with G1(V 1,E1), which does not contain any

circuits. Thus, we just have to solve ẋ1 = 0 in system (5),
which leads to the set F1 = x̄11 = {r1} of fixed points of
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Figure 3 Bifurcation diagrams of a model for cellular differentiation of hematopoietic stem cells. Bifurcation diagrams of the hematopoietic
stem cell differentiation network (system (5)) described in [15] with bifurcation parameter μ = eM . Has been created with Additional file 1.
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Figure 4 I-graph of a model for cellular differentiation of
hematopoietic stem cells. I-graph G(V,E) of system (5). It consists of
four SCCs, as indicated with the grey boxes, and C2 has two
interrelated positive circuits.

G1. The fixed point set u=r1F2 = {x̄22(x1 = r1), x̄23(x1 =
r1), x̄24(x1 = r1)} of G2(V 2,E2) is calculated by break-
ing the two circuits at x2, i.e. setting x2 =: κ2

1 . Inserting
x̄4(κ2

1 ) = r4(κ2
1 ) and x̄3(κ2

1 ) = r3(κ2
1 , r4(κ

2
1 )) into ẋ2 leads

to the circuit-characteristic

u = r1c2(κ2
1 ) = r2

(
r1, r3

(
κ2
1 , r4(κ

2
1 )

)) − κ2
1 , (6)

which can, by inserting the respective terms for the syn-
thesis rates r, be rewritten as

c2(κ2
1 ) = 5r1

1 + r1
1

1 + x̄3(κ2
1 )

− κ2
1 (7)

with

x̄3(κ2
1 ) = 5x̄4(κ2

1 )

1 + x̄4(κ2
1 )

1
1 + (κ2

1 )4
and

x̄4(κ2
1 ) = eM

1 + (κ2
1 )4

.
(8)

This characteristic is shown in Figure 5 (center row),
along with the sets x̄i(κ2

1 ), i = 3, 4, 5, 6, for parame-
ter values eM = {0.2, 0.3221, 0.5} (left, center, right row,
respectively).
The following properties of the system can be identified

from these figures:

1. The fixed point coordinates of all variables x3, x4, x5
and x6 behave monotonically with the input κ2,
which represents the neutrophil state. The
macrophage specific proteins x3, x4 and x5 decrease
with increasing κ2

1 , x6 increases.
2. Looking at the characteristics (center row) for

different values eM , it is monotonically decreasing for
eM < e∗M (left), and thus has a single zero, which
corresponds to the single fixed point branch for
eM < e∗M . For the value eM = 0.2, which is chosen
here, we get the fixed point x̄(μ = 0.2)
= {0.2, 0.81, 0.43, 0.14, 0.86, 1.75}, as indicated in the
graphs. This state represents an intermediate
non-differentiated progenitor cell state. The
saddle-node bifurcation is represented by the second
zero of the characteristic that appears at eM = e∗M
(center column). The respective fixed point set is
x̄1(μ = 0.3221) = {0.3221, 0.51, 1.09, 0.30, 2.04,
0.59} and x̄2(μ = 0.3221) = {0.3221, 1.21, 0.15,
0.10, 0.17, 2.22}.
Finally, the characteristic has three zeros for
eM > e∗M (right column) and thus the system has
three fixed points in this range. For the chosen value
eM = 0.5 we can read off the fixed point set
x̄1(μ = 0.5) = {0.5, 0.20, 1.67, 0.5, 2.7, 0.03},
x̄2(μ = 0.5) = {0.5, 0.75, 1.05, 0.38, 1.68, 0.84} and
x̄3(μ = 0.5) = {0.5, 1.66, 0.03, 0.06, 0.02, 2.52}. Here,
x̄1 represents the macrophage state, where Egr and
PU.1 are highly expressed, and C/EBPα is low, x̄3
stands for the neutrophil state in which C/EBPα is
dominant, and x̄2 is an unstable intermediate state
that separates the two basins of attraction.

Seeking for further parallels between the bifurcation
diagram (Figure 3) and the characteristics in Figure 5,
the question arises if the characteristic also contains
information about bifurcations and stability of the fixed
points. Clearly, the parameters for which the characteris-
tic touches the x-axis without intersection are bifurcation
value candidates. Furthermore, looking at this example, a
self-evident guess would be to assume that stability can be
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Figure 5 Circuit characteristics of a model for cellular differentiation of hematopoietic stem cells. From top to bottom: Sets x̄3(κ2
1 ), x̄4(κ2

1 ),
circuit-characteristic c2(κ2

1 ), x̄5(κ2
1 ) and x̄6(κ2

1 ) for values eM = 0.2 (left column), e∗M = 0.3221 (center column) and eM = 0.5 (right column) of system
(5). The fixed points that correspond to the zeros of the characteristic are also indicated. Has been created by Additional file 2.

determined in the same way as for one-dimensional vec-
tor fields: The fixed points are stable if the slope of the
characteristic at the corresponding zero κ∗ is negative, i.e.
dc(κ)/dκ

∣∣
κ=κ∗ < 0, and it is unstable if the slope is pos-

itive, i.e. dc(κ)/dκ
∣∣
κ=κ∗ > 0. We will further investigate

these assumptions in the following subsections. In order
to do so, we consider in the following strongly connected
I-graphs, which allows to neglect the indices u and k, such
that indexing can be simplified. The results are, however,
easily transferable to arbitrary graphs, since construction
of the characteristic is done separately for each strongly
connected component. We will continue by denoting the
characteristic simply with c(κ1), where κ1 ∈ R is the value
of the variable x1, the one which is released lastly. We first
prove the following proposition, which relates the slope

of the characteristic to the determinant of the Jacobian
matrix Jf (x) of the system:

Proposition 1.

dc(κ1)
dκ1

= df1(x)
dx1

∣∣∣∣
(x1,F(x1))

(9)

= det Jf (x)
∣∣∣∣
(x1,F(x1))

· det−1JV\{v1}
f (x)

∣∣∣∣
F(x1)
(10)

with F(x1) denoting the fixed point coordinates of vari-
ables x2, . . . , x|V | in dependence of x1, and JV\{v1}

f (x) is the
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Jacobianmatrix of the subnetwork spanned by the vertices
V \ {v1}.
The proof is given in the Methods section. Note that

Proposition 1 holds for all inputs κ1, but we are here espe-
cially interested in the zeros of the characteristic, i.e. the
set of κ∗

1 with c(κ∗
1 ) = 0, and we will in the following sub-

section sometimes denote the corresponding fixed point
with x̄, if appropriate.

Instability of fixed points
From Proposition 1 it follows that a positive slope
dc(κ1)
dκ1

∣∣
κ∗
1

> 0 implies that det Jf (x̄)
∣∣
(x̄1,F(x̄1))) and

det JV\{v1}
f (x̄)

∣∣
F(x̄1) have the same signs. According to the

Hartman-Grobman theorem (see e. g. [17]), a fixed point
x̄ is unstable if Jf (x̄) has at least one eigenvalue with
positive real part. Unfortunately, we are not aware of a
relation between the determinant of Jf (x) and it’s minors
that can be used to show the following: If det Jf (x̄) and
det JV\{v1}

f (x̄) have the same signs, this implies the exis-
tence of an eigenvalue with positive real part and hence
implies instability of x̄. Thus we will concentrate on cer-
tain graph structures which we call leading vertex graphs
(LVG). LVGs are strongly connected components with
minimal circuit covering vertex set Ṽ that consists of one
single element v1. In other words, G(V,E) has a vertex
that is contained in all elementary circuits, and hence the
characteristic c(κ1) can be constructed in a single circuit-
closing step. The I-graph of the hematopoietic stem cell
differentiation network consists of SCCs that are all LVGs,
while the two networks considered in the proof of propo-
sition (1) do not belong to this class, because two circuit-
closing steps were necessary in each of these cases. For
LVGs we can show that a positive slope of the characteris-
tic at a zero implies instability of the respective fixed point.
The proof is given in the Methods section.

Stability of fixed points
In contrast to a positive slope, a negative slope of the
circuit-characteristic at a fixed point coordinate κ∗ alone
does not contain information about the stability of the
respective fixed point. We demonstrate this with two
examples. The first one consists of a single negative feed-
back circuit, the repressilator model described in [16].
This is a synthetic transcriptional network of the three
repressor proteins lacI, tetR and cI and their correspond-
ing promoters, which was constructed to create periodic
expression in Escherichia coli:

ṁi = α

1 + pnj
+ α0 − mi =: r(pj) − mi

ṗi = β(mi − pi), (11)

with i = {lacI,tetR,cI}, j = {cI,lacI,tetR}, and mi and pi
are mRNA and protein concentrations, respectively. The
system has a trapping region, that is, a positively invariant
region in the state space that is eventually reached by all
trajectories, which guarantees the existence of at least one
fixed point. Bounds are given by mmin

i = α0, mmax
i =

α + α0 and pmin/max
i = mmin/max

i , i = 1, 2, 3. The I-
graph (Figure 6) is strongly connected, the circuit set C
consists of one subset that contains all six nodes, C =
{{mi, pi}i=1,2,3}, and hence the set Ṽ has one single ele-
ment and the graph is a LVG.
Note that because of the symmetry of the model, the

circuit-characteristic is independent of the choice of Ṽ
here. It is given by

c(κ1) = r(p̄3(m̄3(p̄2(m̄2(p̄1(κ1)))))) − κ1, (12)

which can be simplified to

c(κ1) = r(r(r(κ1))) − κ1, (13)

where we have used p̄i(m̄i) = m̄i, m̄i(p̄j) = r(p̄j) and
p̄1 = p̄2 = p̄3. Equation (13) is strictly decreasing, and,
importantly, independent of the parameter β .
On the contrary, the eigenvalues of the Jacobian matrix

of the system and hence the stability of the fixed point
are not (see also the stability diagram in Figure 1b in
[16]). This dependence is illustrated in Figure 7, where
the real and imaginary parts of the eigenvalues λ(β) of
the Jacobian matrix Jf (x̄) are plotted as functions of β

Figure 6 I-graph of the repressilator model. I-graph of the
repressilator model (11) described in [16].
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Figure 7 Eigenvalues of the repressilator model. Real (green) and
imaginary (red) parts of the eigenvalues λ(β) of Jf (x̄) of the
repressilator model (11) with parameters α = 290, n = 2, α0 = 10
and m̄i = p̄i = 12. The figure was created by calculating the
characteristic polynomial χ(λ,β) of Jf (x̄), which is given here as
χ(λ,β) = (1 + λ)3(β + λ)3 − β3r′(p̄)3 with r′(x̄) = −2αp̄

(1+p̄2)2
≈ 0.33,

and using a Newton gradient search with several random starting
points to find the eigenvalues λ with accuracy | det(Jf (x) − λ(β)I)|
< 10−4. Has been created with Additional files 3 and 4.

for parameter values α = 290, n = 2 and α0 = 10.
For these parameter values the system has a fixed point
m̄i = p̄i = 12 for all i = 1, 2, 3 (that is independent of
β). It can be seen that there exist solutions with positive
real part for small values of β , and hence the fixed point
is unstable in this range. It becomes stable through a Hopf
bifurcation for increasing values of β . Thus we have shown
that Jf (x̄) and in particular the stability of x̄ depend on β ,
while c(κ1) does not. From this example we conclude that
our assumption is not true for zeros of the characteristic
with negative slope. The corresponding fixed point of the
system can generally be stable or unstable. In theMethods
section proposition 1 is verified for this example.
As a further example we consider the tryptophan regu-

lation network in Escherichia coli described in [11], which
can be written as

ẋ1= k1OtC(x4,t1,m1)−(γ1+μ)x1 =r1(x)−(γ1+μ)x1
ẋ2= k2x1C(x4,t2,m2)−(γ2+μ)x2 = r2(x)−(γ2+μ)x2
ẋ3 = k3x2 − μx3 = r3(x) − μx3
ẋ4 = k4C(x4, t3,m3)x3 − g x4

x4+Kg
− μx4 = r4(x) − μx4,

(14)

where the state vector x corresponds to the free opera-
tor sites (OR), mRNA (M), enzyme (E) and tryptophan
(T) concentrations. C(x,K ,m) are sigmoidally decreasing
functions,

C(x,K ,m) = Km

Km + xm
. (15)

This model describes the regulation of the trypto-
phan concentration via different mechanisms, i.e. genetic
regulation via binding of tryptophan to it’s opera-
tor site, described by C(x4, t1,m1), mRNA attenuation
(C(x4, t2,m2)) and enzyme inhibition (C(x4, t3,m3)). The
parameters k1, k2, k3 and k4 represent kinetic rate con-
stants for synthesis of free operator, mRNA transcription,
translation and tryptophan synthesis, respcetively, K are
half-saturation constants for the inhibition processes, Ot
denotes the total operator site concentration, and γ and μ

refer to degradation and diluation rates due to cell growth.
The term g x4

x4+Kg
describes the uptake of tryptophan for

protein synthesis in the cell.
Analyzing this system with the parameter values

given in [11] (k1 = 50min−1,Ot = 3.32nM, t1 =
3.53μM,m1 = 1.92, γ1 = 0.5min−1,μ = 0.01min−1,
k2 = 15min−1, t2 = 0.04μM,m2 = 1.72, γ2 = 15min−1,
k3 = 90min−1, k4 = 59min−1, t3 = 810μM,m3 = 1.2,
g = 25μM,Kg = 0.2μM) using xppaut and choosing the
dilution rate μ as bifurcation parameter, the system shows
a Hopf bubble between μ∗

1 = 0.02486 and μ∗
2 = 0.1529

(Figure 8). The system has a unique fixed point that is
unstable between these two values and shows sustained
oscillations in this range. Outside the Hopf bubble the
oscillations are damped and the fixed point is globally
stable.
The corresponding I-graph is shown in Figure 9. It is

strongly connected.
The circuit set C and the minimal circuit covering ver-

tex set Ṽ are C = {{x4}, {x2, x3, x4}, {x1, x2, x3, x4}} and
Ṽ = {x4}. Since Ṽ consists of a single element, this system
is a LVG and only one circuit-closing step is necessary to
calculate the set of fixed points. The circuit-characteristic
can be calculated analytically here and is given by

c(κ4) = r4(x̄3(κ4), κ4) − μκ4, (16)

where r4 can iteratively be calculated via

x̄1(κ4) = r1(κ4)
γ1 + μ

x̄2(κ4) = r2(x̄1(κ4), κ4)
γ2 + μ

x̄3(κ4) = r3(x̄2(κ4))
μ

. (17)

As can be seen in Figure 10, c(κ4) is strictly decreasing
(bottom row), since all circuits in the graph are negative.
Furthermore, the fixed points of the system can be

determined by the zeros of the characteristic, as depicted
in the figure: For μ = 0.01, for example, c(κ4) has a
zero at κ∗

4 = 31.8, which corresponds to the fixed point
coordinate x̄4. Inserting this value into x̄i(κ4), i = 1, 2, 3,
we get the fixed point x̄(μ = 0.01) = (4.71, 4.82 ·
10−5, 0.43, 31.82), and likewise for the other dilution rates.
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Figure 8 Bifurcation diagrams of a model for tryptophan regulation in Escherichia coli. Bifurcation diagrams of the tryptophan regulation
model (14) in Escherichia coli described in [11] with dilution rate μ as bifurcation parameter. The system shows two Hopf bifurcations at
μ∗
1 = 0.02486 and μ∗

2 = 0.1529. Has been created with Additional file 5.

Figure 9 I-graph of the tryptophan regulation network. I-graph
of the tryptophan regulation network (14).

The qualitative courses of c(κ4) and also for the fixed point
sets x̄i(κ4) do not differ for the three dilution rates. In par-
ticular, the slope of the characteristic is in all three cases
negative at the zero. However, the bifurcation diagrams in
Figure 3 indicate that the respective fixed points are sta-
ble for μ = 0.01 and μ = 0.2, but unstable for μ = 0.1.
Thus this is a further example that a negative slope of
the characteristic at a zero does not imply stability of the
respective fixed point.

Conclusions
In this paper we have extended previous work on the
analysis of fixed points for regulatory network models.
Based on the circuit-breaking algorithm, which was
introduced in [14] and which uses the topology of the
interaction graph to construct a one-dimensional circuit-
characteristic whose zeros correspond to the fixed points
of the system, we further investigated this characteristic
with respect to fixed points of the system and their sta-
bility. Here we demonstrated that the characteristic is in
some aspects similar to a one-dimensional vector field
and that the CBA is also useful to find fixed point bifur-
cations. Information about the stability of fixed points
can partly be derived from the slopes at the respec-
tive zeros of the characteristic. We used our methods
to analyze the fixed points of models for hematopoi-
etic stem cell differentiation, tryptophan regulation in
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Figure 10 Circuit-characteristics of the tryptophan regulation model. Sets x̄i(κ4) for i = 1, 2, 3 and circuit-characteristic c(κ4) of the model of
tryptophan regulation in Escherichia coli with the same parameter set as was used in [11] and dilution parameters μ = 0.01 (right column), μ = 0.1
(center column) and μ = 0.2 (left column). Has been created with Additional file 6.

Escherichia coli and the repressilator in Escherichia coli.
In particular, we have shown that a positive slope of the
characteristic at a zero can imply instability, at least for
certain graph topologies, which we call leading vertex
graphs. These are characterized by leading vertices for
all strongly connected components that are contained in
all circuits. Although we have noticed that many net-
work models belong to this model class, this restriction
on the topology for sure limits the use of our approach.
However, we believe that the implication can further be
generalized to other network topologies, although a pure
translation of the techniques that we are currently using
is not possible. Thus a generalization is one topic for
future work.
On the contrary, generally no conclusions about stabil-

ity can be drawn from a negative slope, and the respective
fixed point can either be stable or unstable. If it is unsta-
ble, we interpret this result as a kind of time-delay. This
delay is due to the response time of the network to changes
in the input κi. It is not visible in the characteristic any

more, where the effects of all feedback circuits have been
summarized to a single effective one comprising only one
component. This effect might be similar to a time-delay
that destabilizes a stable fixed point in a one-dimensional
vector field.
While this manuscript was in revision, we became aware

of a recent paper [18] that seems to be closely related
to our work in some aspects. In this paper, small phos-
phorylation motifs in signaling pathways are investigated
subject to their ability to show bistable behavior. The
authors follow the same idea of variable elimination to
construct finally one-dimensional functions that contain
information about the fixed points of the system and their
stability. However, the techniques used therein are build
on mass action kinetics and rational functions and explic-
itly use mass conservation relations. However, some of the
mathematical ideas behind that seem to be related to our
work, and a further comparison would be interesting.
Generally, the efficiency of the CBA and the analy-

sis introduced here depends on the graph topology and
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the complexity to solve the implicit equations therein.
Construction of the circuit-characteristic is particularly
simple and efficient for graph topologies whose strongly
connected components have minimal circuit-covering
vertex set Ṽ with only few elements, and thus our theory
can be particularly helpful to analyze such networks.
In the future we will try to generalize results fur-

ther, such that our approach is applicable to a broad
range of regulatory network models. We will also further
investigate the connection between the partial circuit-
characteristics and the influence of the respective sets of
circuits that are closed on the coordinates, number and
stability of the system’s fixed points. We believe that our
analysis can lead to the identification of circuit sets which
are responsible for certain behaviors of the system that
are connected to bifurcations of fixed points. Finally, we
hope that we can contribute towards developing analy-
sis methods that facilitate an understanding of the role
of interrelated feedback circuits in regulatory network
models for the system’s overall behavior.

Methods
In this section we collect the mathematical technicali-
ties that are needed to show the statements made in the
Results and Discussion section of the manuscript.

Proof of Proposition 1
This section shows the proof of Proposition 1. To avoid
complex indexing, the relation is exemplarily shown on
a fully connected 3-vertex network and a network with
four vertices. These examples are non-trivial in the sense
that the cardinality of the minimal covering vertex set,
|Ṽ |, containsmore than one element, such that calculation
of the characteristic requires more than a single circuit-
closing step. Thus the principles of these two examples
can be generalized to other I-graphs.

3-vertexmodel
Proof. We consider a regulatory network model with a
fully-connected I-graph with three vertices:

ẋ1 = f1(x1, x2, x3) = f1(x)
ẋ2 = f2(x1, x2, x3) = f2(x)
ẋ3 = f3(x1, x2, x3) = f3(x),

whose Jacobian matrix is given by

det Jf (x)
∂fi(x)
∂xj

:=fij
= f11f22f33 + f12f23f31 + f13f32f21 (18)

−f11f23f32 − f13f22f31 − f12f21f33. (19)

We now construct the circuit-characteristic c(κ1) using
the CBA, whose steps are illustrated in Figure 11.

In order to calculate it’s derivative and show Propo-
sition 1, we will repeatedly use the Implicit function
theorem (IFT), which reads:
Implicit function theorem [19]: Let U be an open set in

R
m × R

n and let f : U → R
n be a Ck function with k ≥ 1.

Consider a point (x̄, ȳ) ∈ U , where x̄ ∈ R
m and ȳ ∈ R

n,
with f (x̄, ȳ) = c. If the n × n matrix Dyf (x̄, ȳ) of partial
derivatives is invertible, then there are open setsVm ⊂ R

m

and Vn ⊂ R
n with (x̄, ȳ) ∈ Vm × Vn ⊂ U and a unique

Ck function ψ : Vm → Vn such that f (x,ψ(x)) = c for
all x ∈ Vm. Moreover, f (x, y) �= c if (x, y) ∈ Vm × Vn and
y �= ψ(x). The derivative of the function ψ is given by the
formula

Dψ(x) = − [
Dyf (x,ψ(x))

]−1 Dxf (x,ψ(x)). (20)

In the first step we break all circuits by fixing x1 = κ1
and x2 = κ2 (Figure 11 left) and get the partial circuit-
characteristic and the fixed point set

f3(κ1, κ2, x3)
!=0 ⇒ x̄3(κ1, κ2) (21)

with derivative given by

dx̄3(κ1, κ2)
dκi

IFT= − f −1
33 f3i, i = 1, 2 (22)

Here we have used the IFT withm = 2, n = 1, U = R
3,

f : R3 → R = f3(κ1, κ2, x3), c = 0, and ψ(x) = x̄3(κ1, κ2).
In the next step we release v2 (Figure 11 center) and get

the partial circuit-characteristic and the fixed point set

f2(κ1, x2, x3 = x̄3(κ1, x2))
!=0 ⇒ x̄2(κ1),

with derivative

dx̄2(κ1)
dκ1

IFT= −
(

∂f2(κ1, x2, x3 = x̄3(κ1, x2))
∂x2

)−1

(23)
× ∂f2(κ1, x2, x3 = x̄3(κ1, x2))

∂κ1

= −
(

∂f2(x)
∂x2

+ ∂f2(x)
∂x3

dx̄3
dx2

)−1

×
(

∂f2(x)
∂x1

+ ∂f2(x)
∂x3

dx̄3
dκ1

)
(24)

eqn. (22)= − (f22−f23f −1
33 f32)−1︸ ︷︷ ︸

=:β−1

·(f21 − f23f −1
33 f31)

(25)

Here we have used the IFT withm = 1, n = 1,U = R
2, f :

R
2 → R = f2(κ1, x2, x3(κ1, x2)), c = 0, and ψ(x) = x̄2(κ1).



Radde BMC Systems Biology 2012, 6:57 Page 13 of 16
http://www.biomedcentral.com/1752-0509/6/57

Figure 11 Circuit-breaking algorithm for a regulatory network model with three vertices. The circuit-breaking algorithm for a regulatory
network model with three vertices and fully connected I-graph.

In the last step also vertex v1 is released (Figure 11 right).
The circuit-characteristic c(x1) reads:

f1(x1, x̄2(x1), x̄3(x1, x̄2(x1)))
!=0 ⇒ {x̄1}, (26)

and its derivative is given by

df1(x)
dx1

∣∣∣∣
(x1,F(x1))

= f11 + f12
dx̄2(x1)
dx1

+ f13
dx̄3(x1, x̄2(x1))

dx1
= f11 − f12β−1(f21 − f23f −1

33 f31) + f13

×
(
−f −1

33 f31+f −1
33 f32β−1(f21−f23f −1

33 f31)
)

= f11 − β−1f12f21 + β−1f12f23f31f −1
33

− f13f31f −1
33 + β−1f13f32f21f −1

33

− β−1f13f32f23f31f −2
33 (27)

Multiplying this expression with det JV\{v1}
f (x)

∣∣
F(x1) =

f33 · β leads to

df1(x)
dx1

∣∣∣∣
(x1,F(x1))

· det JV\{v1}
f (x)

∣∣∣∣
F(x1)

∣∣∣∣
(x1,F(x1))

= det Jf (x)

(28)

4-vertexmodel
Proof. Additionally, we outline the proof of proposition 1
for a non-trivial four-component network (Figure 12):

ẋ1 = f1(x1, x3) = f1(x)
ẋ2 = f2(x1, x2, x4) = f2(x)
ẋ3 = f3(x1, x3, x4) = f3(x)
ẋ4 = f4(x2, x4) = f4(x),

whose Jacobian matrix is given by

det Jf (x) =f11f22f33f44 + f13f31f24f42 (29)
− f11f33f42f24 − f13f34f42f21 − f13f31f22f44,

(30)

where we used the same notation as before, i.e. fij := ∂ fi(x)
∂xj .

Again we construct the circuit-characteristic c(κ1) using
the CBA and the IFT for it’s derivatives. First we break all
circuits by fixing x1 = κ1 and x2 = κ2 (Figure 12 left) and
calculating the fixed point coordinates of the remaining
vertices:

f4(κ2, x4)
!=0 ⇒ x̄4(κ2),

with derivatives
dx̄4(κ2)
dκ1

= 0 and
dx̄4(κ2)
dκ2

IFT= − f −1
44 f42, (31)

and

f3(κ1, x3, x̄4(κ2))
!=0 ⇒ x̄3(κ1, x̄4(κ2)),

Figure 12 Circuit-breaking algorithm for a regulatory network model with four vertices. The circuit-breaking algorithm for a regulatory
network model with four vertices.
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with derivatives

dx̄3(κ1, x̄4(κ2))
dκ1

IFT= −
(

∂f3(κ1, κ3, x̄4(κ2))
∂x3

)−1

× ∂f3(κ1, x3, x̄4(κ2))
∂κ1

(32)

= −f −1
33 f31 (33)

and

dx̄3(κ1, x̄4(κ2))
dκ2

IFT= −
(

∂f3(κ1, x3, x̄4(κ2))
∂x3

)−1

× ∂f3(κ1, x3, x̄4(κ2))
∂κ2

(34)

= −f −1
33

(
f34

dx̄4(κ2)
dκ2

)
(35)

eqn. (31)= f −1
33 f34f42f −1

44 (36)

In the next step we release v2 (Figure 12 center) and get
the partial circuit-characteristic and the fixed point set

f2(κ1, x2, x̄4(x2))
!=0 ⇒ x̄2(κ1),

whose derivative is given by

dx̄2(κ1)
dκ1

IFT= −
(

∂f2(κ1, x2, x̄4(x2))
∂κ1

)−1

× ∂f2(κ1, x2, x̄4(x2))
∂κ1

(37)

= −
(
f22 + f24

dx̄4(x2)
dx2

)−1
· f21 (38)

eqn. (31)= −
(
f22 − f24f42f −1

44

)−1 · f21 (39)

Thus we have expressed the fixed point coordinates of
x3 and x4 in terms of κ1, x̄3(κ1) = x̄3(κ1, x̄4(x̄2(κ1))) and
x̄4(κ1) = x̄4(x̄2(κ1)). Finally we release v1. The circuit-
characteristic c1(x1) reads:

f1(x1, x̄3(x1, x̄4(x̄2(x1))))
!=0 ⇒ {x̄1}, (40)

and its derivative is given by

df1(x1, x̄3(x1, x̄4(x̄2(x1))))
dx1

= f11 + f13
dx̄3(x1, x̄4(x̄2(x1)))

dx1
(41)

= f11 + f13
(

∂ x̄3(x1, x4)
∂x1

+∂ x̄3(x1, x4)
∂x4

∂ x̄4(x2)
∂x2

× dx̄2(x1)
dx1

)
. (42)

Using again the IFT to eliminate derivatives of fixed
point coordinates, i.e.

dx̄3
dx1

= −f −1
33 f31 (43)

dx̄3
dx4

= −f −1
33 f34 (44)

dx̄4
dx2

= −f −1
44 f42 (45)

dx̄2
dx1

= −(f22 − f24f42f −1
44 )−1f21, (46)

the derivative of the characteristic becomes

df1(x1, x̄3(x1, x̄4(x̄2(x1))))
dx1

(47)

= df1(x1)
dx1

∣∣∣∣
(x1,F(x1))

(48)

= f11 + f13
(
−f −1

33 f31 + f −1
33 f34(−f −1

44 f42)

×(f22 − f24f42f −1
44 )−1 · f21

)
. (49)

Setting f22 − f24f42f −1
44 )−1 =: β−1 =

(f33f44)−1 det JV\{x1}
f (x)

∣∣
F(x1), we can see that

equation (49) equals det Jf (x)|(x1,F(x1)) when multiplied
with βf33f44. This can easily be seen by multiplying (49)
out and rearranging the order of the summands.

Unstable fixed points in LVGs
Since for LVGs the subnetwork spanned by the set V \{v1}
does by definition not contain any circuits, we get a simple
expression for det JV\{v1}

f (x)
∣∣
F(x1), namely:

det JV\{v1}
f (x)

∣∣
F(x1) =

n∏
i=2

∂fi(x)
∂xi

∣∣∣∣
(x1,F(x1))

, (50)

with ∂ fi(x)
∂xi

∣∣
(x1,F(x1)) < 0 for all i. Thus, the sign of this

expression is given by

σ
(
det JV\{v1}

f (x)
∣∣
(x1,F(x1))

)
=

{ − n even
+ n odd (51)

Now we assume that x̄ = (x̄1, F(x̄1)) is stable, and hence
�(λ) < 0 for all eigenvalues λ of Jf (x̄). It follows that

σ

(
det Jf (x̄) =

n∏
i=1

λi

)
=

{ + n even
− n odd (52)
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In any case, det Jf (x̄) and det JV\{v1}
f (x̄) have different

signs, a contradiction to dc(κ1)
dκ1

∣∣
κ∗
1

> 0, which completes
the proof.

Verification of Proposition 1 for the repressilator model
Let us verify Proposition 1 for the repressilator model. We
can identify

det Jf (x̄) = β3 − β3

×
(

∂r(p3)
∂p3

∣∣∣∣
p̄3=r(r(κ∗

1 ))

∂r(p1)
∂p1

∣∣∣∣
p̄1=κ∗

1

∂r(p2)
∂p2

∣∣∣∣
p̄2=r(κ∗

1 )

)
(53)

and det JV\{m1}
f (x̄) = −β3, such that both det Jf (x̄) and

det JV\{m1}
f (x̄) depend on β , but c(κ1) does not, since β is

canceled out. The derivative of c(κ1) (equation (13)) with
respect to κ1 reads

dc(κ1)
dκ1

∣∣∣∣
κ∗
1

= ∂c
∂κ1

+ ∂r(r(r(κ1)))
∂r(r(κ1))

∂r(r(κ1))
∂r(κ1)

dr(κ1)
dκ1

∣∣∣∣
κ∗
1
(54)

= −1 + r′(x)
∣∣
x=r(r(κ∗

1 ))
r′(x)

∣∣
x=r(κ∗

1 )
r′(x)

∣∣
x=κ∗

1
,

(55)

which equals det Jf (x̄) · det−1 JV\{x1}
f (x̄).

Endnotes
1This plot was created with the program xppaut and Addi-
tional file 7 in the Supplement (tryptophanmodel.ode)
2This plot was generated with the program gnuplot
and Additional file 8 (tryptophanmodel-c.gp) in the
Supplement.

Additional files

Additional file 1: Stemcellmodel. This file was used to create the
bifurcation diagrams of the hematopoietic stem cell model using the
program xppaut (Figure 3).

Additional file 2: Stemcellmodel-02. The file stemcellmodel-02.gp was
used to create the circuit-characteristic c(κ) and fixed point sets F(κ) of
the hematopoietic stem cell model (Figure 5) with bifurcation parameter
μ = 0.2 using the program gnuplot.

Additional file 3: Stemcellmodel-bif. The file stemcellmodel-bif.gp was
used to create the circuit-characteristic c(κ) and fixed point sets F(κ) of
the hematopoietic stem cell model (Figure 5) with bifurcation parameter
μ = μ∗ using the program gnuplot.

Additional file 4: Stemcellmodel-05. The file stemcellmodel-05.gp was
used to create the circuit-characteristic c(κ) and fixed point sets F(κ) of
the hematopoietic stem cell model (Figure 5) with bifurcation parameter
μ = 0.5 using the program gnuplot.

Additional file 5: Newton-2d. This python script was used to calculate
the eigenvalues of the Jacobian matrix Jf (x̄) of the repressilator model at
it’s fixed point using a Newton gradient search with random starting
points. These eigenvalues were written into the file ‘eigenvalues.txt’.

Additional file 6: Eigenvalues. This file contains the eigenvalues of the
Jacobian matrix Jf (x̄) of the repressilator model at it’s fixed point and was
created by running the program newton-2d.py. It was used to create
Figure 7.

Additional file 7: Tryptophanmodel. This file was used to create the
bifurcation diagrams of the tryptophan regulation model using the
program xppaut (Figure 8).

Additional file 8: Tryptophanmodel-c. This file was used to create the
circuit-characteristic c(κ) and fixed point sets F(κ) of the tryptophan
regulation model (Figure 10) using the program gnuplot.
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