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Abstract
Background: Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of
gene regulations using the Bayesian Network (BN) formalism assumes that genes interact either instantaneously or
with a certain amount of time delay. However in reality, biological regulations, both instantaneous and time-delayed,
occur simultaneously. A framework that can detect and model both these two types of interactions simultaneously
would represent gene regulatory networks more accurately.

Results: In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent
both instantaneous and time-delayed interactions between genes simultaneously. A novel scoring metric having firm
mathematical underpinnings is also proposed that, unlike other recent methods, can score both interactions
concurrently and takes into account the reality that multiple regulators can regulate a gene jointly, rather than in an
isolated pair-wise manner. Further, a gene regulatory network (GRN) inference method employing an evolutionary
search that makes use of the framework and the scoring metric is also presented.

Conclusion: By taking into consideration the biological fact that both instantaneous and time-delayed regulations
can occur among genes, our approach models gene interactions with greater accuracy. The proposed framework is
efficient and can be used to infer gene networks having multiple orders of instantaneous and time-delayed
regulations simultaneously. Experiments are carried out using three different synthetic networks (with three different
mechanisms for generating synthetic data) as well as real life networks of Saccharomyces cerevisiae, E. coli and
cyanobacteria gene expression data. The results show the effectiveness of our approach.

Background
In any biological system, various genetic interactions
occur concurrently amongst different genes. While some
genes interact almost instantaneously, other genes could
have time delayed interactions (see Figure 1). From a bio-
logical perspective, instantaneous regulations represent
the scenarios where the effect of a change in the expres-
sion level of a regulator gene is carried on to the regulated
gene (almost) instantaneously. In such cases, the effect
is reflected almost immediately in the regulated gene’s
expression levela. On the other hand, in cases where regu-
latory interactions are time-delayed, its effect will be seen
on the regulated gene after a finite time delay.
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Bayesian network and its extension, dynamic Bayesian
network (DBN), has found significant applications in the
modeling of genetic interactions [1,2]. To the best of
our knowledge, prior works on inter and intra-slice con-
nections in the dynamic probabilistic network formalism
[3,4] have modelled a DBN using an initial network and
a transition network employing the 1st-order Markov
assumption, where the initial network exists only during
the initial period of time and subsequently the dynamics
is expressed using only the transition network. Realising
that a d-th order DBN has variables replicated d times,
a 1st-order DBN for this taskb is therefore usually lim-
ited to around 10 variables. Alternately, if a 2nd-order
DBN model is chosen, it can mostly deal with 6-7 vari-
ables [5]. Thus, prior works on DBNs were either unable
to discover these two interactions simultaneously or were
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Figure 1 Example of network structure with both instantaneous and time-delayed interactions.

unable to fully exploit its potential, thereby restricting
studies to simpler network configurations. However, since
our proposed approach does not replicate variables, we
can study any complex network configuration without
limitations on the number of nodes. Zou et al. [2], while
highlighting the existence of both instantaneous and time-
delayed interactions among genes while considering the
parent-child relationships of a particular order, did not
account for the regulatory effects of other parents (hav-
ing different order of regulation than the current one) on
that particular child. This is in violation of the biological
reality that parents with various orders of regulation can
jointly regulate a child. Our proposed method supports
multiple parents to regulate a child simultaneously, with
different orders of regulation. Moreover, the limitation
of detecting genetic interactions like A ↔ B, which are
prevalent in genetic networks [6], is also overcome with
the proposed method. Experiments conducted using both
synthetic and real-life GRNs show the effectiveness of
our approach.

Results and discussion
We evaluate our proposed method by studying both syn-
thetic networks and real-life biological networks of Sac-
charomyces cerevisiae (yeast), E. coli and cyanobacteria.
The overall accuracy of the inference method and correct-
ness of the modeling approach is evaluated by four widely
accepted performance measures given below. The terms,
TP, FP, TN and FN, used in the following expressions
respectively mean the number of true positives, number
of false positives, number of true negatives and number of
false negatives.

1. Sensitivity(Se): It measures the proportion of true
connections which are correctly inferred. It is defined
as follows:

Se = TP
TP + FN

(1)

2. Specificity (Sp): Specificity is defined by the
following equation:

Sp = TN
TN + FP

(2)

3. Precision (Pr): Precision is proportional to the
inferred connections which are correct. It is defined
as follows:

Pr = TP
TP + FP

(3)

4. F-score (F): Biologically, a good reconstruction
algorithm should infer as many correct arcs as
possible, in addition to the criteria that most of the
inferred arcs should be correct. The F-score measure
is the harmonic mean of Se and Pr [7] and represents
a compromise between these two objectives:

F = 2 Pr Se
Pr + Se

(4)

Since our method uses discrete data for the statistical
significance tests embedded in the scoring function, we
applied the Persist [8] algorithm to discretize the data into
3 levels. The confidence level (α) is set to 0.9. We will use
a local search in the DAG space with the classical oper-
ators of arc addition, arc deletion and arc reversal. The
starting point of the search is always an empty graph. The
parameters for all the other methods that are used for
comparison are set to their default values mentioned in
their user manuals.

Synthetic network
Synthetic network using differential equation basedmodels
For performing studies using synthetic networks, we gen-
erated 3 random networks of size 10, 25 and 50 using the
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genenetweaver tool [9]. This tool has been used to gener-
ate in silico benchmarks in the DREAM (both DREAM3
[10] and DREAM4 [11]) challenge initiative. The tool is
able to obtain biologically plausible network topologies
(and also biologically plausible network dynamics) of a
given size by extracting random sub-networks of Saccha-
romyces cerevisiae and E. Coli [9,12]. We used the tool
to generate time series data as in the DREAM4 challenge
with ten different perturbations for each experiment. Ini-
tial and final timestamps for the simulations were 0 and
1000, respectively, and the time step was 50. One of the
objectives of this experiment was to test the usefulness of
the proposed approach in the presence of noise in mRNA
expression levels. Since microarray experiments can incur
a wide range of noise levels depending on the technology,
environment and the subject under study, we experi-
mented under various noise levels that are likely to be

present in the expression data. To mimic a real-life noisy
environment, as in [13,14], we added 5 different noise lev-
els to the data samples (random Gaussian noise with zero
mean and variance, σ 2 = 0.0, 0.01, 0.02, 0.05, 0.10). The
performance, measured by the four performance mea-
sures, corresponding to the three different sized networks
is reported in Figure 2. Figure 2(A) shows the performance
variation as a function of network size and noise level.
The X-axes represent the noise levels while the Y-axes
represent the corresponding performance measures (Se,
Sp, Pr, F). In Figure 2(B)-(D), we compare our approach
with three other methods, namely TDARACNE, BANJO
and BNFinder (BDe and MDL) using the F-Score (results
corresponding to other measures are available in Addi-
tional file 1). It is evident from the results that there is no
clear winner in all the cases. Some methods perform good
in some cases, while others outperform it in other cases.
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Figure 2 Reconstruction of synthetic networks generated using differential equation basedmethods. (A) How performance of our method
varies with network size and noise (Red(*)-10 gene; Green(o)-25 gene; Blue(square)-50 gene). The X-axes represent the 5 levels of noise used,
whereas the Y axes represent the corresponding performance measures (see text). (B)-(D) Comparison of performance with 3 other methods for the
10, 25 and 50-gene network. Red(+)-Proposed, Green(o)-BANJO, Blue(x)-BNFinder+BDe, Cyan(square)-BNFinder+MDL,
Magenta(diamond)-TDARACNE. X axes-noise levels, Y axes-F-Score. See text for details.
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Figure 3 Yeast cell cycle sub-network [15].

However, it is clear that our proposed approach, albeit not
always the best, it is always among the top performers and
has consistently superior performance.

Probabilistic network of yeast
We use a sub-network from the yeast cell cycle, shown
in Figure 3, taken from Husmeier et al. [15]. The net-
work consists of 12 genes and 11 interactions. For each
interaction, we randomly assigned a regulation order of
0, 1, 2 or 3. We used two different conditional proba-
bilities for the interactions between the genes, namely,
the noisy regulation according to a binomial distribution
and the noisy XOR-style co-regulation. For the binomial
distribution dependent noisy regulation, the parameters
were set as follows: excitation: P(on|on) = 0.9, P(on|off)
= 0.1; inhibition: P(on|on) = 0.1, P(on|off) = 0.9. For the
noisy XOR-style co-regulation the parameters were set as:
P(on|on, on) = P(on|off, off) = 0.1, P(on|on, off) = P(on|off,
on) = 0.9 [15]. Eight confounder nodes were also added,
resulting in the total number of nodes to be 20.
We used 30, 50 and 100 samples, generated 5 datasets

in each case and compared our approach with two other

DBN based methods, namely BANJO [16] and BNFinder
[17]. Since these methods detect only regulations of
order 1, while calculating performance measures for these
methods, we ignored the exact orders for the time-delayed
interactions in the target network. We could not apply
TDARACNE [7] to this network since the generated data
has two levels of discrete values and TDARACNE returns
error when applied to such discrete datasets. We show the
results for this network in Table 1, where we observe that
our method, coupled with a high precision, outperforms
the other two in terms of both sensitivity and specificity.
The F-score is also the best in all the cases. This points to
the strength of our method in discovering complex inter-
action scenarios where multiple regulators may jointly
regulate target genes with varying time-delays.

Synthetic network of glucose homeostasis
In higher eukaryotes, glucose homeostasis is maintained
via a complex system involving many organs and signaling
mechanisms. The liver plays a crucial role in this system
by storing glucose as glycogen when blood glucose levels
are high, and releasing glucose into the bloodstream when

Table 1 Comparison of proposedmethod with BANJO and BNFinder on the yeast sub-network

N=30 N=50 N=100

Se Sp Pr F Se Sp Pr F Se Sp Pr F

Proposed 0.62± 0.992± 0.57± 0.59± 0.80± 1.0± 0.79± 0.79± 0.82± 1.0± 0.76± 0.79±
Method 0.12 0.0045 0.11 0.11 0.04 0.0 0.07 0.05 0.06 0.0 0.03 0.04

BNFinder 0.53± 0.996± 0.68± 0.59± 0.62± 0.997± 0.74± 0.67± 0.69± 0.997± 0.74± 0.72±
+BDe 0.04 0.0006 0.02 0.02 0.04 0.0019 0.13 0.06 0.08 0.0007 0.06 0.07

BNFinder 0.51± 0.996± 0.63± 0.56± 0.60± 0.996± 0.68± 0.63± 0.65± 0.996± 0.69± 0.67±
+MDL 0.08 0.0006 0.07 0.08 0.05 0.0022 0.15 0.09 0.0 0.0 0.04 0.02

BANJO 0.51± 0.987± 0.49± 0.46± 0.55± 0.993± 0.57± 0.55± 0.60± 0.995± 0.61± 0.61±
0.08 0.01 0.2 0.15 0.09 0.0049 0.23 0.16 0.08 0.0014 0.09 0.08
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Figure 4 Synthetic network of glucose homeostasis.

blood glucose levels are low. To accomplish its task, the
liver responds to circulating levels of hormones, mainly
insulin, epinephrine, glucagon, and glucocorticoids [18].
Le et al. [18] conducted an extensive review of the

literature regarding the biological components affect-
ing perinatal glucose metabolism. Based on the study, a
Bayesian Network model of glucose homeostasis contain-
ing 35 nodes and 52 interactions (shown in Figure 4) was
constructed. We used the model for generating datasets
of varying size (50, 75 and 100 samples), having first
and second-order regulations using the Bayes Net Tool-
box [19]. The random multinomial CPDs used by this
approach of data generation were obtained by sampling
from a Dirichlet distribution with hyper-parameters cho-
sen by themethodc described in [20] with a corresponding
Equivalent Sample Size (ESS) value of 10. The choice
of this prior distribution for the conditional parame-
ters ensures a reasonable level of dependence between
d-connected variables in the generative structure [20].
We compare our method with the three other methods

that were used previously for comparison, namely BANJO
[16] and BNFinder [17](using BDe and MDL). While cal-
culating performance measures for these methods, we
ignored the exact orders for the time-delayed interactions
in the target network. Similar to the probabilistic network
of yeast, we could not apply TDARACNE for this network
due to error occurring because TDARACNE is unable
to cope with the discrete data. The results are shown in
Table 2. We observe that, both in terms of specificity and

precision, our method outperforms others. The F-score
is the highest in all the cases, indicating a good balance
between sensitivity and precision.

Real-life biological data of saccharomyces cerevisiae (IRMA)
To validate ourmethod with a real-life biological gene reg-
ulatory network, we investigate a recent network reported
in [21]. In that significant work, the authors built a net-
work, called IRMA, of the yeast Saccharomyces cerevisiae
[21]. They tested the transcription of network genes by
culturing the cells in presence of galactose and glucose.
The network is composed of five genes regulating each
other; it is also negligibly affected by endogenous genes. It
is one of the first attempts at building a reference data set
having an accurately known target network [7]. There are
two sets of gene profiles called Switch ON and Switch OFF
for this network, each containing 16 and 21 time series
data points, respectively. A ’simplified’ network, ignoring
some internal protein level interactions, is also reported
in [21]. To compare our reconstruction method, we con-
sider 3 other methods, namely, TDARACNE [7], BANJO
[16] and BNFinder [17].

IRMAON dataset
The performance comparison amongst various method
based on the ON dataset is shown in Table 3. We observe
that our method clearly outperforms the others. There
are no false predictions and precision is highest. The
sensitivity and F-score measures are also very high.

Table 2 Comparison of proposedmethod with BANJO and BNFinder on the glucose homeostasis network

N=50 N=75 N=100

Se Sp Pr F Se Sp Pr F Se Sp Pr F

Proposed 0.50 0.9812 0.54 0.52 0.46 0.9914 0.71 0.56 0.54 0.9906 0.72 0.62

Method

BNFinder 0.48 0.9488 0.29 0.37 0.52 0.9506 0.32 0.39 0.56 0.9557 0.36 0.44

+BDe

BNFinder 0.54 0.948 0.31 0.40 0.56 0.9395 0.29 0.38 0.54 0.9369 0.27 0.37

+MDL

BANJO 0.52 0.97 0.44 0.47 0.48 0.9838 0.57 0.52 0.54 0.9881 0.67 0.60
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Table 3 Performance comparison based on IRMAON dataset

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

ProposedMethod 0.63 1.0 1.0 0.77 0.67 1.0 1.0 0.80

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73

BNFinder+BDe 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BNFinder+MDL 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50

IRMAOFF dataset
Due to the lack of ’stimulus’, it is relatively difficult to
reconstruct the exact network from the OFF dataset [7].
As a result, the overall performances of all the algorithms
suffer to some extent. The comparison is shown in Table 4.
Again, we observe that our method reconstructs the gene
network with high precision. Specificity is also quite high,
implying that the inference of false positives is low.

Yeast KEGG pathway reconstruction
In order to test the proposed method’s performance on
yeast S. cerevisiae cell cycle, we selected a eleven gene net-
work of the G1-phase: Cln3, Cdc28, Mbp1, Swi4, Clb6,
Cdc6, Sic1, Swi6, Cln1, Cln2, Clb5. The data used was
obtained from the cdc28 experiment of Spellman et al.
[22]. In the later stage of the G1-phase, the Cln3-Cdc28
protein kinase complex activates two transcription fac-
tors, MBF and SBF, and these promote the transcription
of some genes important for budding and DNA synthesis
[7,23]. Entry into the S-phase requires the activation of the
protein kinase Cdc28p through binding with Clb5 or Clb6,
and also the destruction of Sic1 [24]. Also, Swi4 becomes
associated with Swi6 to form the SCB complex that acti-
vates CLN1 and CLN2 in late G1. Mbp1 forms the MCB-
binding factor complex with Swi6, which activates DNA
synthesis genes and S-phase cyclin genes CLB5 and CLB6
in late G1 [7]. In budding yeast, commitment to DNA
replication during the normal cell cycle requires degrada-
tion of the cyclin-dependent kinase (CDK) inhibitor Sic1.
The G1 cyclin-CDK complexes Cln1-Cdk1 and Cln2-
Cdk1 initiate the process of Sic1 removal by directly
catalyzing Sic1 phosphorylation at multiple sites [7,25].

In Figure 5(B)-(F), we report network graphs recon-
structed by our proposed approach, TDARACNE,
BNFinder(BDe and MDL) and BANJO. We also report
the KEGG pathway [26] of the cell-cycle in yeast in 5(A).
Since the ground truth for this network is not known,
instead of applying performance measures as a means of
determining network accuracy, we refer to the available
correct interactions obtained from the KEGG pathway
[26] and identify which of the predicted interactions are
correct or otherwise. We observe from the results that
our approach correctly identifies the regulation of SWI4-
SWI6 and MBP1-SWI6 complex by the CLN3-CDC28
complex. Also, the proposed approach infers that the
SWI4-SWI6 complex regulates the CLN1-CLN2-CDC28
complex, which is correct. Twomore interactions inferred
by our approach (CLN1→CLN2 and CLB5-CLB6-
CDC28→CDC6) are also correct based on the KEGG
pathway. Overall we observe that none of the methods
perform particularly well on this network. However, the
number of correct predictions by our method (5) is higher
than the other methods.

SOS DNA repair network of E. coli
We analyze the well-known SOS DNA repair network in
E. coli as shown in Figure 6(A). This GRN is well known
for its responsibility of repairing the DNA if it gets dam-
aged. It is the largest, most complex, and best understood
DNA damage-inducible network to be characterized to
date.
The expression of the genes in the SOS regulatory net-

work is controlled by a complex circuitry which involves
the RecA and LexA proteins [27]. Normally LexA acts

Table 4 Comparison based on IRMAOFF dataset

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

ProposedMethod 0.50 0.94 0.80 0.62 0.50 0.90 0.75 0.60

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60

BNFinder+BDe 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BNFinder+MDL 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44
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Figure 5 Reconstruction of Yeast KEGG Pathway [26]. (A) Target Network. (B) Network Inferred by proposed approach. (C) Network Inferred by
TDARACNE. (D) Network Inferred by BANJO. (E)Network Inferred by BNFinder+BDe. (F) Network Inferred by BNFinder+MDL.

as the master repressor of more than 20 genes, includ-
ing lexA and recA genes. This repression is done by its
binding to the interaction sites in the promoter regions
of these genes. When DNA damage occurs, one of the
SOS proteins, RecA, acts as a sensor. By binding to

single-stranded DNA, it becomes activated, senses the
damage andmediates LexA autocleavage [27]. The drop in
LexA levels in turn stops the repression of the SOS genes
and activates them. When the damage has been repaired,
the level of activated RecA drops and it stops mediating
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Figure 6 Reconstruction of SOS DNA Repair Network (A) Target Network. (B) Network Inferred by proposed approach. (C) Network Inferred by
TDARACNE. (D) Network Inferred by BANJO. (E) Network Inferred by BNFinder+BDe. (F) Network Inferred by BNFinder+MDL.
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LexA autocleavage. LexA level in turn increases, starting
repression of the SOS genes, and the cell then returns to
its normal state.
The expression data sets of the SOS DNA repair sys-

tem were obtained from Uri Alon Lab [28]. These data are
expression kinetics of 8 genes namely uvrD, lexA, umuD,
recA, uvrA, uvrY, ruvA and polB. Four experiments were
done for various UV light intensities (Exp. 1 and 2:5Jm−2,
Exp. 3 and 4:20Jm−2). In each experiment, the above 8
genes were monitored at 50 instants which are evenly
spaced by 6 minutes intervals.
The results corresponding to Experiment 1 is pre-

sented in Figure 6(B). Along with our result, we include
the results from BANJO, TDARACNE and BNFinder in
Figure 6(C)-(F) and the target network in 6(A). The results
corresponding to the other experiments are available in
Additional file 2, Additional file 3, Additional file 4, Addi-
tional file 5 and Additional file 6. From the results, we
observe that our method correctly identifies lexA and
recA as the ’hub’ genes for this network. Again, the exact
ground truth for this network is not precisely known, and
hence it is not possible to calculate the well-known per-
formancemeasures. Instead, using the known interactions
obtained from literature [13,14], an analysis of correct
and incorrect predictions by our method is obtained and
shown in Table 5. We observe that most of the inter-
actions inferred by our proposed method are correct. It
successfully infers lexA as the regulator of uvrA, uvrD,
umuD and recA. Also, considering the indirect regulation
of RecA through LexA, two more interactions, namely
recA→uvrY and recA→polB can also be considered cor-
rect. In contrast, 3 of the 5 identified interactions by
TDARACNE [7] are correct. Most of the interactions
identified by BANJO and BNFinder+MDL are incorrect.
BNFinder+BDe successfully identifies regulation of ruvA,
polB and uvrA by lexA. In addition, the regulation of
umuD by recA can also be considered correct. However,
compared to these methods, our proposed method infers

Table 5 Analysis of individual interactions inferred by
proposedmethod

correct/

Regulator Target incorrect

LexA

uvrD correct

umuD correct

recA correct

uvrA correct

RecA
uvrY correcta

polB correcta

uvrD ruvA incorrect

acorrect considering indirect regulation of RecA through LexA

the highest number of correct predictions. Number of
incorrect predictions is also very low for our method.

Network analysis of strongly cycling genes in
cyanobacteria, Cyanothece sp. ATCC 51142
To study our approach on a large scale network, we use a
network of a strain of cyanobacteria, namely Cyanothece
sp. strain ATCC 51142 [29]. The microarray data corre-
sponding to the genes were collected from two publicly
available genome-wide microarray data sets of Cyanoth-
ece, performed in alternating light-dark (LD) cycles with
samples collected every 4h over a 48h period: the first
one starting with 1h into dark period followed by two
DL cycles (DLDL), and the second one starting with
two hours into light period, followed by one LD and
one continuous LL cycle (LDLL) [30]. In total, there
were 24 samples. Using a threshold filter with a 2-fold
change cutoff, 730 genes were selected for the analy-
sis. The genes are responsible for performing the major
tasks of energy metabolism and respiration, nitrogen fix-
ation, protein translation and folding, and photosynthe-
sis, along with several other tasks. Result obtained using
our method is shown in Figure 7. The degree distribu-
tion is shown in Figure 8. To compare our result with
the other methods, we applied BANJO, BNFinder(BDe
and MDL) and TDARACNE. The results of all the three
except BNFinder(BDe) was not satisfactory. As a result, we
compare our method only with BNFinder+BDe.
Similar to other large scale datasets (e.g. the Human

HeLa cell data [31], the Arabidopsis L. Heynth dataset
[32]), the microarray data set for cyanobacteria also has
very few samples. Moreover, being not a well-studied
organism, it requires caution in the interpretation of
results. We note that GRN reconstruction studies of
cyanobacteria reported earlier (e.g. [29,33,34]) commonly
emphasise an evaluation criteria, namely “functional
enrichment” analysis of sub-networks. Further, another
common feature noted for genetic networks [35-37] is that
transcriptional regulatory networks possess the scale free
nature of the network topologyd. Since we have limited
samples and also because the ground truth is unknown,
we have carried out the evaluation of the inferred network
using both: (i) statistical means i.e. GO functional enrich-
ment analysis (using both p = 0.05 and p = 0.10), and
(ii) the R2 measure of the power-law fit of the network to
establish its scale-free nature.
The enrichment analysis was done by using gene ontol-

ogy (GO) database (compiled using two sources: one from
the Cyanobase database [38], and another from genome-
wide amino sequence matching using the Blast2GO soft-
ware suite [39]; the the compiled database is available in
Additional file 7), where every GO terms appearing in
each sub-network is assessed to find out whether a cer-
tain functional category is significantly over-represented
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Figure 7 Network inferred by proposed approach.

in a certain sub-network/cluster, more than what would
be expected by chance. The Cytoscape [40] plugin BiNGO
[41] was used for GO functional category enrichment
analysis. For BiNGO, we use the combined and filtered
gene set as the reference set, the hypergeometric test
as the test for functional over-representation, and False
Discovery Rate (FDR) as the multiple hypothesis testing
correction scheme.
First, we present the results corresponding to p = 0.05.

The network obtained by BNFinder+BDe has 16 sub-
networks each containing at least 3 genes. Of these, 6
sub-networks have significantly enriched functionalities
(as determined by the GO functional enrichment test). Of

the other 10, we compute the 3 most densely connected
hubs for each sub-network, and in 2 of 10 such sub-
networks, the hubs have defined significantly enriched
functionalities. On the other hand, in our result, there are
14 sub-networks in total having at least 3 genes. Of these, 3
sub-networks have defined enriched functions (the largest
sub-network has the role of nitrogen fixation according to
the enrichment test). Of the other 11, we compute the 3
most densely connected hubs for each sub-network, and
in 5 of the 11 such sub-networks, the hubs have defined
significantly enriched functionalities.
The results corresponding to p = 0.10 show that

for BNFinder+BDe, 7 sub-networks have enriched
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Figure 8 Degree distribution analysis of the resultant network of cyanothece.We used a power law fit which yields R2 = 0.93. The result
confirms that the inferred network is scale-free.

functionalities (as determined by the test). Of the other 9,
we compute the 3 most densely connected hubs for each
sub-network, and in 2 of the 9 such sub-networks, the
hubs have defined enriched functionalities. On the con-
trary, the result using our approach has 5 sub-networks
with defined significantly enriched functions (the largest
sub-network has the role of nitrogen fixation, similar to
the p = 0.05 case). Of the other 9, we compute the 3
most densely connected hubs for each sub-network, and
in 6 of the 9 such sub-networks, the hubs have defined
significantly enriched functionalities.
We also test the networks to assess whether they are

scale free, using a power law fit. The R2 value of the fit
corresponding to our network is 0.93, which is a better fit
compared to BNFinder+BDe (0.62).

Conclusion
In this paper, we propose a framework that can simulta-
neously represent instantaneous and time-delayed genetic

interactions. The proposed scoring metric uses informa-
tion theoretic quantities having not only relevant prop-
erties but also implicitly includes the biological truth
that some genes may jointly regulate other genes. Incor-
porating these novel features, we have implemented
a score+search based GRN reconstruction algorithm.
Experiments have been performed on different synthetic
networks of varying complexities and also on real-life
biological networks. Our method shows improved perfor-
mance compared to other recent methods, both in terms
of reconstruction accuracy and number of false predic-
tions and at the same timemaintaining comparable or bet-
ter true predictions. A natural extension of the described
method can be incorporation of a-priori knowledge from
sources like protein-protein interactions databases and
fusing the knowledge with existing regulatory networks
to make the inferred networks much more reliable, and
we are pursuing this objective. Along with these exten-
sions, the proposed approach would improve the accuracy
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of gene regulatory network reconstruction and enhance
research in systems biology.

Methods
The representational framework
Let us model a gene network containing n genes (denoted
byX1,X2 . . . ,Xn) with a correspondingmicroarray dataset
having N time points. A basic DBN-based GRN recon-
struction method would try to find associations between
genes Xi and Xj by taking into consideration the data
xi1, . . . , xi(N−δ) and xj(1+δ), . . . , xjN or vice versa (small
case letters mean data values in the microarray), where
1 ≤ δ ≤ d. That is, it will take into consideration the d-th
order Markov rule, for a gene having a maximum order of
regulation d with its parents. This will effectively enable
this model to capture at most d-step time delayed interac-
tions. Conversely, a basic BN-based strategy would use the
entire set of N time points and it will capture regulations
that are effective instantaneously.
Now, to represent both instantaneous and multiple

step time-delayed interactions, we consider an adjacency
matrix based structure as shown in Figure 9. The zero
entries in the figure denote no regulation. For the first n
columns, the entries marked by 1 correspond to instanta-
neous regulations whereas for the last n columns non-zero
entries denote the order of regulation. As an example, the
entry 1 in the cell (X1,X2) means X1 has (almost) instan-
taneous regulatory effect on X2. Similarly, the entry d in
the cell (Xn,X

′
2) means Xn regulates X2 with a d-step time

delay. Using this representation, we do not need to repli-
cate layers of interactions for each increment in the order
of regulations, making it efficient and particularly suitable
for representing GRNs, where higher-order regulations is
a common phenomenon.
Complications in the alignment of data samples can

arise if the parents have different orders of regulation with
the child node. To make this notion clear, we describe
an example where we have already assessed the degree
of interest in adding two parents (gene B and C, hav-
ing third and first order regulations, respectively) to the
gene under consideration, X. Now, we want to assess the
degree of interest in adding gene A as a parent of X with
a second order regulatory relationship, that is we want to
computee MI(X,A2|{B3,C1}), where superscripts on the

Figure 9 The adjacency matrix based approach for the
representation.

parent variables denote the order of regulation it has with
the child node.
There are two possibilities to consider. The first one cor-

responds to the scenario where the time-series data is not
periodic. In this case, we cannot use all the N samples for
MI computation, rather we have to use (N − δ) samples
where δ is the maximum order of regulation that the gene
under consideration has, with its parent nodes (3 in this
example). Figure 10 shows how the alignment of the sam-
ples can be done for the current example. In the figure, we
have N samples and since δ = 3, we can effectively use
(N − 3) samples.
The

√
symbol inside a cell denotes that this data sam-

ple will be used for MI computation, whereas empty cells
denote that these data samples will not be considered for
computing the MI. Similar alignments will need to be
done for the other case, where the data is considered to be
periodic (e.g., datasets of yeast compiled by [42] show such
cyclic behavior [43]). However, we can use all the N data
samples in this case, where the data is shifted in a circular
manner.
The interpretation of the results obtained from an algo-

rithm that uses this framework can be done in a straight-
forward manner. Using this framework and the aligned
data samples, if we construct a network where we observe,
for example, arc X1 → X ′

n having order δ, we conclude
that the inter-slice arc between X1 and Xn is inferred
and X1 regulates Xn with a δ-step time-delay. Similarly,
if we find an arc X2 → Xn, we say that the intra-slice
arc between X2 and Xn is inferred and a change in the
expression level of X2 will almost immediately effect the
expression level of Xn. To ensure consistency in the result-
ing Bayesian networks, the following 3 conditions must
also be satisfied:

1. The network must be a directed acyclic graph.
2. The inter-slice arcs must go in the correct direction

(no backward arc).
3. Interactions remain existent independent of time

(stationarity assumption).

Our proposed scoring metric, CCIT
We share the same idea with MIT (Mutual Information
Tests) [44] and MDL (the Minimum Description Length
principle) for developing a scoring metric that can score

Figure 10 Sample points used for the calculation of the Mutual
Information (MI).
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both instantaneous and time-delayed interactions simul-
taneously: to use the MI/log-likelihood measure between
a node X, and its parents, Pa(X) for measuring the
degree of association between them, and penalizing struc-
tural complexity. The first part aims at minimizing the
Kullback-Leibler (KL) divergence between the joint distri-
bution corresponding to the original network (pD) and the
graph under consideration (pG), according to the follow-
ing equation:

argmin
G∈Gn

KL(pD, pG) = argmax
G∈Gn

n∑
i=1

PaG(Xi) �=φ

MI(Xi,PaG(Xi))

(5)

which is equivalent to maximizing the log-likelihood (i.e.,
the higher the MI/log-likelihood score, the better is the
network) [44]. In our approach, calculation of the MI/log-
likelihood score is done in a manner which is similar
to the approaches in MIT/MDL, with a major differ-
ence: calculation of score (usingMI/log-likelihood) in case
of joint regulation. To make the notion clear consider
Figure 1. Using MIT, the MI part for scoring for gene
B isf MI(B, {A0,D0}) + MI(B,C1) (similar calculations of
log-likelihood will be used for MDL). As we can see, the
calculation of MI/log-likelihood for the zero-order inter-
actions do not take into account the parents who regulate
it with time-delay. Unlike the approach in basic MIT and
other approaches where zero and higher-order interac-
tions are scored separately and then combined, in our
approach, we also condition (during computation) on par-
ents which have different orders of regulation with the
target gene. The marginal probability for each node of this
model thus becomes:

P(X[ t] |X[ t−1] , . . . ,X[ t−d] )=
n∏

i=1
P(Xi[ t] |Pa(Xi[ t]))

(6)

The term Pa(Xi[ t] ) in the above equation represents
the parents of gene Xi at time t, which can be in the
same time-slice or in one of the d previous time-slices
(d is the maximum order of regulation) of gene Xi at
time t. Thus, using our approach, the scoring function
for B will calculate MI(B, {A0,D0} ∪ {C1}). Scoring in
this manner enables us to score both intra and inter-slice
interactions simultaneously, rather than considering these
two types of interactions in an isolated manner, mak-
ing it specially suitable for problems like reconstructing
GRNs, where occurrence of joint regulation is a common
phenomenon.
The idea of penalizing complex structures is ubiqui-

tous, finding its place in most of the scores like BIC,
MIT and MDL. The penalization component for BIC and

MDL are global, whereas for MIT it is specific for each
variable and its parents. Being local in nature, the MIT
scheme usually outperforms the other two [44]. In this
scheme, the localised penalization is based on a theorem
of Kullback [45], which says that for a particular confi-
dence level α, the quantity 2N .MI(Xi,Xj|Pa(Xi)) − χα,lij
represents a statistical test of conditional independence,
where lij is the degrees of freedom of a chi-squared dis-
tribution, and χα,lij is the statistical significance threshold.
The more positive the value is, the more likely is that Xi
and Xk are related (given the current parent set, Pa(Xi))
and vice-versa. Thus, adding up the MI quantities for
all the genes (multiplied by 2*number of samples) and
subtracting the corresponding local penalization mea-
sures effectively constitute a series of conditional inde-
pendence (CI) tests, and this scheme is used for scoring
using MIT.
However, porting this idea of local penalization directly

to a gene regulatory network which is cursed with dimen-
sionality (there are a large number of variables (genes), but
only a few samples are available), has the problem of over-
penalization. This can be exemplified using Figure 1. The
penalization component for gene B according to MIT, will
be: χα,4 + χα,12 + χα,36, assuming the special case where
we have 3 levels of discrete data (the details of how these
penalization components can be computed will be shown
later). For a Bayesian network design having thousands of
samples available, this penalization is not a problem. How-
ever, but for GRN reconstruction with samples ranging
between 20-50, this penalization is too high. To rem-
edy this situation, we propose to apply the penalization
only on a per-order of regulation basis. Using this modi-
fied scheme, the penalization will be 2χα,4 + χα,12, which
constitutes considerable savings, thereby increasing better
prediction ratio (in terms of sensitivity and specificity).
The approaches described above are summarised as

a scoring metric, named CCIT (Combined Conditional
Independence Tests) in Equation 7. The score, when
applied to a graph G containing n genes (denoted by
X1,X2 . . . ,Xn), with a corresponding microarray dataset
D, can be expressed as:

SCCIT (G : D) =
n∑

i=1
Pa(Xi) �=φ

⎧⎪⎨
⎪⎩ 2Nδi .MI(Xi,Pa(Xi))

−
δi∑

k=0
(max

σ k
i

ski∑
j=1

χ
α,liσ k

i (j))

⎫⎪⎬
⎪⎭

(7)

Here ski denotes the number of parents of gene Xi having
a k step time-delayed regulation and δi is the maximum
time-delay that gene Xi has with its parents. The parent
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set of gene Xi, Pa(Xi) is the union of the parent sets of Xi
having zero time-delay (denoted by Pa0(Xi)), single-step
time-delay (denoted by Pa1(Xi)) and up to parents having
the maximum time-delay (δi). This is defined as follows:

Pa(Xi) = Pa0 (Xi) ∪ Pa1 (Xi) · · · ∪ Paδi (Xi) (8)

The number of effective data points, Nδi , depends on
whether the data can be considered to be showing peri-
odic behavior or not (e.g., datasets from [42] can be
considered as showing periodic behavior [43]). In the case
of aperiodicity, Nδi is determined by subtracting, from the
total length of the time profile (N), the maximum order of
the time-delay that the gene under consideration has with
its parents (δi).

Nδi =
{

N if data is periodic
N − δi otherwise (9)

Finally, σ k
i = (σ k

i (1), . . . , σ k
i (ski )) denote any permuta-

tion of the index set (1, . . . , ski ) of the variables Pak(Xi) and
liσ k

i (j), the degrees of freedom, is defined as follows:

liσ k
i (j) =

{
(ri − 1)(r

σ k
i (j) − 1)

∏j−1
m=1 rσ k

i (m)
, for 2 ≤ j≤ ski

(ri − 1)(r
σ k
i (1) − 1), for j = 1

(10)

where rp denotes the number of possible values that gene
Xp can take (after discretization, if the data is continuous).
If the number of possible values that the genes can take
is not the same for all the genes, the quantity σ k

i denotes
the permutation of the parent set Pak(Xi) where the first
parent gene has the highest number of possible values, the
second gene has the second highest number of possible
values and so on.

Some properties of CCIT Score
In this section we study several useful properties of the
proposed scoring metric. The first among these is the
decomposability property, which is especially useful for
local search algorithms:

Proposition 1. CCIT is a decomposable scoring metric.

Proof. This result is evident as the scoring function is,
by definition, a sum of local scores.

Next, we show in Theorem 1 that CCIT takes joint
regulation into account while scoring and it is different
than three related approaches, namely MIT [44] applied
to: a Bayesian Network (which we call MIT0); a dynamic
Bayesian Network (called MIT1); and also a naive com-
bination of these two, where the intra and inter-slice
networks are scored independently (called MIT0+1). For

this, we make use of the decomposition property of MI,
defined next:

Property 1. (Decomposition Property of MI) In a BN, if
Pa(Xi) is the parent set of a node Xi, and the cardinality of
the set is si, the following identity holds [44]:

MI(Xi,Pa (Xi)) = MI (Xi,Xi1)

+
si∑
j=2

MI
(
Xi,Xij|

{
Xi1, . . . ,Xi(j−1)

})
(11)

Theorem 1. CCIT scores intra and inter-slice arcs con-
currently, and is different from MIT0, MIT1 and MIT0+1
since it takes into account the fact that multiple regula-
tors may regulate a gene simultaneously, rather than in an
isolated manner.

Proof. We prove by showing a counter example, using
the network in Figure 11. We apply our metric along with
the three other techniques on the network, describe the

Figure 11 Network used for theorem 1.
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working procedure in all these cases to show that the pro-
posed metric indeed scores them concurrently, and finally
show the difference with the other three approaches. The
network in Figure 11 has 4 interactions, 2 of these are
instantaneous and 2 are time-delayed (with δ = 1). We
assume a non-trivial case where the data is supposed
to be periodic (the proof is trivial otherwise). Also, we
assume that all the gene expressions were discretized to 3
quantization levels.

1. Application of MIT in a BN based framework:

sMIT0 = 2N .MI(B, {A0,D0})−(
χα,4 + χα,12

)
(12)

2. Application of MIT in a DBN based framework:

sMIT1 = 2N{MI(B,C1)+MI(A,D1)}−2χα,4 (13)

3. A naive application of MIT in a combined BN and
DBN based framework:

sMIT0+1 = 2N{MI(B, {A0,D0}) + MI(B,C1)

+ MI(A,D1)} − (
3χα,4 + χα,12

)
(14)

4. Our proposed scoring metric:

sCCIT = 2N{MI(B, {A0,D0} ∪ {C1})
+ MI(A,D1)} − (

3χα,4 + χα,12
)

(15)

The concurrent scoring behavior of CCIT is evident
from the first term in RHS of (15). Also, the inclusion
of C in the parent set in the first term of the RHS of
the equation exhibits the manner by which it achieves the
objective of taking into account the biological fact that
multiple regulators may regulate a gene jointly (the cal-
culation, however, needs to be carried out in accordance
with the process we described in the Methods Section).
Considering (12) and (13), it is also obvious that CCIT is

different from both MIT0 and MIT1. To show that CCIT
is different from MIT0+1, we consider (14) and (15). It
suffices to consider whether MI(B, {A0,D0}) + MI(B,C1)
is different from MI(B, {A0,D0} ∪ {C1}). Using (11),
this becomes equivalent to considering whether
MI(B, {A0,D0}|C1) is the same as MI(B, {A0,D0}), which
are clearly inequal. This completes the proof.

Endnotes
aThe time-delay will always be greater than zero. However, if the delay is small
enough so that the regulated gene is effected before the next data sample is
taken, it can be considered as an instantaneous interaction
ba tutorial can be found in http://www.cs.ubc.ca/∼murphyk/Software/BDAGL/
dbnDemo hus.htm
cThe method works as follows: for a variable Xi with k states, a basis vector is
constructed for P(Xi|Pa(Xi)) by normalizing the vector

( 1
1 ,

1
2 , · · · , 1k

)
. For the

j-th instantiation pa(Xi) of Pa(Xi), samples are obtained for the probability
corresponding to this instantiation by using θij ∼ Dirichlet(sαij) where s is the
equivalent sample size and the αij ’s are obtained by shifting the basis vector to
the right j places where jmodulo k is not one.
dWe clarify that different processes including genetic networks will generate
scale free networks. However, if a network obtained using microarray data is

scale free, it indicates that it is modelling the underlying biological process
more accurately
ein this paper, we use Mutual Information (MI)/log-likelihood based
Conditional Independence tests for analysis of regulatory interactions
fit should be noted here that MIT/MDL are basic scoring metric for BNs, which
can be extended to score both Static and Dynamic BNs separately. Here, we
are discussing MIT/MDL applied to a network having both zero and
higher-order interactions
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