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Abstract

Background: CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the
immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the
induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous
experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T
cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of
induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations
of CD4+ T cells under physiological conditions.

Results: We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-
regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this
motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a
functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in
this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous
differentiated states, depending upon particular combinations of input signals. We provide three prototype models
illustrating how to use this framework to explain experimental observations and make specific testable predictions.

Conclusions: The process in which several types of T helper cells are generated simultaneously to mount complex
immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can
be responsible for generating all possible types of heterogeneous populations with respect to a pair of master
regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding
the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results.
Mathematical models based on the framework make specific testable predictions that may improve our
understanding of this differentiation system.
Background
CD4+ T helper cells serve as key players in host im-
mune responses by regulating and coordinating a large
repertoire of immune cells, such as macrophages, B cells
and CD8+ T cells. Consequently, CD4+ T helper cells
are critical in human health ranging from homeostasis
to pathogenesis of diseases [1,2]. Central to the func-
tions of CD4+ T cells is their ability to produce a wide
range of extracellular immunomodulating agents includ-
ing cytokines and chemokines [3]. In order to correct-
ly direct the immune response to antigen stimulation,
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CD4+ T cells have to secrete appropriate types of
cytokines in appropriate amounts, and they achieve
this by differentiating into various subtypes of func-
tional CD4+ T cells from a pool of precursor cells,
known as naïve CD4+ T cells. These subsets primarily
include T helper 1 (TH1), T helper 2 (TH2), T helper
17 (TH17) and induced regulatory T (iTReg) cells.
Each subtype of CD4+ T cells produces a distinctive
spectrum of cytokines, and in each of these subtypes
there is typically one key transcription factor, or mas-
ter regulator, that is highly expressed and controls the
expression of downstream genes, including those en-
coding the lineage specific cytokines. The master reg-
ulators for the four functional subsets are T-bet,
GATA3, RORγt and Foxp3, respectively [3].
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The differentiation of CD4+ T cells is a highly con-
trolled process, and the lineage specificity of the differ-
entiation process is determined by integrating micro-
environmental cues that activate various signaling path-
ways. These pathways include the T cell receptor (TCR)
pathway and the Signal Transducer and Activator of
Transcription (STAT) pathways [4,5], which are acti-
vated by cognate antigens and cytokines, respectively.
Other pathways, such as those associated with Notch
and Toll-like receptors (TLRs), are also involved in dif-
ferentiation of CD4+ T cells into distinct lineages [6-8].
In a few types of chronic infections, the dominance of

one subtype of CD4+ T cells can be observed [9]. How-
ever, most immune responses elicit balanced phenotypes
of functional CD4+ T cells and their effector molecules,
suggesting the importance of maintaining the diversity
and flexibility of functional CD4+ T cells [10,11]. The
importance of balancing the phenotypic composition is
further corroborated by the fact that inappropriate dom-
inance of particular subtype(s) of CD4+ T cells is often
associated with inflammatory disorders [12-14]. It is not
surprising to observe the balanced phenotypes of CD4+

T cells in vivo, given the plausible heterogeneous micro-
environments of the naïve CD4+ T cells, which may
stimulate the differentiation into multiple subtypes of
functional CD4+ T cells. Interestingly, however, highly
purified naïve CD4+ T cells can be induced to differenti-
ate into multiple subtypes simultaneously in certain
homogeneous in vitro experimental conditions [15-21].
Also interesting are the observations that optimum ex-
perimental conditions for generating homogeneous sub-
sets of CD4+ T cells often include conditions that block
the differentiation of undesired subsets [3]. These obser-
vations suggest that some highly regulated mechanisms,
intrinsic to naïve CD4+ T cells, generate and maintain
phenotypic heterogeneity of functional CD4+ T cells. In
vitro assays showing heterogeneous differentiation re-
capitulate, at least in part, the balanced CD4+ T cell
populations observed in vivo. Understanding situations
of induced heterogeneous differentiation will shed light
on the mechanisms controlling the response of popula-
tions of CD4+ T cells under physiological conditions.
Although the overexpression of one type of master

regulator is generally considered the hallmark of the dif-
ferentiation of one subtype of CD4+ T cells, it has been
recently discovered that cells highly expressing two types
of master regulators exist in vivo [16,17,22-26], and
some of these 'double-positive' phenotypes have been
shown to be important in responding to pathogens
[16,17,26]. Consistent with in vivo studies showing that
the numbers of single-positive and double-positive CD4+

T cells can be increased in comparable proportions upon
pathogenic challenges [16], in vitro induction of the dif-
ferentiation of double-positive CD4+ T cells often
requires heterogeneous differentiation, which is accom-
panied by the differentiation of single-positive pheno-
types [15-17]. Some double-positive CD4+ T cells can be
generated by reprogramming the single-positive pheno-
types, which also results in a heterogeneous population
containing both single-positive and double-positive cells
[23,24]. These experiments provide us with the clues to
the conditions for generating double-positive phenotypes
and highlight the intimate link between the double-
positive phenotype and heterogeneous differentiation.
In most experiments demonstrating induction of het-

erogeneous differentiation, the expression levels of mas-
ter regulators controlling two population subsets are
examined at the single cell level. Despite the limited
scope of these experiments in terms of the number of
subsets considered, significant diversity of heterogeneous
differentiation has been revealed. In a particular differen-
tiation event, one can obtain one of the following types
of heterogeneous populations (Figure 1): a population
containing two types of single-positive cells [18], a popu-
lation containing one type of single-positive cells and
double-positive cells [17], and a population containing
two types of single-positive cells and double-positive
cells [15]. The diversity of heterogeneous differentiation
in this minimum paradigm might be only the tip of an
iceberg of complexity involving heterogeneous differenti-
ation of all subsets of CD4+ T cells, but understanding a
minimal system with only two classical subtypes is surely
the place to start.
Previously, mathematical modeling has advanced our

understanding of CD4+ T cell differentiation [27-32]. In
particular, Höfer et al. [27] used a mathematical model
to explain TH2 cell fate memory created by positive
feedbacks in the signaling network; Mariani et al. [28]
used a similar model to demonstrate the robust lineage
choice between TH1 and TH2 cells; Yates et al. [29]
linked the dynamics of master regulators to the pheno-
typic composition of TH1 and TH2 cells during differen-
tiation and reprogramming; van den Ham et al. [30]
used a generic model to describe the switches among all
CD4+ T cell lineages; and Naldi et al. [32] developed a
Boolean-network model that takes all four lineages of
CD4+ T cells into consideration. We recently used a
mathematical model to study the reciprocal differenti-
ation of TH17 and iTReg cells, in which heterogeneous
differentiation is observed [33]. It is unclear, however,
how a broader spectrum of CD4+ T cells can be involved
in heterogeneous differentiation and what determines
the observed types of differentiated states.
Here, we propose a simple theoretical framework for

understanding the heterogeneous differentiation of CD4
+ T cells. We analyze the dynamic properties of a signal-
ing network motif common to all CD4+ T cell lineages.
We show that, at the level of cell populations, this motif



Figure 1 Induced heterogeneous differentiation of CD4+ T cells
with respect to a pair of master regulators (X and Y). a. Diversity
of cell phenotypes during induced differentiation. In the
undifferentiated cell, the expression level of both X and Y are low.
When the cell is differentiated, three possible functional phenotypes
can be obtained: X single-positive cell, Y single-positive cell and
double-positive cell. b. Three types of induced heterogeneous
differentiation. In a differentiation event, a group of naive cells can
be differentiated into two types of single-positive cells (Type 1), one
type of single-positive cell and DP cell (Type 2) or all three
functional phenotypes (Type 3).
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can generate all possible homogeneous and heteroge-
neous phenotypic compositions with respect to a pair of
master regulators, and at the single-cell level it ensures
the robust commitment of a particular choice of differ-
entiated state. Two types of positive feedback loops in
this network motif govern three types of bistable
switches, which in turn, result in three types of hetero-
geneous differentiation upon receiving appropriate com-
binations of input signals. This framework facilitates not
only an intuitive understanding of the complex process
by which CD4+ T cells integrate multiple signals to give
rise to multiple functional phenotypes, but also the con-
struction of more detailed mathematical models for
studying CD4+ T cell differentiation. We provide three
prototype models illustrating how to use this framework
to explain experimental observations and make specific
testable predictions.

Results and discussion
A basal signaling network motif is proposed to govern
the differentiation of all lineages of CD4+ T cells
To consider the heterogeneous differentiation of CD4+

T cells, we introduce a minimal model based on a pair
of master regulators (proteins X and Y). We neglect the
influence of other master regulators during the differen-
tiation process. In the undifferentiated (naïve) cell, the
expression levels of X and Y are both low, and the stable
expression of either X or Y marks the differentiation
event. Three phenotypes can be observed upon differen-
tiation: X single-positive (XSP) cell, Y single-positive
(YSP) cell, and double-positive (DP) cell (Figure 1A). In
the model, heterogeneous differentiation is defined as
the process in which more than one functional (non-
naïve) phenotypes can be observed upon uniform treat-
ment of a population of simulated naïve cells (see
Methods).
In this minimum paradigm, three types of heteroge-

neous differentiation can be induced: 1) two different
types of single-positive cells are differentiated simultan-
eously from naïve precursors; 2) one type of single-
positive cells differentiates simultaneously with double-
positive cells; and 3) both types of single-positive cells
differentiate simultaneously with double positive cells
(Figure 1B). We define these three scenarios as Type 1, 2
and 3 heterogeneous differentiations, respectively.
We next propose a basal network motif that governs

cell differentiation in this minimal model. Based on
known molecular interactions, we notice that the four
master regulators of CD4+ T cells are all involved in sig-
naling networks of similar topologies (Figure 2A-C).
From these examples, we introduce a ‘basal motif ’ (Fig-
ure 2D). In the basal motif, two master regulators (X
and Y) mutually inhibit each other’s expression, while
activating their own production. Two types of signals are
responsible for activating the expression of the master
regulators: a 'primary signal' (S1) which is sufficient to
fully upregulate at least one master regulator, and two
polarizing signals (S2 and S3) which favor the expression
of one master regulator or the other (X and Y, respect-
ively) but are not sufficient to upregulate their expres-
sion in the absence of a primary signal (Figure 2D). Each
influence relationship in this basal motif has direct bio-
logical meaning, but some components in this motif
may represent different biological entities in different
dual-master-regulator networks. For example, in the
TH1-TH2 network (Figure 2B) the primary signal repre-
sents the TCR ligands, whereas in the iTReg-TH17



Table 1 Signaling components in basal motif and their
corresponding biological components in prototype
models

Model Generic signaling
component

Corresponding biological
component

Prototype 1 Primary signal (S1) TCR signal

Prototype 1 Polarizing signal 1 (S2) Exogenous IL-12

Prototype 1 Polarizing signal 2 (S3) Exogenous IL-4

Prototype 1 Master regulator 1 (X) T-bet

Prototype 1 Master regulator 2 (Y) GATA3

Prototype 2 Primary signal (S1) TCR signal

Prototype 2 Polarizing signal 1 (S3-1) Exogenous IL-23 + IL-1 signal

Prototype 2 Polarizing signal 2 (S3-2) Exogenous TGF-β+ IL-6 signal

Prototype 2 Master regulator 1 (X) T-bet

Prototype 2 Master regulator 2 (Y) RORγt

Prototype 3 Primary signal (S1) TCR+ Exogenous TGF-β signal

Prototype 3 Polarizing signal 1 (S2) Exogenous ATRA/IL-2 signal

Prototype 3 Polarizing signal 2 (S3) Exogenous IL-6 signal

Prototype 3 Master regulator 1 (X) Foxp3

Prototype 3 Master regulator 2 (Y) RORγt

Figure 2 Basal network motif controlling heterogeneous
differentiation in the two master regulator paradigm. Solid
green arrow: activation influence in which the activator alone can
switch on the expression of the target protein. Dashed green arrow:
activation influence in which the activator alone cannot switch on
the expression of the target protein. Red arrow: inhibition influence.
Protein name in parenthesis: possible intermediate protein for the
positive feedback loop. a. Prototype Model 1: heterogeneous
differentiation of TH1 and TH2. b. Prototype Model 2: heterogeneous
differentiation of TH1 and TH17. c. Prototype Model 3:
heterogeneous differentiation of iTReg and TH17. d. The basal
network motif.
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network (Figure 2C) it represents a combined treatment
of TCR ligands and TGFβ, which is justified by the fact
that both TCR and TGF-β signaling pathways activate
both Foxp3 and RORγt. Note that the signals, which are
treated as parameters in our models, represent exogen-
ous cytokine doses only, not endogenous cytokines pro-
duced by T cells upon activation. The latter are
represented in part by the auto-activation relations.
In Table 1, we list the generic signaling components

and their corresponding biological entities for each
prototype model. Note that a TCR ligand is a typical ex-
ample of a primary signal, and certain groups of cyto-
kines correspond to polarizing signals. In Table 2, we list
the evidences for all molecular influences of each proto-
type model.
We first analyze Type 1 heterogeneous differentiation

using the core motif, in the absence of auto-activation,
and then we use the full version of the basal motif to ex-
plain all three types of heterogeneous differentiation.

The basal motif without auto-activations can generate
Type 1 heterogeneous differentiation
The symmetric case
Consider first the case of perfectly symmetrical param-
eter settings (Additional file 1: Table S1 Generic Model
1) for the core motif without self-activations. (See the
Methods section for a description of our mathematical
model of the signaling motifs.) In the absence of exogen-
ous signals, the system persists in the stable ‘double-
negative’ state corresponding to naïve cells (Figure 3A).
Small positive values of the primary signal (0< S1
< 0.704) drive the expression of modest amounts of both
master regulators in a single cell. Larger values (0.704<
S1< 2.396) destabilize the co-expression state and give
rise to two new (alternative) stable steady states: the X-
high-Y-low state and the X-low-Y-high state, which cor-
respond to XSP and YSP cells, respectively (Figure 3B).
The basins of attraction of these two states are separated
by the diagonal line (X=Y) through the state space.
When the primary signal is extremely strong
(S1> 2.396), the system is attracted to a unique stable
steady state (X-high-Y-high), corresponding to a DP cell
(Figure 3C). Bifurcation analysis on these steady states
shows that the system undergoes pitchfork bifurcations
at S1 = 0.704 and at S1 = 2.396 (Figure 3D), a typical type
of bifurcation obtained for dynamical systems with per-
fect symmetry [52-54]. Saturation of the primary signal
may prevent cells from reaching the DP state (Additional
file 2: Figure S1A and B).
The presence of a polarizing signal breaks the sym-

metry of the system, resulting in a pitchfork bifurcation
with broken symmetry (Additional file 3: Figure S2A and
B). To analyze the influence of polarizing signals on this
dynamical system, we plot two-parameter bifurcation
diagrams with respect to the primary signal and to each
of the polarizing signals (e.g., Figure 3E, for S1 and S2).
In Figure 3F we plot a ‘bidirectional’ two-parameter



Table 2 Evidences for molecular influences in prototype
models

Model Molecular Influence Evidence

Prototype 1 TCR signal upregulates T-bet expression [34]

Prototype 1 TCR signal upregulates GATA3 expression [35]

Prototype 1 IL-12 signal upregulates T-bet expression
in the presence of TCR signal

[34]

Prototype 1 IL-4 signal upregulates GATA3 expression
in the presence of TCR signal

[18,36]

Prototype 1 T-bet inhibits GATA3 expression [37]

Prototype 1 GATA3 inhibits T-bet expression [38]

Prototype 1 T-bet promotes its own expression [39]

Prototype 1 GATA3 promotes its own expression [40]

Prototype 2 TCR signal upregulates T-bet expression [34]

Prototype 2 TCR signal upregulates RORγt expression
in the presence of TGF-β

[41,42]

Prototype 2 IL-23 + IL-1 signal upregulates RORγt expression
in the presence of TCR signal

[17]

Prototype 2 TGF-β signal upregulates RORγt expression
in the presence of TCR signal

[17]

Prototype 2 TGF-β signal downregulates T-bet expression [43]

Prototype 2 T-bet inhibits RORγt expression [44]

Prototype 2 RORγt inhibits T-bet expression [45]

Prototype 2 T-bet promotes its own expression [39]

Prototype 2 RORγt promotes its own expression [11,46]

Prototype 3 TCR signal upregulates Foxp3 expression
in the presence of TGF-β

[41,42]

Prototype 3 TCR signal upregulates RORγt expression
in the presence of TGF-β

[41,42]

Prototype 3 TGF-β signal upregulates Foxp3 expression
in the presence of TCR signal

[41,42]

Prototype 3 TGF-β signal upregulates RORγt expression
in the presence of TCR signal

[41,42]

Prototype 3 IL-6 upregulates RORγt expression [47]

Prototype 3 IL-6 downregulates Foxp3 expression [47]

Prototype 3 ATRA/IL-2 upregulates Foxp3 expression [48,49]

Prototype 3 ATRA/IL-2 downregulates RORγt expression [48,49]

Prototype 3 Foxp3 inhibits RORγt expression [50]

Prototype 3 RORγt inhibits Foxp3 expression [51]

Prototype 3 Foxp3 promotes its own expression [11]

Prototype 3 RORγt promotes its own expression [11,46]
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bifurcation diagram, with S2 versus S1 plotted ‘up’ and
S3 versus S1 plotted ‘down’ (see Methods for details). In
Figure 3F we see a bistable region (bounded by the red
curves) for moderate values of the primary signal
strength (0.7-2.3 units) and for low values (0–0.35 units)
of either of the polarizing signal strengths. Within the
bistable region are found the two types of single-positive
states. Outside the bistable region are found unique
steady state solutions that vary continuously from the
naïve state on the left to the double-positive state on the
right, through intermediate region (0.7< S1< 2.3) domi-
nated by XSP cells (for S2> 0) or by YSP cells (for
S3> 0). Because of the perfect symmetry of the para-
meters, both of the cusps of the bistable region lie on
the X-axis.
In order to predict the response of this regulatory sys-

tem to changing stimuli (S1 and S2, or S1 and S3), we
must be careful in interpreting the effects of trajectories
crossing the two-parameter bifurcation diagram in
Figure 3F. If we fix the polarizing signals at S3 = 0,
S2 = 0.1 and increase the primary signal from 0 to 3, as
in Additional file 3: Figure S2A and B, we see that the
regulatory system passes smoothly from the naïve state
(X-low-Y-low) to the XSP state (X-high-Y-low) to the DP
state (X-high-Y-high). The regulatory system passes over
the bistable region without undergoing any abrupt
changes of the state (bifurcation) or exhibiting hysteresis
effects. On the other hand, if we fix the primary signal at
S1 = 1.5 and increase one of the polarizing signals (either
S2 or S3), as in Additional file 3: Figure S2 C and D, we
see that the regulatory system starts in one of the single-
positive state and jumps abruptly to another single-
positive state at a saddle-node bifurcation point. Also,
the system exhibit hysteresis because, if the polarizing
signal is reduced to zero after the jump occurs, the regu-
latory system remains stuck in the stable ‘flipped’ state
(XSP if S2 increases/decreases, YSP if S3 increases/
decreases). We call this type of response a ‘reprogram-
ming’ switch, because the control system flips irrevers-
ibly between alternative single-positive states. On the
contrary, transitions from the naïve or the DP state to
either one of the single-positive states are smooth and
reversible (they do not invoke reprogramming).
We next show that this network motif can generate

heterogeneous differentiation and identify the parameter
region in which a heterogeneous population can be
obtained. To this end we simulate the induced differenti-
ation process in a group of cells (with small cell-to-cell
variability) exposed to various combinations of primary
(S1) and polarizing signals (either S2 or S3). For each
combination of S1 and S2 (or S3), we compute the per-
centages of cells of different phenotypes in the final
(steady state) differentiated population. We plot these
percentages (as heat maps) over the coordinates of the
bidirectional two-parameter bifurcation diagram (see
Additional file 4: Figure S3A-D). We summarize these
results with a ‘heterogeneity score’ (see Methods) to
highlight the region of parameter space that can generate
heterogeneous populations (Figure 3G). Not surprisingly,
in the absence of strong polarizing signals (S2� 0 and
S3� 0), the primary signal can induce heterogeneous dif-
ferentiation of two single-positive phenotypes (Figure 3G,
bright area). This is because of the close proximity of the



Figure 3 Analyses of the core motif with symmetrical parameters. a-c. Phase plane portraits for three values of primary signal strength (zero,
intermediate, high), in the absence of polarizing signals (S2 = S3 = 0). Green curve: X nullcline; red curve: Y nullcline; blue arrow: representative
vector in the phase space; closed circle: stable steady state; open circle: unstable steady state; gray curve: separatrix.
d. One-parameter bifurcation diagram for steady state level of X as a function of primary signal S1. Solid curve: stable steady state; dashed curve:
unstable steady state. e. Two-parameter bifurcation diagram with respect to primary signal S1 and polarizing signal S2, with S3 = 0. Solid curve:
locus of pitchfork bifurcation points. The pitchfork bifurcation points coalesce and disappear at S2 = 0.357. f. Bidirectional two-parameter
bifurcation diagram with respect to primary signal S1 and polarizing signals S2 and S3. Top half: S1—S2 diagram, with S3 = 0, as in panel E.
Bottom half: S1—S3 diagram, with S2 = 0. The types of stable steady states in each region are annotated as colored circles. Adjoined circles:
multistability. See Figure 1 for interpretation of the color scheme. g. Simulation results for treatment of a population of cells simultaneously with
primary and polarizing signals. h. Simulation results for sequential treatment: polarizing signal followed by primary signal. I. Simulation results for
sequential treatment: primary signal followed by polarizing signal. In G-I, the heterogeneity scores with respect to XSP and YSP are plotted.
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naïve states to the separatrix, and the presence of cell-to-
cell variability which can bias individual cells towards dif-
ferent phenotypes (Additional file 4: Figure S3E). The
polarizing signal, on the other hand, makes the differenti-
ation into one single-positive phenotype more likely,
which can result in homogeneous differentiation once it
is sufficiently strong (Figure 3G, dark area).
We next explore how the cell population responds to

sequential stimuli rather than simultaneous stimuli. If
the population is stimulated first by a polarizing signal
and then, after the cells have reached their steady states,
the simulations are continued in the presence of primary
signal, we find that the response to sequential stimuli is
very similar to the response to simultaneous stimuli
(Figure 3H). But when we switch the sequence of the
stimuli, the polarizing signal fails to influence cell fate in
the bistable region, resulting in heterogeneous popula-
tions in this region (Figure 3I). This is due to a hysteresis
effect, which prevents reprogramming by polarizing sig-
nals that are insufficiently strong. These results suggest
that polarizing signals can influence cell fate determin-
ation until the induction of differentiation, after which
their influence is greatly reduced.

Broken symmetry
The preceding analysis is based on a set of perfectly
symmetrical parameters in the signaling network, al-
though the exogenous polarizing signals can act as



Hong et al. BMC Systems Biology 2012, 6:66 Page 7 of 17
http://www.biomedcentral.com/1752-0509/6/66
‘symmetry breakers’. How differently does the regulatory
system behave if its intrinsic kinetic parameters are not
perfectly symmetrical? For illustrative purposes, we use a
representative set of asymmetrical parameter values
(Additional file 1: Table S1 Generic Model 2). Because of
the asymmetries, the primary signal upregulates the two
master regulators at different thresholds (Figure 4A and
B), and the bistable region of the bidirectional two-
parameter bifurcation diagram is re-oriented so that its
cusps are located on different sides of the X-axis
(Figure 4C). When we stimulate cell populations with
combinations of primary and polarizing signals, we find
that the parameter region that gives rise to heterogeneous
populations is not coincident with the X-axis. Instead, the
‘heterogeneous’ region forms a patch that intersects the
X-axis (Figure 4D). In this situation, the system requires a
specific range of primary signal strength to generate a het-
erogeneous population. On the other hand, the primary
signal now gains some control over cell fate determination,
in addition to its ability to trigger the differentiation. For a
similar network in B cells, Sciammas et al. [55] recently
showed that the strength of the B cell receptor signal
(primary signal) can determine cell fate because of the
asymmetry of the network.
The effects of sequential stimuli in the asymmetrical

model are similar to their effects in the symmetrical
model (Figure 4E and F).
Up to this point, we have assumed that the relaxation

rates of X and Y are identical γX ¼ γY ¼ 5ð Þ . Breaking
Figure 4 Analyses of the core motif with asymmetrical parameters. a
X and Y as functions of primary signal S1 (S2 = S3= 0). c. Bidirectional two-
polarizing signal S2 or S3. See legend of Figure 3 panels D and E for the in
Panels G-I for simulation conditions.
this symmetry changes the parameter combinations that
generate heterogeneous differentiation without changing
the bifurcation diagram (Additional file 5: Figure S4).
This result, together with the responses to sequential
stimuli discussed earlier, shows that although the bi-
stable region is critical to obtaining heterogeneous dif-
ferentiation, the exact phenotypic composition within
the bistable region also depends on the kinetics of the
signal inputs and the intrinsic relaxation rates of the
master regulators.
We suggest that biological signaling networks of this

type (i.e., those resembling the basal motif ) may have
evolved to take advantage of either symmetrical or asym-
metrical types of behavior. A typical asymmetrical design
is found in the TH1 and TH2 paradigm, in which TCR
signaling not only triggers the heterogeneous differenti-
ation of both TH1 and TH2, but also regulates their
phenotypic compositions depending on signal strength
(discussed in detail in later section). With this under-
standing, one can design experiments to study more
detailed signal-control principles of a particular signaling
network governing heterogeneous differentiation.

The basal network motif with additional positive
feedback loops can generate all types of
heterogeneous differentiation
Previously, mathematical modelers found that intercon-
nected positive feedback loops can give rise to complex
multistability in CD4+ T cell differentiation [28] and
and b. One-parameter bifurcation diagram for steady state levels of
parameter bifurcation diagram with respect to primary signal S1 and
terpretation of curves and colored circles. d-f. See legend of Figure 3
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elsewhere [54]. It is still not clear, however, how these
different multistable regions depend on the interconnec-
tion of multiple positive feedback loops, nor how one
can use biologically relevant signals to guide cells into
various multistable regions, where heterogeneous differ-
entiation might occur. In this section, we show that our
basal motif can give rise to complex multistability, we
clarify the effects of the additional positive feedback
loops using bifurcation analysis, and we explain the bio-
logical meaning of each parameter region in the context
of the heterogeneous differentiation of CD4+ T cells.
For illustrative purpose, we first choose another set of

perfectly symmetrical parameters (Additional file 1:
Table S1 Generic Model 3). This model differs from
Generic Model 1 in that the double-negative feedback
(mutual inhibition) is not strong enough to create bist-
ability. Nonetheless, with the addition of symmetrical
increase of auto-activation loops, a bistable region first
appears in the intermediate range (1.7< S1< 2.4) of the
primary signal (Additional file 6: Figure S5A), similar to
the case of Generic Model 1 (Figure 3D). Further in-
crease of the auto-activation weights enlarges the bistable
region, and at a critical point (weights=1.8), the pitchfork
bifurcation changes from supercritical (Additional file 6:
Figure S5A, weights=1.5) to subcritical (Additional file 6:
Figure 5 Analyses of the basal motif with auto-activation relations. a.
primary signal S1 and polarizing signals S2 and S3 for intermediate weight
of the cusp regions of the bistable region. b. Bidirectional two-parameter b
signals S2 and S3 for high weight of auto-activation relations (ω= 3.2). The
circles. Adjoined circles: multistability. See Figure 1 for interpretation of the
differentiation switch. Light green area: bistable region governing reprogra
co-expression switch. c-f. Various types of heterogeneity scores are plotted
heterogeneity scores with respect to XSP and YSP. d. The heterogeneity sc
respect to YSP and DP. f. The heterogeneity scores with respect to XSP, YS
Figure S5B, weights= 3.2). Beyond the transition from
supercritical to subcritical, each pitchfork bifurcation gives
rise to two saddle-node bifurcation points (Additional file
6: Figure S5B and C). On the bidirectional (S1-S2-S3) two-
parameter bifurcation diagram (Figure 5A), each cusp re-
gion 'folds back' to form three interconnected cusp regions,
which govern two new bistable regions and one tristable re-
gion (Figure 5A). Further increase of the auto-activation
weights enlarges the original bistable region as well as the
newly formed multistable regions. Eventually, the plane on
the bidirectional two-parameter bifurcation diagram is
divided into 11 regions with distinct stability features
(Figure 5B).
We clarify this unique two-parameter bifurcation dia-

gram as follows. If the autoactivation loops are absent or
weaker, the parameter region outside of the reprogram-
ming switch bistable region (Figure 3F) is continuous
and monostable, although it can represent four types of
steady states. Essentially, strong auto-activation loops
create folding in this monostable region so that it is
divided into four monostable regions separated by four
new bistable regions. This structure effectively creates an
additional level of robustness of cell fate commitment,
which is rendered by two new types of bistable switches,
in addition to the reprogramming switch. One type of
Bidirectional two-parameter bifurcation diagram with respect to
of auto-activation relations (ω= 1.8). Insets show the zoomed-in view
ifurcation diagram with respect to primary signal S1 and polarizing
types of stable steady states in each region are annotated as colored
color scheme. Light blue area: bistable region governing
mming switch. Light yellow area: bistable region governing
for high weight of auto-activation relations (ω= 3.2). c. The
ores with respect to XSP and DP. e. The heterogeneity scores with
P and DP.
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switch consists of the two bistable regions located at
lower range of the primary signal (Figure 5B, light blue
areas), which controls differentiation/dedifferentiation
commitment, i.e. the switches from or to the naïve state
(Additional file 6: Figure S5D and E). Another type of
switch consists of the two bistable regions located at
higher range of the primary signal (Figure 5B, light yel-
low areas), which controls co-expression commitment,
i.e. the switches from or to the double-positive state
(Additional file 6: Figure S5D and E). We define these
two switches as the ‘differentiation switch’ and the ‘co-
expression switch’ respectively. The tri-stable regions in
this diagram are the overlapping areas between the bi-
stable regions governed by the reprogramming switch
and either the differentiation or the co-expression
switch. In fact, extremely high weights (>4) of auto-
activation may give rise to a tetra-stable region, where
the three types of the bistable regions overlap (Additional
file 6: Figure S5C).
In summary, the positive feedback loop involving mu-

tual inhibition of the master regulators can create the re-
programming switch, and additional feedback loops
involving auto-activation can enhance the robustness of
the reprogramming switch and create the differentiation
switch and the co-expression switch. The features of the
three bistable switches are listed in Table 3.
We next ran simulations to check whether these

regions of multistability are correlated to various types
of heterogeneous differentiation. Our results show that
Type 1 heterogeneous differentiation can be induced in
the reprogramming switch region (Figure 5C) (this is
consistent with the results obtained with the core motif ),
Type 2 heterogeneous differentiation can be induced in
the co-expression bistable switch regions (Figure 5D and
E), and Type 3 heterogeneous differentiation can be
induced in the tri-stable region consisting of three func-
tional (non-naïve) states (Figure 5F). These types of het-
erogeneous differentiations are all robust in terms of
single cell commitment because the corresponding par-
ameter regions admit a variety of stable steady states.
Positive feedback loops have long been recognized as

mechanisms for biological switches [56-58]. We have
demonstrated that two types of positive feedback in the
CD4+ T cell differentiation network underlie three types
Table 3 Features of three bistable switches obtained with the

Bistable switch Phenotypic transition
controlled by the switch

Un
fee

Differentiation Naïve , XSP or YSP Au

Reprogramming XSP , YSP Cre
inh
au

Co-expression XSP or YSP , DP Au
of bistable switches that govern the transitions among
different phenotypes of those T cells. In addition to en-
suring the robust commitment, the multistability created
by positive feedback loops may be used to generate
phenotypic diversities of various types. In this context,
the biological functions of the positive feedback loops
are seen as more versatile than giving rise to simple on-
or-off switches.
Our theoretical analysis of the basal regulatory motif

(Figure 2D) started with symmetrical parameter values
and then considered the effects of broken symmetries.
In the next section, we show how non-symmetrical
prototype models of heterogeneous differentiation
among real lines of CD4+ T cells can be studied within
this unifying framework despite their diverse features.

Mathematical models based on the theoretical framework
can be used to understand experimental results and
make testable predictions
In this section we discuss three prototype models for
studying heterogeneous differentiation of CD4+ T cells.
The first two models are aimed to explain some interest-
ing biological phenomena that were not studied previ-
ously with mathematical modeling. The third one is a
simplified version of our previous model [33], but we
have made it more accessible by using the framework
presented here. Because of their limited scope, none of
these models are intended to provide a comprehensive
understanding of the corresponding biological systems.
Rather, our intention is to illustrate how to use the mod-
eling framework to explain observed heterogeneous dif-
ferentiation and make testable predictions.
Prototype Model 1: Heterogeneous differentiation of

TH1 and TH2 cells
Previous mathematical models successfully described

the dynamic behavior and the underlying molecular con-
trol system of the reciprocal differentiation of TH1 and
TH2 cells [27-31]. However, heterogeneous differenti-
ation of TH1 and TH2 cells and its underlying molecular
controls were not studied with these models. Yamashita
et al. [18] discovered that the heterogeneous differenti-
ation of TH1 and TH2 cells can be obtained with anti-
genic stimulations. Similar observations were obtained
by Hosken et al. [20], and Messi et al. [21]. We have
basal motif

derlying positive
dback loops

Type of related
heterogeneous differentiation

to-activation NA

ated by mutual
ibition and enhanced by
to-activation

Type 1

to-activation Type 2
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built a mathematical model, based on the influence dia-
gram in Figure 2A, to describe heterogeneous differenti-
ation of TH1 and TH2 cells. The parameter values for
the model are listed in Additional file 1: Table S2.
Figure 6A shows the bidirectional two-parameter bi-

furcation diagram, and Figure 6B shows the simulation
results as the heterogeneity score with respect to the
two single-positive phenotypes. Our simulation results
suggest that exogenous polarizing signals, i.e. IL-4 and
IL-12, are not sufficient to trigger differentiation. They
must be accompanied by a sufficiently high dose of
antigenic stimulant (TCR signal) to trigger the differenti-
ation into the corresponding phenotypes. This conclu-
sion is in agreement with previous experimental results
[18]. High strength of TCR signal alone (>1 unit) or
with intermediate level of IL-4 (0.3 unit) was sufficient
to induce the differentiation of two single-positive phe-
notypes. With increasing strengths of TCR signal, our
simulations show a spectrum of heterogeneous popula-
tions with increasing percentages of TH2 cells and de-
creasing percentage of TH1 cells. The following
experimental findings are consistent with our simulation.
Figure 6 Analyses of Prototype Model 1 (heterogeneous differentiatio
diagram with respect to primary signal TCR and polarizing signals IL-12 and
heterogeneity scores with respect to T-bet single-positive phenotype and G
Panel A. The GATA-3 auto-activation relation is blocked in the model. d. Sa
in the model. In Panels A and C: Adjoined circles: multistability. Blue circle:
circle: GATA3 single positive phenotype. Yellow: DP phenotype.
Messi et al. [21] observed the heterogeneous differenti-
ation of TH1 and TH2 with IL-4 and antigenic stimulant.
Yamashita et al. [18] observed a similar pattern of het-
erogeneous populations with increasing doses of anti-
genic stimulant in the presence of an intermediate level
of IL-4. Hosken et al. [20] also observed such pattern
with a different type of antigenic stimulant, although
only a narrow range of stimulant concentrations could
give rise to heterogeneous populations. Clearly, our
model predicts that in order to achieve comparable pro-
portions of TH1 cells and TH2 cells, one would need a
higher dose of antigenic stimulant without exogenous
IL-4 as compared to with exogenous IL-4. Based on the
bifurcation diagram, we also predict that a slow increase
of stimulant concentration favors the differentiation of
TH1 cells. Additionally, the simulation results and bifur-
cation analysis show that the double-positive phenotype
can be obtained in the presence of TH1 polarizing sig-
nals. Hegazy et al. [24] have discovered that exogenous
TH1 polarizing signals can reprogram TH2 cells into T-
bet+GATA3+ cells in the presence of antigenic stimulant.
Our model predicts that the differentiation of such
n of TH1 and TH2 cells). a. Bidirectional two-parameter bifurcation
IL-4. b. Simulation results for induced differentiation. The
ATA3 single-positive phenotype are shown. c. Same legend as
me legend as Panel B. The GATA-3 auto-activation relation is blocked
naïve phenotype. Green circle: T-bet single-positive phenotype. Red
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double-positive phenotype can be directly induced by
high dose of antigenic stimulant (>2 units) in the pres-
ence of exogenous TH1 polarizing signals (0.5 unit), and
the differentiation is likely to be heterogeneous with the
concurrent induction of two types of single-positive
cells, in addition to the double-positive cells. If we re-
duce the auto-activation weight of GATA3 (see Meth-
ods), then the TCR signal primarily triggers the
differentiation of TH1 cells instead of a heterogeneous
population (Figure 6C and D). Maruyama et al. [59]
demonstrated that TCR signal alone can induce a signifi-
cant fraction of GATA3+ cells (this is consistent with the
experimental findings mentioned above), and blocking
the auto-activation feedback between GATA3 and IL-4
prevents the induction of GATA3+ cells. Our model pre-
dicts that the population may be dominated by TH1 cells
under this condition.
Table 4 summarizes the published observations con-

sistent with our simulation results and new predictions
based on the bifurcation analyses and simulation results.
Prototype Model 2: Heterogeneous differentiation of

TH1 and TH17 cells
We build a prototype model to study the heteroge-

neous differentiation of TH1 and TH17 cells that was
recently demonstrated by Ghoreschi et al. [17]. The in-
fluence diagram of the model is shown in Figure 2B,
Table 4 Summary of simulation results of Prototype Model 1

Conditions of differentiation induction Induced ce

Exogenous polarizing signals
alone

No inductio

Low dose of antigenic stimulant
(TCR signal <1 units) and
exogenous polarizing signals

Homogeneo
phenotype

Antigenic stimulant in the
presence of IL-4

Heterogene

Increasing strengths of TCR signal A spectrum
increasing p
decreasing p

Increasing strengths of TCR signal
in the presence of IL-4

A spectrum
increasing p
decreasing p

TCR signal alone vs. TCR
signal with IL-4

Stronger TC
balanced po
condition w

TCR signal + TH1 polarizing signals Double-pos
(via reprogra

TCR signal + TH1 polarizing signals Direct induc
can be achi
TH1 polarizin

Blocking GATA3-IL4 feedback by
antibodies against IL-4 and
inducing with TCR signal

No TH2 cells

Blocking GATA3-IL4 feedback by
antibodies against IL-4 and
inducing with TCR signal

Homogeneo
and the parameter values are listed in Additional file 1:
Table S3. In the presence of TCR signal alone, the
simulated population is dominated by TH1 cells
(Figure 7A and B). When the TCR signal is combined
with IL-23 + IL-1 polarizing signal, the induced popula-
tion contains both the T-bet+RORγt- single-positive
phenotype and the T-bet+RORγt+ double positive pheno-
type (Figure 7A and B). When the TCR signal is
combined with TGF-β (another polarizing signal),
the population is dominated by the T-bet-RORγt+

single-positive phenotype (Figure 7C and D). These
results are consistent with the observations of Ghoreschi
et al. [17]. Our model predicts that lowering the TCR
signal strength may result in the reprogramming from
T-bet+RORγt+ double positive phenotype to T-bet+RORγt-

single positive phenotype even in the presence of a strong
IL-23 + IL-1 signal and that when low dose of TGF-
β + IL-6 (�0.4 unit) is used, one may observe the
heterogeneous differentiation of TH1 and TH17 cells. Also,
the model recapitulates the scenario in which knocking
out T-bet genes resulted in the homogeneous differenti-
ation into T-bet-RORγt+ single-positive phenotype when
either of the polarizing signals is used (Additional file 7:
Figure S6) [17].
Simulation results with testable predictions are sum-

marized in Table 5.
ll population Evidence

n of differentiation [18]

us differentiation (induced
corresponds to type of polarizing signal)

[18]

ous differentiation of TH1 and TH2 [18,21]

of heterogeneous populations with
ercentages of TH2 cells and
ercentage of TH1 cells.

[20]

of heterogeneous populations with
ercentages of TH2 cells and
ercentage of TH1 cells.

[18]

R signal is required to achieve a
pulation of TH1 and TH2 in
ithout IL-4 than in condition with IL-4

Prediction

itive phenotype can be observed
mming from TH2 cells)

[24]
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eved with strong TCR signal and
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Prediction
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Figure 7 Analyses of Prototype Model 2 (heterogeneous differentiation of TH1 and TH17 cells). a. Two-parameter bifurcation diagram with
respect to primary signal TCR and polarizing signal IL-23 + IL1. b. Simulation results for induced differentiation. The heterogeneity scores with
respect to T-bet single-positive phenotype and DP phenotype are shown. c. Two-parameter bifurcation diagram with respect to primary signal
TCR and polarizing signal TGF-β+ IL-6. d. Simulation results for induced differentiation. Heterogeneity scores with respect to T-bet single-positive
phenotype and RORγt single-positive phenotype are shown. In Panels A and C: Adjoined circles: multistability. Blue circle: naïve phenotype. Green
circle: T-bet single-positive phenotype. Red circle: RORγt single-positive phenotype. Yellow: DP phenotype.
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Prototype Model 3: Heterogeneous differentiation of
iTReg and TH17 cells
Heterogeneous differentiation of iTReg and TH17 cells

has been observed in many experiments [15,16,19]. Here
we present a prototype model based on the influence dia-
gram (Figure 2C) and the parameter values (Additional
file 1: Table S4). The model shows that a combination of
TGF-β and TCR signal can drive a heterogeneous popu-
lation containing Foxp3+RORγt-, Foxp3-RORγt+ and
Foxp3+RORγt+ phenotypes (Figure 8A and B, tri-stable
Table 5 Summary of simulation results of Prototype Model 2

Conditions of differentiation
induction

Induced cell pop

TCR signal alone The cell populatio

TCR signal and IL-23 + IL-1 signal Heterogeneous d
cells and T-bet+RO

TCR signal and TGF-β+ IL-6 signal The cell populatio

Lowering TCR signal after differentiation Reprogramming f

TCR signal and low dose of
TGF-β+ IL-6 (�0.4 unit)

Heterogeneous d

Knocking out T-bet genes and
inducing with TCR signal

Homogeneous di
cells with either T
region at TCR+TGF-β signal� 1.8). Raising the strength
of TGF-β+TCR signal or adding IL-6 (a TH17 polarizing
signal) can skew the population into Foxp3-RORγt+ and
Foxp3+RORγt+ phenotypes (Figure 8A and B, bistable re-
gion in the upper plot at highest level of TCR+TGF-β
signal). These results are in agreement with previous ex-
perimental observations [15,16]. Predictions made from
the model include: 1) an intermediate TGF-β+TCR sig-
nal (1–1.5 units) favors heterogeneous differentiation of
Foxp3+RORγt- and Foxp3-RORγt+ populations; 2) an
ulation Evidence

n is dominated by the TH1 cells [17]

ifferentiation of T-bet+RORγt-

Rγt+ cells.
[17]

n is dominated by T-bet-RORγt+ cells [17]

rom T-bet+RORγt+ cells to T-bet+RORγt- cells Prediction

ifferentiation of TH1 and TH17 cells Prediction

fferentiation of T-bet-RORγt+

GF-β signal or IL-23 + IL-1 signal
[17]



Figure 8 Analyses of Prototype Model 3 (heterogeneous differentiation of iTReg and TH17 cells). a. Bidirectional two-parameter bifurcation
diagram with respect to primary signal TCR + TGF-β and polarizing signals ATRA/IL2 and IL-6. Adjoined circles: multistability. Blue circle: naïve
phenotype. Green circle: Foxp3 single-positive phenotype. Red circle: RORγt single-positive phenotype. Yellow: DP phenotype. b. Simulation
results of induced differentiation. The heterogeneity scores with respect to Foxp3 single-positive phenotype, RORγt single-positive phenotype and
DP phenotype are shown.
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intermediate level of TGF-β+TCR signal (1–1.5 units)
with an iTReg polarizing signal produces a homoge-
neous Foxp3+RORγt- population; and 3) a high level of
TGF-β+TCR signal (>2 units) with an iTReg polarizing
signal induces heterogeneous Foxp3+RORγt- and Foxp3
+RORγt+ populations.
Simulation results with testable predictions are sum-

marized in Table 6.
Conclusions
In this study, we have demonstrated that a simple signal-
ing network motif can be responsible for generating all
possible types of heterogeneous populations with respect
to a pair of master regulators controlling CD4+ T cell
differentiation. We showed how naïve CD4+ T cells can
integrate multiple types of signals to differentiate into
populations of diverse phenotypes. We illustrate the the-
oretical framework with three specific cases and made
testable predictions.
Table 6 Summary of simulation results of Prototype Model 3

Conditions of differentiation induction Induce

Intermediate TGF-β+ TCR signal (1.5-2 units) Heterog
Foxp3+

High TGF-β+ TCR signal (2.5 units) Heterog
Foxp3+

Low-Intermediate TGF-β+ TCR signal
(1–2 units) and IL-6 signal

Heterog
Foxp3+

Low TGF-β+ TCR signal (1–1.5 units) Heterog
Foxp3-R

Low-intermediate level of TGF-β+ TCR signal
(1–2 units) and IL-2 or ATRA

Homog

High TGF-β+ TCR signal (2.5 units) and IL-2 or ATRA Heterog
Foxp3+
It is becoming evident that certain signals can drive
the differentiation of multiple lineages of T cells,
whereas other environmental cues can skew the out-
come to specific phenotypes [60]. Because the proposed
basal motif appears commonly in the signaling networks
controlling CD4+ T cell differentiation, biological exam-
ples of this framework are clearly not limited to the
prototype models we presented here. For example, it has
been recently demonstrated that STAT3 activation is
required for TH2 differentiation [61]. This gives the pos-
sibility that IL-6, which upregulates RORγt via STAT3
activation [62], can act as a primary signal giving rise to
heterogeneous TH2 and TH17 populations if the cells are
primed with certain amount of other signals, such as
TCR, TGFβ and IL-4.
Our study suggests the importance of regulated cell-

to-cell variations that can be exploited to generate
phenotypic diversity in CD4+ T cells. The significance of
such variations in some other biological systems has
been highlighted by other groups. Feinerman et al. [63]
d cell population Evidence

eneous differentiation of
RORγt-, Foxp3-RORγt+ and Foxp3+RORγt+ cells

[15]

eneous differentiation of Foxp3-RORγt+ and
RORγt+ cells

[16]

eneous differentiation of Foxp3-RORγt+ and
RORγt+ cells

[15]

eneous differentiation of Foxp3+RORγt-,
ORγt+ cells

Prediction

eneous differentiation of Foxp3+RORγt- cells Prediction

eneous differentiation of Foxp3+RORγt- and
RORγt+ cells

Prediction
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discovered that the cell-to-cell variations in the expres-
sion levels of some key co-receptors in CD8+ T cells can
be critical for achieving diversity in TCR responses.
Similarly, Chang et al. [64] demonstrated that variations
in the expression of stem cell markers can influence the
fate of the cell. We have used a simple generic form to
account for cell-to-cell variability in this study (i.e. para-
metric variations), it would be interesting to study which
specific variable factors in naïve CD4+ T cells can be
predictive of the phenotypic compositions in an induced
population. Harnessing such factors might be useful for
fine-tuning the immune system to prevent and treat
diseases.
Our modeling approach has the advantage of describ-

ing non-linear responses in biochemical reactions with-
out knowing detailed biochemical mechanisms and
kinetics, which are generally unavailable for T cell differ-
entiation. It has the disadvantage that parameters in the
equations are phenomenological and cannot be related
to biochemical reaction rate constants. We expect that
other modeling approaches, such as ordinary differential
equations with Hill function nonlinearities, will produce
results similar to ours.
We are aware of the following limitations of this

framework. First, all master regulators of CD4+ T cell
may influence each other during differentiation. Thus
considering only a pair of master regulators may not be
sufficient to describe all important components govern-
ing the heterogeneous differentiation of CD4+ T cells.
Secondly, cell-to-cell communication is neglected in our
models of cell population. We assume that our models
describe the initial phase of differentiation and that the
phenotypic compositions of the population do not
change significantly during the differentiation process.
The validity of this assumption needs to be examined in
future studies.

Methods
Dynamical model
We modeled the signaling network motifs with a generic
form of ordinary differential equations (ODEs) that de-
scribe both gene expression and protein interaction net-
works [65-67]. Each ODE in our model has the form:

dXi

dt
¼ γ i F σ iWið Þ � Xið Þ

F σWð Þ ¼ 1
1þ eð�σW Þ
� �

Wi ¼ ωo
i þ

XN
j

ωj!iXj

 !
; i ¼ 1; . . . ;N

,

Where Xi is the activity or concentration of protein i .
On a time scale = 1/γi, Xi(t) relaxes toward a value
determined by the sigmoidal function, F, which has a
steepness set by σ i . The basal value of F, in the absence
of any influencing factors, is determined by ωo

i . The
coefficients ωj!i determine the influence of protein j on
protein i . N is the total number of proteins in the
network.
All variables and parameters are dimensionless. One

time unit in our simulations corresponds to 1.5 days.
Parameter values are listed in supplementary tables.
All simulations and bifurcation analyses were per-

formed with PyDSTool, a software environment for dy-
namical systems [68].
Bifurcation diagrams
In order to visualize the response of the T cell differenti-
ation network to multiple signals (a primary differenti-
ation signal and two types of polarizing signals), we have
employed bidirectional two-parameter bifurcation dia-
grams, as in [69]. The two two-parameter bifurcation
diagrams share the same primary bifurcation parameter
(the primary differentiation signal, S1) on the horizontal
axis. The secondary bifurcation parameters (the polariz-
ing signals, S2 and S3) are plotted on the vertical axis:
one in the upward direction and the other in the down-
ward direction. The bidirectional two-parameter bifur-
cation diagram allows one to analyze the response of the
regulatory system to the primary signal alone or in com-
bination with either of the polarizing signals. Although
this two-dimensional representation does not allow a full
analysis of the responses to all three types of signals sim-
ultaneously, it is very useful in understanding the com-
plex interplay between signals and responses in these
heterogeneous differentiation systems. We ran simula-
tions for a population of naïve CD4+ T cells, and we
overlaid the simulation results on the bidirectional two-
parameter bifurcation diagrams, allowing one to
visualize the bifurcation analyses and simulation results
simultaneously (detailed below).
Cell-to-cell variability
To account for cell-to-cell variability in a population, we
made many simulations of the system of ODEs, each
time with a slightly different choice of parameter values,
to represent slight differences from cell to cell. We
allowed all of the parameters in our model to change
simultaneously, and we assumed that the value of each
parameter conforms to a normal distribution with CV=
0.05 (CV= coefficient of variation = standard deviation /
mean). The mean value that we specified for each par-
ameter distribution is also referred as the ‘basal’ value of
that parameter. In our bifurcation analysis of the dynam-
ical system, we considered an imaginary cell that adopts
the basal value for each of its parameters, and we
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defined this cell as the ‘average’ cell. Note that none of
the cells in our simulated population is likely to be this
average cell, because every parameter value is likely to
deviate a little (CV= 5 %) from the basal value.
In order to simulate the induced differentiation

process, we first solved the ODEs numerically with some
small initial values of master regulator concentrations in
the absence of any exogenous signals. After a short
period of time, each simulated cell will find its own,
stable ‘double-negative’ steady state, corresponding to a
naïve CD4+ T cell. Next, we changed the primary and/or
polarizing signals to certain positive values and contin-
ued the numerical simulation. If needed, we continued
the simulation again with a second change of primary
and/or polarizing signals. By the end of the simulation,
each cell arrives at its corresponding ‘induced’ pheno-
type, which might vary from cell to cell because of the
parametric variability of the population. We repeated
this simulation 200 times for a given set of exogenous
signals to represent the responses of 200 cells in a popu-
lation. We made the simple definition that a protein is
expressed when its level is greater than 0.5 units. The
simulations for a cell population were repeated 40x40
times with primary and polarizing signals of various
strengths, and we overlaid the final steady state pheno-
typic composition on the point with corresponding coor-
dinates on the bidirectional two-parameter bifurcation
diagram.

Mutant simulation
The experiment of knocking out GATA3-IL-4 feedback
was simulated with reduced weight of auto-activation of
GATA-3 to one-tenth of the original value. The experi-
ment of knocking out T-bet genes was simulated by set-
ting ωo

T�bet= −17 (10 times its value in the basal model).

Heterogeneity score
To summarize simulations results with multiple pheno-
types and to highlight heterogeneous and homogeneous
populations in parameter space, we compute a ‘hetero-
geneity score’ for a simulation as follows.

SH P1; . . . ; Pnð Þ ¼

Pn�1

i¼1

Pn
j¼iþ1

CPi þ CPj � 2 CPi � CPj

�� ��� �
n� 1ð ÞN

The scoring function takes a list of ‘phenotypes of
interest’ (P1; . . . ; Pn), and computes the sum of the pair-
wise heterogeneities, which are based on the numbers of
cells of any two different phenotypes (CPi and CPj ). The
score is normalized with respect to the number of phe-
notypes of interest (n) and the total number of cells in
the population (N ). SH� 1 when there are comparable
numbers of cells of the phenotypes of interest in the
population, SH�−1 when the population is dominated
by one phenotype out of all the phenotypes of interest,
and SH� 0 when there are few cells with the phenotypes
of interest in the population, or the degree of heterogen-
eity is moderate.
Additional files

Additional file 1: 4 supplementary tables and legends for
supplementary figures.

Additional file 2: Figure S1. Effects of primary signal saturation.

Additional file 3: Figure S2. Hysteresis effect of the ‘reprogramming’
bistable switch.

Additional file 4: Figure S3. Simulation results for the core motif with
symmetrical parameters.

Additional file 5: Figure S4. Simulation results with different relaxation
rates of X and Y.

Additional file 6: Figure S5. Additional bifurcation analyses of the full
basal motif.

Additional file 7: Figure S6. Simulation results of Prototype Model 2
(heterogeneous differentiation of TH1 and TH17 cells) with T-bet knocked-out.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
TH was supported by a Transdisciplinary Team Science Fellowship from the
Virginia Bioinformatics Institute, and by an NIH Grant (R01 GM078989-05) to
JJT. LL was partially supported by grants from NIH (R0164414) and the
American Heart Association. JX was supported by an NSF grant (DMS-
0969417) and an NIAID grant 1R03AI099120. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Author details
1Genetics, Bioinformatics, and Computational Biology Program, Virginia
Polytechnic Institute and State University, Blacksburg VA, 24061, USA.
2Department of Biological Sciences, Virginia Polytechnic Institute and State
University, Blacksburg VA, 24061, USA.

Authors’ contributions
Conceived and designed the experiments: TH JX LL JJT. Performed the
experiments: TH. Analyzed the data: TH JX LL JJT. Wrote the paper: TH LL JJT.
All authors read and approved the final manuscript.

Received: 1 November 2011 Accepted: 3 April 2012
Published: 14 June 2012

References
1. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V,

Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells
engineered to secrete murine granulocyte-macrophage colony-
stimulating factor stimulates potent, specific, and long-lasting anti-tumor
immunity. Proc Natl Acad Sci U S A 1993, 90:3539–3543.

2. Moir S, Chun TW, Fauci AS: Pathogenic mechanisms of HIV disease. Annu
Rev Pathol 2011, 6:223–248.

3. Zhu J, Yamane H, Paul WE: Differentiation of effector CD4 T cell
populations. Annu Rev Immunol 2010, 28:445–489.

4. Nakayama T, Yamashita M: The TCR-mediated signaling pathways that
control the direction of helper T cell differentiation. Semin Immunol 2010,
22:303–309.

5. O'Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y: Genomic views of
STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol
2011, 11:239–250.

http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S1.doc
http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S2.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S3.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S4.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S5.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S6.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-6-66-S7.tiff


Hong et al. BMC Systems Biology 2012, 6:66 Page 16 of 17
http://www.biomedcentral.com/1752-0509/6/66
6. Fang TC, Yashiro-Ohtani Y, Del Bianco C, Knoblock DM, Blacklow SC, Pear
WS: Notch directly regulates Gata3 expression during T helper 2 cell
differentiation. Immunity 2007, 27:100–110.

7. Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, Ma L, Yang
XO, Nurieva RI, Tian Q, Dong C: Toll-like receptor 2 signaling in CD4(+) T
lymphocytes promotes T helper 17 responses and regulates the
pathogenesis of autoimmune disease. Immunity 2010, 32:692–702.

8. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA: Instruction of
distinct CD4 T helper cell fates by different notch ligands on antigen-
presenting cells. Cell 2004, 117:515–526.

9. Sher A, Coffman RL: Regulation of immunity to parasites by T cells and T
cell-derived cytokines. Annu Rev Immunol 1992, 10:385–409.

10. O'Shea JJ, Paul WE: Mechanisms underlying lineage commitment and
plasticity of helper CD4+ T cells. Science 2010, 327:1098–1102.

11. Murphy KM, Stockinger B: Effector T cell plasticity: flexibility in the face of
changing circumstances. Nat Immunol 2010, 11:674–680.

12. Littman DR, Rudensky AY: Th17 and regulatory T cells in mediating and
restraining inflammation. Cell 2010, 140:845–858.

13. Romagnani S: Immunologic influences on allergy and the TH1/TH2
balance. J Allergy Clin Immunol 2004, 113:395–400.

14. Mauri C, Williams RO, Walmsley M, Feldmann M: Relationship between
Th1/Th2 cytokine patterns and the arthritogenic response in collagen-
induced arthritis. Eur J Immunol 1996, 26:1511–1518.

15. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J,
Rubtsov YP, Rudensky AY, et al: TGF-beta-induced Foxp3 inhibits T(H)17
cell differentiation by antagonizing RORgammat function. Nature 2008,
453:236–240.

16. Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, Riethmacher D,
Si-Tahar M, Di Santo JP, Eberl G: In vivo equilibrium of proinflammatory
IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med
2008, 205:1381–1393.

17. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE,
Ramos HL, Wei L, Davidson TS, Bouladoux N, et al: Generation of
pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature
2010, 467:967–971.

18. Yamashita M, Kimura M, Kubo M, Shimizu C, Tada T, Perlmutter RM,
Nakayama T: T cell antigen receptor-mediated activation of the
Ras/mitogen-activated protein kinase pathway controls interleukin 4
receptor function and type-2 helper T cell differentiation. Proc Natl Acad
Sci U S A 1999, 96:1024–1029.

19. Molinero LL, Miller ML, Evaristo C, Alegre ML: High TCR stimuli prevent
induced regulatory T cell differentiation in a NF-kappaB-dependent
manner. J Immunol 2011, 186:4609–4617.

20. Hosken NA, Shibuya K, Heath AW, Murphy KM, O'Garra A: The effect of
antigen dose on CD4+ T helper cell phenotype development in a T cell
receptor-alpha beta-transgenic model. J Exp Med 1995, 182:1579–1584.

21. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F: Memory
and flexibility of cytokine gene expression as separable properties of
human T(H)1 and T(H)2 lymphocytes. Nat Immunol 2003, 4:78–86.

22. Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G, Valmori
D: Human memory FOXP3+ Tregs secrete IL-17 ex vivo and
constitutively express the T(H)17 lineage-specific transcription factor
RORgamma t. Proc Natl Acad Sci U S A 2009, 106:8635–8640.

23. Voo KS, Wang YH, Santori FR, Boggiano C, Arima K, Bover L, Hanabuchi S,
Khalili J, Marinova E, Zheng B, et al: Identification of IL-17-producing
FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 2009,
106:4793–4798.

24. Hegazy AN, Peine M, Helmstetter C, Panse I, Frohlich A, Bergthaler A, Flatz L,
Pinschewer DD, Radbruch A, Lohning M: Interferons direct Th2 cell
reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with
combined Th2 and Th1 cell functions. Immunity 2010,
32:116–128.

25. Zhu J, Paul WE: Peripheral CD4+ T-cell differentiation regulated by networks
of cytokines and transcription factors. Immunol Rev 2010, 238:247–262.

26. Abromson-Leeman S, Bronson RT, Dorf ME: Encephalitogenic T cells that
stably express both T-bet and ROR gamma t consistently produce
IFNgamma but have a spectrum of IL-17 profiles. J Neuroimmunol 2009,
215:10–24.

27. Hofer T, Nathansen H, Lohning M, Radbruch A, Heinrich R: GATA-3
transcriptional imprinting in Th2 lymphocytes: a mathematical model.
Proc Natl Acad Sci U S A 2002, 99:9364–9368.
28. Mariani L, Lohning M, Radbruch A, Hofer T: Transcriptional control
networks of cell differentiation: insights from helper T lymphocytes. Prog
Biophys Mol Biol 2004, 86:45–76.

29. Yates A, Callard R, Stark J: Combining cytokine signalling with T-bet and
GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular
decision-making. J Theor Biol 2004, 231:181–196.

30. van den Ham HJ, de Boer RJ: From the two-dimensional Th1 and Th2
phenotypes to high-dimensional models for gene regulation. Int
Immunol 2008, 20:1269–1277.

31. Mendoza L, Xenarios I: A method for the generation of standardized
qualitative dynamical systems of regulatory networks. Theor Biol Med
Model 2006, 3:13.

32. Naldi A, Carneiro J, Chaouiya C, Thieffry D: Diversity and plasticity of Th
cell types predicted from regulatory network modelling. PLoS Comput
Biol 2010, 6:e1000912.

33. Hong T, Xing J, Li L, Tyson JJ: A mathematical model for the reciprocal
differentiation of T helper 17 cells and induced regulatory T cells. PLoS
Comput Biol 2011, 7:e1002122.

34. Placek K, Gasparian S, Coffre M, Maiella S, Sechet E, Bianchi E, Rogge L:
Integration of distinct intracellular signaling pathways at distal
regulatory elements directs T-bet expression in human CD4+ T cells. J
Immunol 2009, 183:7743–7751.

35. Yamane H, Zhu J, Paul WE: Independent roles for IL-2 and GATA-3 in
stimulating naive CD4+ T cells to generate a Th2-inducing cytokine
environment. J Exp Med 2005, 202:793–804.

36. Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE: Stat6 is necessary and sufficient
for IL-4's role in Th2 differentiation and cell expansion. J Immunol 2001,
166:7276–7281.

37. Usui T, Preiss JC, Kanno Y, Yao ZJ, Bream JH, O'Shea JJ, Strober W: T-bet
regulates Th1 responses through essential effects on GATA-3 function
rather than on IFNG gene acetylation and transcription. J Exp Med 2006,
203:755–766.

38. Zhu J, Jankovic D, Grinberg A, Guo L, Paul WE: Gfi-1 plays an important
role in IL-2-mediated Th2 cell expansion. Proc Natl Acad Sci U S A 2006,
103:18214–18219.

39. Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung
AL, Cereb N, Yao TP, Yang SY, Reiner SL: Role of T-bet in commitment of
TH1 cells before IL-12-dependent selection. Science 2001, 292:1907–1910.

40. Ouyang W, Lohning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A,
Murphy KM: Stat6-independent GATA-3 autoactivation directs IL-4-
independent Th2 development and commitment. Immunity 2000,
12:27–37.

41. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang
SH, Schluns KS, Watowich SS, et al: Molecular antagonism and plasticity of
regulatory and inflammatory T cell programs. Immunity 2008, 29:44–56.

42. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M,
Kuchroo VK, Hafler DA: IL-21 and TGF-beta are required for differentiation
of human T(H)17 cells. Nature 2008, 454:350–352.

43. Gorelik L, Constant S, Flavell RA: Mechanism of transforming growth factor
beta-induced inhibition of T helper type 1 differentiation. J Exp Med
2002, 195:1499–1505.

44. Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E, Bolm AN, Oukka M,
Kuchroo VK, Glimcher LH: T-bet represses T(H)17 differentiation by
preventing Runx1-mediated activation of the gene encoding
RORgammat. Nat Immunol 2011, 12:96–104.

45. Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y,
Crawford GE, Hatton RD, Weaver CT: Epigenetic instability of cytokine and
transcription factor gene loci underlies plasticity of the T helper 17 cell
lineage. Immunity 2010, 32:616–627.

46. Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO: Autocrine
transforming growth factor-beta1 promotes in vivo Th17 cell
differentiation. Immunity 2011, 34:396–408.

47. Kimura A, Kishimoto T: IL-6: regulator of Treg/Th17 balance. Eur J Immunol
2010, 40:1830–1835.

48. Elias KM, Laurence A, Davidson TS, Stephens G, Kanno Y, Shevach EM,
O'Shea JJ: Retinoic acid inhibits Th17 polarization and enhances FoxP3
expression through a Stat-3/Stat-5 independent signaling pathway.
Blood 2008, 111:1013–1020.

49. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H:
Reciprocal TH17 and regulatory T cell differentiation mediated by
retinoic acid. Science 2007, 317:256–260.



Hong et al. BMC Systems Biology 2012, 6:66 Page 17 of 17
http://www.biomedcentral.com/1752-0509/6/66
50. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA,
Rudensky AY: Foxp3-dependent programme of regulatory T-cell
differentiation. Nature 2007, 445:771–775.

51. Burgler S, Mantel PY, Bassin C, Ouaked N, Akdis CA, Schmidt-Weber CB:
RORC2 is involved in T cell polarization through interaction with the
FOXP3 promoter. J Immunol 2010, 184:6161–6169.

52. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN,
Dinner AR, Singh H: Multilineage transcriptional priming and determination
of alternate hematopoietic cell fates. Cell 2006, 126:755–766.

53. Huang S, Guo YP, May G, Enver T: Bifurcation dynamics in lineage-
commitment in bipotent progenitor cells. Dev Biol 2007, 305:695–713.

54. Guantes R, Poyatos JF: Multistable decision switches for flexible control of
epigenetic differentiation. PLoS Comput Biol 2008, 4:e1000235.

55. Sciammas R, Li Y, Warmflash A, Song Y, Dinner AR, Singh H: An incoherent
regulatory network architecture that orchestrates B cell diversification in
response to antigen signaling. Mol Syst Biol 2011, 7:495.

56. Griffith JS: Mathematics of cellular control processes. II. Positive feedback
to one gene. J Theor Biol 1968, 20:209–216.

57. Thomas R: Logical analysis of systems comprising feedback loops. J Theor
Biol 1978, 73:631–656.

58. Roessler OE: Basic circuits for fluid automata and relaxation systems. Z
Naturforsch 1972, 27:333–343.

59. Maruyama T, Li J, Vaque JP, Konkel JE, Wang W, Zhang B, Zhang P,
Zamarron BF, Yu D, Wu Y, et al: Control of the differentiation of regulatory
T cells and T(H)17 cells by the DNA-binding inhibitor Id3. Nat Immunol
2011, 12:86–95.

60. Powell JD, Delgoffe GM: The mammalian target of rapamycin: linking T
cell differentiation, function, and metabolism. Immunity 2010, 33:301–311.

61. Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J,
Nguyen ET, Levy DE, Kaplan MH: The transcription factor STAT3 is
required for T helper 2 cell development. Immunity 2011, 34:39–49.

62. Dong C: TH17 cells in development: an updated view of their molecular
identity and genetic programming. Nat Rev Immunol 2008, 8:337–348.

63. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G: Variability
and robustness in T cell activation from regulated heterogeneity in
protein levels. Science 2008, 321:1081–1084.

64. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S: Transcriptome-
wide noise controls lineage choice in mammalian progenitor cells.
Nature 2008, 453:544–547.

65. Wilson HR, Cowan JD: Excitatory and inhibitory interactions in localized
populations of model neurons. Biophys J 1972, 12:1–24.

66. Mjolsness E, Sharp DH, Reinitz J: A connectionist model of development. J
Theor Biol 1991, 152:429–453.

67. Tyson JJ, Novak B: Functional motifs in biochemical reaction networks.
Annu Rev Phys Chem 2010, 61:219–240.

68. Clewley R, Sherwood WE, LaMar MD, Guckenheimer JM: PyDSTool, a
software environment for dynamical systems modeling, [http://pydstool.
sourceforge.net].

69. Tyson JJ, Novak B: Temporal organization of the cell cycle. Curr Biol 2008,
18:R759–R768.

doi:10.1186/1752-0509-6-66
Cite this article as: Hong et al.: A simple theoretical framework for
understanding heterogeneous differentiation of CD4+ T cells. BMC
Systems Biology 2012 6:66.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	A basal signaling network motif is proposed to govern the differentiation of all lineages of CD4+ T cells

	link_Fig1
	The basal motif without &b_k;auto-&e_k;&b_k;activations&e_k; can generate Type 1 heterogeneous differentiation
	The symmetric case


	link_Tab1
	link_Fig2
	link_Tab2
	Outline placeholder
	Broken symmetry


	link_Fig3
	The basal network motif with additional positive feedback loops can generate all types of heterogeneous differentiation

	link_Fig4
	link_Fig5
	Mathematical models based on the theoretical framework can be used to understand experimental results and make testable predictions

	link_Tab3
	link_Fig6
	link_Tab4
	link_Fig7
	link_Tab5
	Conclusions
	link_Fig8
	link_Tab6
	Methods
	Dynamical model
	Bifurcation diagrams
	Cell-to-cell variability
	Mutant simulation
	Heterogeneity score

	Additional files
	Acknowledgements
	Author details
	Authors&rsquo; contributions
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62
	link_CR63
	link_CR64
	link_CR65
	link_CR66
	link_CR67
	link_CR68
	link_CR69

