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Abstract

Background: Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in
molecular systems biology. Designing computational software for such applications poses several challenges. Firstly,
realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries,
including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally
expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological
phenomena of actual interest. We therefore argue that simulation software needs to be both computationally
efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs
of increasingly complex biological modeling.

Results: We have developed URDME, a flexible software framework for general stochastic reaction-transport
modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries,
and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a
mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive
environment for model construction. The core simulation routines are logically separated from the model building
interface and written in a low-level language for computational efficiency. The connection to the geometry handling
software is realized via a Matlab interface which facilitates script computing, data management, and post-processing.
For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is
possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively
hides the complexity of managing the geometry and meshes, this means that newly developed methods may be
tested in a realistic setting already at an early stage of development.

Conclusions: In this paper we demonstrate, in a series of examples with high relevance to the molecular systems
biology community, that the proposed software framework is a useful tool for both practitioners and developers of
spatial stochastic simulation algorithms. Through the combined efforts of algorithm development and improved
modeling accuracy, increasingly complex biological models become feasible to study through computational
methods. URDME is freely available at http://www.urdme.org.
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Background

Stochastic simulation of reaction kinetics has emerged
as an important computational tool in molecular sys-
tems biology. In cases for which mean-field analysis has
been shown to be insufficient, stochastic models provide
a more accurate, yet computationally tractable alterna-
tive [1-3]. For example, a frequently studied topic is the
mechanisms for robustness of gene regulatory networks
relative to intrinsic and extrinsic noise [4-6]. In a stochas-
tic mesoscopic model the time evolution of the number
of molecules of each species is described by a continuous-
time discrete-state Markov process. Realizations of this
process can be generated using techniques such as the
Stochastic Simulation Algorithm (SSA) [7].

If the system can be assumed to be spatially homoge-
neous, or well-stirred, simulations are simplified consid-
erably compared to a spatially varying setting. However,
there are many phenomena inside the living cell for which
spatial effects play an important role [8,9]. In such cases,
a mesoscopic spatial model can be formulated by first
discretizing the computational domain into subvolumes,
or voxels. Molecular transport processes are then mod-
eled as combined decay- and creation events that take
a molecule from one voxel to an adjacent one [10,11].
For appropriate discretizations [12,13], the assumption
of spatial homogeneity holds approximately within each
voxel, where reactions can be simulated as in the well-
stirred case. The governing equation for the probability
density function is called the Reaction Diffusion Master
Equation (RDME) and methods to generate realizations
in this framework have been used previously to study
reaction-diffusion systems in the context of molecular cell
biology [8,14-16].

Modern experimental techniques can provide informa-
tion not only on the total copy numbers but also on
the spatial localization of individual molecules [17,18]. As
such techniques are further developed and spatial models
can be calibrated to biological data, methods and software
for flexible and efficient simulation of spatial stochastic
models will likely continue to grow in importance. As a
coarse-grained alternative to detailed microscopic mod-
els based on Smoluchowski reaction dynamics [19,20], or
other similar microscale simulators such as MCell [21],
simulations in the RDME framework are orders of magni-
tude faster than microscopic alternatives [22].

For most applications, a large number of sample real-
izations need to be generated to allow for a useful statis-
tical analysis. Exploring parameter regimes or estimating
responses to different stimuli adds to the complexity so
that the generation of tens of thousands of independent
realizations is not uncommon. Computational efficiency
is therefore an important concern and has motivated
research in many types of approximate or optimized
methods (see for example [23-27]).
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Despite advances in the development of approximate
methods, spatial stochastic simulation in realistic geome-
tries is still challenging. One of the main reasons is
the complexity involved in handling the 3D geometry
and the associated mesh. The purpose with this paper
is to introduce URDME, a modular software framework
for spatial stochastic simulation. The goal of URDME
is twofold: firstly, it provides applied users with a pow-
erful and user-friendly modeling environment that sup-
ports realistic geometries. Secondly, URDME facilitates
the development of new computational methods by tak-
ing care of the technical details concerning the geome-
try, the mesh generation, and the assembly of local rate
constants. By providing a well-defined interface to the
modeling environment, new algorithms can be incorpo-
rated into the URDME framework as plug-in solvers.
We anticipate that this modular structure will facilitate
the development and dissemination of advanced sim-
ulation methodologies to real-world molecular biology
applications.

URDME differs from other public domain software for
mesoscopic simulations such as MesoRD [28] or Smart-
Cell [29], in that it uses unstructured tetrahedral meshes
to discretize the domain, offering a much greater geo-
metrical flexibility and better resolution of curved sur-
faces compared to Cartesian meshes. URDME shares its
utilization of tetrahedral meshes with another reaction-
diffusion simulation software, STEPS [22], which we
will discuss later in the paper. One of the defining fea-
tures of URDME is that it is structured to be highly
modular in order to be useful as a platform for developers
of the associated computational tools. This design also
allows for flexible work-flows for result generation. When
used interactively, URDME’s Matlab interface provides
for convenient model construction and evaluation. Since
the solvers are automatically compiled into optimized
stand-alone executables, URDME can also be used to
define batch jobs using the very same Matlab interface.
In this way, URDME is a convenient platform both in
the initial modeling phase as well as when perform-
ing high-performance and/or high-throughput computa-
tional analysis.

Implementation

In this section we describe how the URDME framework
is structured, how it is used to simulate a model, and how
to interface with it to add new simulation algorithms. For
more details we refer to the software manual [30] included
in the software distribution (Additional file 1).

Overview

The URDME framework consists of three logical layers
connected by well-defined interfaces (see Figure 1). At the
top level, a third-party software for mesh-generation is
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Figure 1 The URDME framework consists of three loosely coupled layers. Solvers reside at the bottom level and are most often written in a
compiled language like ANSI-C. The middle layer provides for interfaces between the solvers and the top-level mesh-generation infrastructure. Both
the top- and the bottom-layer may be replaced by other software as long as the middle level is extended appropriately.

L —

used to define the geometry and to generate the mesh.
Currently, URDME interfaces with Comsol Multiphysics
3.5a for this functionality. The middle layer routines in
Matlab serve as an interactive environment for model con-
struction, and connects the geometry and mesh-handling
facilities of Comsol with the core simulation algorithms
(bottom layer).

With this modular structure, the top level can be
replaced by other mesh generation software such as for
example Gmsh [31], provided that the appropriate inter-
face routines are added to the middle level interface. Rely-
ing on Comsol Multiphysics for the geometry definition
and mesh-generation provides for a convenient interac-
tive environment for the model construction, allowing
advanced models to be formulated quite easily.

The default core solver at the bottom level is an opti-
mized implementation of the Next Subvolume Method
(NSM) [8]. Since the solver layer is kept separate from the
model building interface, new solvers can easily be added
to URDME while taking advantage of all of the infrastruc-
ture related to model management and post-processing.
The data passed to the solvers is well-defined and docu-
mented (see [30] for more information). It is our goal for
URDME to grow through the contribution of solvers from
the community. One such solver has already been con-
tributed and distributed in this way: the diffusive finite
state projection (DFSP) algorithm [32]. Additionally, the
URDME framework has been utilized in the development

of new algorithms [27,33,34] and a master equation for-
mulation of active transport on microtubules [35].

Using URDME for model development and simulation
The process of analyzing a reaction-diffusion model with
URDME begins with the creation of a Comsol model
file that defines the geometry of the domain, includ-
ing (optionally) the subdomains where specific localized
reactions are to be defined (e.g. membrane, cytosol, and
nucleus). At this stage, the biochemical species and their
associated diffusion rates are also defined. Once the model
is set up, the mesh generation facilities of Comsol are
used to create a tetrahedral discretization of the domain.
Next, this information is exported to Matlab via an API
connection as illustrated in Figure 2A (top). The interface
routines of URDME are then used to assemble the data
structures needed by the core simulation routines. This
whole process is summarized in Figure 2A (bottom).
Apart from defining the geometry, the user also needs to
create two additional program files to be used by URDME.
The first is a Matlab function (referred to as the model
file), that defines the data related to the actual simula-
tion. This includes the initial distribution of molecules,
the stoichiometric matrix defining the topology of the
reaction network, a certain dependency graph for events
in the model, and the simulation interval (for a detailed
list, see [30]). This model file can also be used to define
custom configurations for the model, including restricting
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a species to a specific subdomain, adding modified trans-
port terms, and evaluating expressions over the geometry
such that this information can be passed on to the core
solver. In this way, URDME supports custom modeling
that would be very hard to achieve with a less flexible soft-
ware architecture. This, we argue, is one of the defining
and unique features of the URDME framework.

The second program file a user must create is a tem-
plated C-program file that defines the propensity func-
tions for the chemical reactions of the model. This file
defines one function for each chemical reaction in the
system and are called by the core solver routines to cal-
culate the propensity for each reaction in each voxel.
The propensity function template requires the output to
depend only on the system state at the current time, but
is unique to a voxel and allows for additional data to be
passed on to the function. The propensity function file
is later automatically compiled and linked with the core
solver, resulting in a highly efficient solution procedure.

Once the model data structure has been exported to
Matlab and the model and propensity functions have been
defined, the next step is to let URDME execute a simula-
tion of the model. From the users’ perspective, simulation
now only requires to invoke the urdme function in Matlab
with the proper arguments,

>> model = urdme (model,@model file,
{' Propensities’, 'propensity file'’})

The arguments passed are the Comsol data structure,
the model function, the propensity functions, and various
optional arguments. URDME now invokes GCC to com-
pile the propensity function file with the specified solver
(defaulting to NSM) to create a dedicated executable for
the model. This executable is then invoked using the

model and geometry data structure as inputs. Note that
compilation and execution of the low-level components of
the system is fully automatic, and requires no additional
action from the user. Following a successful execution
of the core solver the urdme function returns a modi-
fied model data structure with a single stochastic solution
trajectory attached to it.

Since the layers of URDME are decoupled, it is also pos-
sible to execute the solvers in non-interactive batch mode
to allow for more flexible result generation and distribu-
tion of computations on a multicore platform. For exam-
ple, to conduct the simulation in background mode and
write the resulting trajectory to the file ‘output.mat’ one
simply invokes urdme with a few additional arguments,

>> model = urdme (model,@model file,
{' Propensities’, 'propensity file’
'Mode’, 'bg’,’'Output’, 'output.mat’})

Here, control returns to Matlab directly after execu-
tion of the solver executable, without waiting for it to
complete.

Visualization and post-processing are important com-
ponents in most simulation software. Once a URDME
simulation is complete, users can easily visualize the spa-
tially varying concentration of biochemical species in their
model by using Matlab’s interface to the Comsol graphics
routines. Examples of this will be presented in the Results
section. Similarly, most modeling and simulation projects
require custom data analysis once the simulation data
has been generated. To facilitate this, URDME supports
the creation of post-processing scripts in Matlab using
its native high-level scripting language and computational
libraries. Examples of complex post-processing routines
implemented as Matlab functions and scripts are available
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as part of the example directories in the URDME software
distribution package, and in Additional file 2, Additional
file 3 and Additional file 4.

Structure and implementation of core simulation
algorithms

Taken together, the components of URDME that was
introduced in the previous section create a flexible and
expandable platform. While an applied user need not
know any details about how a core solver is implemented,
a developer of a new simulation algorithm can use the
infrastructure to develop a plug-in solver to URDME.
Figure 2C illustrates the structure of the plug-in solver
that implements the DFSP algorithm [32]. Note the sim-
ilarities with the flow diagram of the core NSM solver in
Figure 2B. URDME plug-in solvers have three main com-
ponents: a Makefile, the solver source files, and (option-
ally) a pre-execution script intended to be invoked by
the middle-level scripting interface. The solver Makefile
is used for compiling and building the solver automati-
cally from the Matlab interface. The name of this file tells
URDME what solver it builds; when urdme is invoked
with the option to run a simulation using a specific solver,
it will look for a Makefile with the correct naming pat-
tern. This Makefile then compiles the solver along with
the propensity functions associated with the model being
simulated into a stand-alone binary executable. Hence a
different and unique executable is automatically produced
for each new combination of model and solver.

The source code of the solver itself can formally con-
sist of any number of files in any language as long as
the Makefile can create the final executable called by the
middle-level interface. To enable a seamless integration
with the URDME Matlab interface, the URDME C API
contains library routines to read and parse the data struc-
tures generated by the URDME model files. These API
routines will parse all data-structures required by the core
NSM solver. A plug-in solver that needs additional input
will have to make sure that these are parsed correctly
as part of the solver main routines. To pass such addi-
tional data to the solver, it need only be appended to the
‘model . urdme’ field, either by the Matlab model file, or
by a pre-execution script (compare Figure 2C). URDME
will then write this data to the solver input file. Such
a pre-execution script is an optional component of the
solver integration. Simply put, when executing a model,
URDME always looks for a Matlab function defined in the
file ‘urdme init <solver>.m.

All current solvers are written in ANSI-C and use
GNU-style Makefiles. The process of integrating a simu-
lation algorithm in the URDME framework is described
in more detail in [30] and is also exemplified by the
source code for the DFSP plug-in that is included in the
URDME distribution.
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In conclusion, when all the components of a solver is in
place as described above, the only difference to an end-
user of URDME is a single additional argument

>> model = urdme (model,@model file,
{’ Propensities’, 'propensity file’,
'Solver’,'dfsp’});

The use of the URDME framework to implement and
analyze the performance of a simulation algorithm will be
further exemplified in the Results section.

Results

In this section we will use three different examples to
illustrate how the design of URDME makes the software
framework a useful tool to accomplish different simula-
tion tasks.

In the first example we show how an established model
from the molecular systems biology literature is simulated
in URDME. This example illustrates the powerful nature
of the URDME scripting environment in setting up and
conducting a parameter sweep.

In the second example we demonstrate how URDME
can aid in the development of efficient simulation algo-
rithms by explaining how a novel method, the Diffusive
Finite State Projection (DFSP) [32], was integrated into
URDME as a plug-in solver.

As a final example we simulate a model of molecular
transport in a neuron. Here, the unstructured mesh is a
critical feature in order to be able to resolve the com-
plex geometry with a feasible number of voxels. We also
show with this example how a model of active, molecular
motor driven transport as proposed in [35] can be imple-
mented in URDME to simulate molecular transport in the
different parts of the neuron.

Simulating Min oscillations in E. Coli

In E. Coli, the Min family of proteins are believed to
play a key role in the regulation of symmetric cell divi-
sion. In a mechanism thought to be self-organized and
to function in a manner similar to the formation of
Turing-patterns, the MinD protein oscillates from pole
to pole with a period close to 40 seconds. Another Min
protein, MinC, co-localizes with MinD and acts as a
repressor for the formation of the cell division site by
destabilizing Ftz polymerization [36]. On average, MinD
(and hence MinC) will spend less time near the cen-
ter of the cell, allowing the division ring to assemble
there. Both deterministic and stochastic models of this
system have been studied previously in the literature
[8,36].

To illustrate how to use URDME to conduct a parame-
ter sweep we will simulate the Min-system for increasing
lengths of the bacterium and observe the behavior
of the oscillations. The example is representative for
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how experiments using different sets of parameters can
be defined and organized with the current version of
URDME. A detailed account for how to create all model
files to run simulations of the model from [8] can be
found in the software manual [30] in the form of a
tutorial. There, the model is run interactively from the
Matlab prompt as detailed in the previous sections. In
order to conduct the experiment outlined here in the
same fashion we would have to manually rebuild the
geometry and execute the simulations for the different
parameter cases. This would be time-consuming and
error prone. Instead, here we exemplify how to auto-
mate such a task by using the Matlab scripting environ-
ment and the URDME Matlab interface. The code block
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below shows how the parameter sweep can be specified
in a simple script in the Matlab language. The function
‘coli model’ (Additional file 2) was automatically gen-
erated from the Comsol interface using the model of
an E. coli bacterium shown in Figure 3A. It was then
slightly modified by manipulating the original consec-
utive solid geometry (CSG) description. The geometry
of the bacterium is parametrized by creating a copy of
the original geometry and then translating it along the
x-axis. The union of these two objects is the final geom-
etry and the variable ‘xsep’ specifies the extent of the
translation. Note that, as shown in Figure 3C, the bac-
terium will ultimately split into two separate geometric
objects.

(

B Average concentration of Mian

08 | 4

06 |

04 |

0.2

0
location (u m)

Mian polar oscillations

# molecules

’ time (s)
D - Average concentration of Mian
X

56 7 8
Bacterium length (1 m) x 10

-6

Figure 3 Simulating Min oscillations in E. Coli for varying length of the cell. (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal
average concentration of MinD protein as a function of position along the long axis of the . Coli cell (top), and the time series plot of the
oscillations. (C) Six E. Coli cells of increasing lengths, as specified in the parameter sweep described in the code block above. The color intensity
shows the temporal average concentration of MinD protein along the membrane. (D) Parameter sweep shows how the relative concentration of
MinD changes as the bacterium grows.
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Below we show a Matlab script that simulates the Min
E. Coli model with varying cell length.

)

% Define the parameter space

Nval = 30;

xsep = linspace(0,4.5e-6,Nval+l);
xsep(end) = []1; % (avoid creating two
% distinct bacteria)

save results/info.mat xsep

for i = 1:Nval

Generate the E. coli cell by
merging two cells with separation
xsep (1) along the positive x-axis
coli model (xsep(i)) ;

o° o o°

Hh

em =

run an instance of URDME in

background mode

fem = urdme (fem, @huang,

{' Propensities’, 'huang’,
'Mode’, 'bg’,
'outfile’,sprintf
('results/out%d.mat’,1)}) ;

o° o

[)

% save input separately for later use
save (sprintf ('results/in%d.mat’, 1)
;' fem’);

end

The results of the parameter sweep is summarized in
Figure 3. Figure 3A shows the geometry of a model of an
E. Coli bacterium with length 4.5 um and radius 0.5um
discretized with a tetrahedral mesh. Figure 3B shows the
temporal average of membrane bound MinD obtained
in a simulation of the model from [36] with URDME, as
well as a time series of pole-to-pole oscillations of the
membrane bound fraction of MinD. As can be seen, the
model predicts a minimum of MinD near the center of
the cell. Figure 3C shows a visualization of the E. Coli
bacterium at six different lengths, including the temporal
average of the relative concentrations of the MinD pro-
tein. Figure 3D shows the stability of oscillations when
increasing the ‘xsep’ parameter.

For values of the parameter ‘xsep’ less than about 2um,
coherent oscillations are observed and the MinD pro-
tein is concentrated at the poles of the bacterium. For
larger values, the oscillations cease and MinD is dis-
tributed evenly in the cell. Hence, in order to maintain
oscillations also for longer cells, the model needs to be
modified in some way. For example, the total copy num-
ber of MinD is currently kept constant as the cell grows.
Different initial conditions such as constant concentration
can of course be tested with equal ease by making the
appropriate changes to the model file.
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In this example, URDME is invoked in background
mode allowing for several parameter cases to be run in
parallel on a multicore workstation. Instead of returning
the results directly in the workspace, we direct URDME
to store the result files and the input files on disk for later
post-processing.

Developing and benchmarking a new algorithm for spatial
stochastic simulation

Generally, a large fraction of the effort in developing sim-
ulation tools goes into software infrastructure as opposed
to code pertaining to the underlying solver algorithms.
URDME is designed to provide that infrastructure. The
first two layers of the framework provides handling of
geometry and meshing, assembly of diffusion jump-rate
constants, model integration, pre- and post-processing
and data visualization. In this section we will illustrate
how to use URDME’s infrastructure to enhance the devel-
opment and benchmarking of a new stochastic simulation
algorithm, DFSP [32]. We will describe the components
of this solver and how they are integrated with URDME.
This example may therefore serve as a design pattern for
algorithm integration into the URDME framework.

Since the diffusion intensity scales differently than the
reaction propensities with increasing mesh resolution, dif-
fusion events often occur on a faster time scale than the
reactions in the system. Effectively, as the mesh becomes
finer a larger and larger percentage of the simulation
events will be diffusion jumps. A similar phenomenon,
stochastic stiffness, often occurs in simulations of well-
stirred models and has led to extensive methods devel-
opment [37-40]. The DFSP algorithm is an approximate
spatial stochastic simulation algorithm which aggregates
a large number of diffusive transfers over a time-step.
It does this by calculating the probability distribution
of a molecule starting in a given voxel after some fixed
time-step 7p, and then samples from this distribution to
redistribute the molecules. DFSP can in this way give great
enhancements in simulation speed at the cost of approxi-
mation errors which can be controlled (see [32] for a more
extensive analysis).

Integration of a new solver into the URDME framework
is designed to be a simple process, with the largest fraction
of the required new code being specific to the under-
lying solver algorithm. URDME solvers have three main
components: the solver source code, a Makefile, and an
optional pre-execution script. The Makefile creates a stan-
dalone Unix executable from the source code. The DESP
solver uses a pre-execution script in Matlab to calculate
data specific to the algorithm. This data is then added to
the input file that URDME creates upon execution of the
solver. Table 1 describes the files that are part of the DESP
solver.
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Table 1 Overview of the files that make up the DFSP plugin solver

Directory File
urdme/build Makefile.dfsp
urdme/src/dfsp dfsp.c
dfsp.h
dfspcore.c

dfsp reactions.c

dfsp diffusion.c

urdme/msrc urdme init dfsp.m

Description

Solver Makefile.

Solver entry point and data initialization.
DFSP header file.

Main entry point for the solver.
Simulates reaction events.

Simulates diffusion events.

Matlab pre-execution script.

This structure shows the design pattern for solver integration into the URDME framework (see [30]).

% DFSP Performance and Error benchmark
% code
tic;
gsolution = urdme (fem,@fange,{’ Solver’,
‘nsm’,’'Propensities’,’'fange’}) ;
nsm simulation time = toc
nsm period = find mincde period(solution)
for tauD = [ 0.001, 0.005, 0.01, 0.05,
0.1, 0.5 ]
tic;
solution = urdme (fem, @fange,
{' Propensities’,’fange’, 'Solver’,
'dfsp’, ...
‘tau’,tau D, 'max jump’, 10,
'DFSP cache’,
dfsp cache filename}) ;
dfsp simulation time = toc
dfsp period = find mincde period
(solution)
error = abs (dfsp period-nsm period) /
nsm period
end

In addition to the lower integration overhead of imple-
menting a new algorithm in the URDME framework,
URDME allows developers to easily benchmark their
solvers. The code block above shows a Matlab script that
sets up a benchmarking experiment to assess the perfor-
mance and error of the DFSP solver when simulating the
model for Min-oscillations described in the first example
in this paper. This code also illustrates the calling signa-
ture for the urdme function when used with the NSM
and DEFSP solvers. The DESP solver takes the additional
arguments ‘tau’ as the time-step, ‘max jump’ as the maxi-
mum spatial jump distance, and ‘DFSP cache’ as the cache
file used to store the data specific to the DFSP algorithm.
The utility function £ind mincde period finds the
peak period of the oscillations through straightforward

spectral analysis using built-in routines in the Matlab
scripting environment, again illustrating the advantage
of using the scripting layer’s post-processing capabil-
ities. Figure 4 shows the results of the benchmark-
ing experiment. We find that the DFSP method with
001 < t < 0.1 produces simulation results faster
than NSM and with good accuracy in the oscillation
period.

Active transport in a neuron

Diffusion is the dominating mechanism of molecular
transport in prokaryotes such as E. Coli, and it was in that
context the NSM was first applied [8,15]. However, diffu-
sion is not the only mechanism for molecular transport in
eukaryotic cells. Intra-cellular cargo can be transported by
motor proteins along cytoskeletal structures made up of
microtubule and actin polymers [41-43]. Molecular motor
proteins bind to the cargo and to the filaments and move
the cargo along the fiber, always in a specific direction
depending on the type of motor and fiber. This transport is
usually much faster than diffusion but requires an energy
input. Vesicles, organelles, mRNA and proteins involved
in signaling are examples of cargo that are transported in
this way inside living cells.

Due to the ubiquity of active transport in biological
systems, it is important that simulation software have
the capability to handle mesoscopic models with general
transport mechanisms. In [35], the RDME was extended
to include an advection term that models cargo transport
on the microtubule network. A simple model of signal-
ing in a yeast cell was considered and URDME was used
for model development and simulation. To illustrate both
the geometrical flexibility of URDME as well as its capa-
bility to model more general transport mechanisms, we
show here how to simulate active transport in a model of
a neuron with a detailed geometry.

Active transport of cellular cargo is of fundamental
importance to maintain the highly polarized state of a
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Figure 4 DFSP benchmark results. (A) Performance of DFSP shows a comparison of simulation times for DFSP at varying tp values (red) and NSM
(blue), and the DFSP speedup factor (green). For this model, DFSP outperforms NSM for o > 0.01. (B) Error in DFSP shows the relative error in
MinCDE oscillation period (red) and the oscillation patterns for three simulations. Simulations with 7p < 0.1 produces coherent oscillation patterns
and result in a negligible error. The system was simulated to a final time 900s. Simulations were performed on a 1.8 Ghz Intel Core i7 processor.
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healthy neuron. In the axon, microtubules are uniformly
oriented with plus-end towards the soma and minus-
end towards the synapse. Kinesin transports cargo in the
anterograde direction, from the cell body to the synapse.
For example, kinesin drive the transport of synaptic vesi-
cles from the cell body through the axon where they
are subsequently docked to the plasma membrane in
the presynaptic terminus. Dynein drives transport in the
opposite direction (retrograde transport) in the axon, and
may aid in transporting for example RNA from the cell
body to the dendrites [44]. In the dendrites, the situation
is more complex than in the axon, since the microtubules
form an array of mixed orientation. While the particular
motor protein transports cargo in a specific direction on
the fibers, a single cargo such as a vesicle can have many
different motors bound to it simultaneously and therefore
may move in a bidirectional manner [45-47]. The details
of how kinesin and dynein-driven transport is coordinated
and regulated to achieve differential targeting and local-
ization of cargo is still a largely unresolved issue [48,49].
As an example of a possible mechanism of regulation,
the microtubule binding protein Tau effects the binding
affinity of kinesin to the microtubule, while dynein is less
sensitive to elevated Tau concentrations [50].

To illustrate how diffusion and active transport can
simultaneously be modeled with URDME in the neu-
ron geometry shown in Figure 5 we consider a straight-
forward model where a cargo species is transported to
different regions of the neuron. The motor proteins are
modeled implicitly, that is, we assume that a population
of motor proteins is associated to the cargo species at
all times. Although an approximation, there are recent
experimental evidence that the distributions of motors on
vesicles are relatively stable [47]. Table 2 summarizes the
model. Here, the cargo species V is created uniformly in
the cell body (R1). V' can diffuse and bind reversibly to

microtubule filaments, either with a kinesin motor as V¥
or with a dynein motor as V4 (R2-R5). When bound to a
filament, V' is actively transported in a direction dictated
by the kind of motor that is currently active. The cargo
can reverse its direction on the fiber in bidirectional trans-
port by letting the currently active motor protein change
with some probability (R6,R7). The quotient oy, /04 then
dictates the direction of net transport. Finally, V' is uni-
formly degraded (R8) in the whole neuron so that the total
number of cargo V reaches a steady-state level.

To illustrate the ability of cargo to localize to different
compartments of the cell depending on the dominating
motor protein we consider the following scenario. First,
we let ogr = 1004, so that on the average, kinesin will
spend more time bound to the microtubule than dynein
will do. In this case, the cargo will travel through the axon
and eventually localize to the axon terminus. After half
of the total simulation time has elapsed, the situation is
reversed and oy = 1004 such that the cargo will localize
to the dendrites.

Figure 6 shows a typical output of a simulation with
URDME. The fraction of the total number of cargo V
is plotted in the different regions of the neuron geome-
try (axon, soma, and dendrites). Since the purpose of this
example is to illustrate the capability of URDME to model
both diffusion and active transport in a complex geometry,
the values of the various parameters have not been chosen
to fit any particular neuron geometry. Hence the velocity
of dynein is conveniently set to be half of that of kinesin
in the axon. Also, the net rate of transport in the dynein is
set to be one hundredth of the rate of kinesin in the axon
to reflect the effects of mixed polarity of fibers [51].

In order to setup this simulation in URDME, a Matlab
function for the velocity field modeling the average ori-
entation of the fibers at any point in the domain needs
to be provided. Obviously, specification of this velocity
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neuron.

Figure 5 Geometry and mesh for a model of a neuron. The neuron geometry (A) is based on a artistic CAD rendering generated with the public
domain version of the software Blender (http://www.blender.org). In order to conduct simulations in this geometry, the model was exported in the
STL surface mesh format, imported into the open-source meshing package Gmsh [31], where the boundary was re-parametrized and the domain
subsequently meshed with a volume mesh in 3D. The resulting mesh was then converted into a Comsol Multiphysics 3.5a model to serve as a
geometry description for the URDME model. Assembly of active transport jump rate constants are conducted by URDME on the unstructured mesh
shown in (B). For a mathematical background on how to obtain these constants on the unstructured mesh, see [35]. URDME's capability to use an
unstructured mesh made up of tetrahedral and triangular elements is of vital importance in order to be able to resolve the complex geometry of the

field requires biological knowledge. The ability to work
in the Matlab environment greatly simplifies parametriza-
tion of the velocity field. Since this geometry was given
as a surface mesh, which is also often the case when the
domain is obtained from cell imaging, we have no ana-
lytical expression for the parametrization of the geometry
to rely on. In this example we want the velocity field to
trace the axon and dendrite structures. To achieve this,
we first compute surface normals to all triangles on the
surface of the neuron. An interpolation table containing
vectors with base in the centroids in the triangles of the
surface mesh and pointing in the direction of suitably
chosen reference points was thus constructed. For sim-
plicity, we only used two different reference points, one
near the center of the cell body and the other beyond
the axon terminus along the long axis of the axon. The
smoothness of the velocity field can easily be improved
by adding more reference points. For any point inside
the domain, we evaluate the velocity by nearest neigh-
bor interpolation using the interpolation table. From this
description of the microtubule network and the informa-
tion about the mesh, utility routines available as add-ons
to the basic URDME package can be used to assemble

Table 2 Reactions of the transport model

Reaction
[R1) gLy
(R2-R5) v & ykd
2]
(R6,R7) vk 24 v
Odk
(R8) vy

jump rate constants to be used in the definition of the
stochastic transport process in much the same way as
for diffusion [35]. This procedure may seem complicated
at a first glance, but can be performed quite easily in
Matlab using built-in utility routines. The model files
required to run this example can be found in Additional
file 4.

Discussion

The design of URDME is motivated by both modeling and
algorithm development. Systems biology investigations
are typically computational intensive, and often require
large ensembles of trajectories spanning parameter space
to match data, or to conduct a sensitivity and robustness
analysis.

Development of more efficient simulation methods
is needed to make such large scale investigations
feasible. However, due to the overhead of handling com-
plex geometries, mesh generation and visualization of
results, algorithm developers often tend to consider
only simple test models in simple geometries, often
restricted to one or two spatial dimensions. While
this can be enough to illustrate the potential benefits

Description Cellular location
Creation of cargo Cell body
Binding of V to microtubule All domains
Reversal of direction Microtubule
Degradation of V All domains

Model of active transport of a cargo species V that is transported on microtubule filaments in a direction determined by the orientation of the fibers (as modeled by a

velocity field) and the current motor protein bound to the fiber (kinesin or dynein).
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Figure 6 Localization as a function of the binding rates to microtubules for the different motor proteins. Normalized concentration of V in
the soma (green), axon (blue) and in the dendrites (red) as a function of time. Initially, the parameters satisfy oxg = 1004 and cargo localizes to the
axon due to the larger fraction of time spent in the kinesin binding state. At time t = 0.5 the situation is reversed, and the localization of V shifts
from axon to dendrites. The red regions in the inlays depicting the neuron shows the areas where V is present.

of a new method, the resulting software is often not
general enough for use on complex biological mod-
els. URDME aims to bridge this gap by facilitating for
method developers by providing a large part of the
infrastructure needed for simulation of realistic mod-
els. We exemplified this in the paper by the exten-
sion of the approximate algorithm DFSP to a full 3D
simulation.

The theory and methodology for spatial stochastic sim-
ulation is still undergoing extensive development, and no
single mathematical modeling framework or method has
emerged as a de facto standard. The utility of the URDME
framework is not restricted to mesoscopic RDME simula-
tions; we have used URDME to develop solvers based on
the Smoluchowski model and a microscopic—mesoscopic
hybrid methods [34].

Another benefit of the modular architecture is that
it simplifies the use of different execution models for
the simulations. As part of work on methods for enact-
ment of computation in grid environments, we are devel-
oping a URDME server module that enables remote
execution in distributed computing environments [52].
This enables highly task-parallel investigations to uti-
lize distributed computational resources such as clusters,
grids, and clouds to greatly increase productivity for the
end-user.

Comparison of spatial stochastic software packages

To further illustrate the design of our software, we have
compared its features to two other publicly available pack-
ages for mesoscopic spatial stochastic simulation. Table 3
shows a comparison between URDME 1.1, MesoRD 1.0,
and STEPS 1.3. MesoRD was one of the first software
projects aimed at simulation of the RDME. STEPS was
developed for simulation of detailed models of dendrites
and synapses, but is generally applicable to a lager set of
reaction-diffusion models.

There are three significant ways a user interacts with
a spatial stochastic software package: the environment
for model development, execution of a simulation, and
post-processing and analysis of the data generated by the
simulation.

The interface and model development environment
used by URDME and STEPS are similar in that both
are closely tied to a programming language environment:
Matlab in the case of URDME and Python for STEPS.
URDME provides a single function entry point, and mod-
els are developed in external programming files. This
design pattern follows that of the Matlab ODE suite.
STEPS provides an object oriented Python interface
for creation, simulation and post-processing of models.
STEPS claims that a programmatic interface offers signif-
icant advantages over non-interactive software interface
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Table 3 A comparison of features of RDME simulation software

URDME 1.1 MesoRD 1.0 STEPS 1.3
Interface Matlab & Comsol Command line Python
Simple GUI (Windows)
Visualization Matlab & Comsol OpenGL tool PyOpenGL tool
Matlab toolbox
Post-processing Matlab 3rd party Python
SBML support Conversion tool SBML L2v4 Import module
(no geometry) + CSG geometry (no geometry)
Edit Geometry Comsol SBML 3rd party
Mesh Type Vertex centered Uniform Cartesian Body centered
Tetrahedrons Tetrahedrons
Algorithms NSM, DFSP NSM Spatial-SSA
+ extendable +non-local extension
Propensity types All SBML (MathML) Mass-action
Model Features compartments compartments compartments
surfaces surfaces

volume diffusion
surface diffusion

directed transport

volume diffusion volume diffusion

This table summarizes the main differences and similarities between the software packages URDME, MesoRD and STEPS.

[22] (in contrast to the command line and input file
interface), and we share this opinion.

The major differences between URDME and STEPS
are the feature set and the performance. The execution
platform of URDME is the Matlab-Comsol environment,
thus URDME has full access to the scientific libraries of
Matlab as well as the advanced geometry and mesh han-
dling interface of Comsol. Another major difference is
one of aim. URDME is developed by a team of biologi-
cal model developers as well as of algorithm developers,
and it aims itself at both communities. This is reflected
in its expandable solver interface and performance centric
design.

In contrast to the design pattern used in URDME and
STEPS, MesoRD functions as a command line program
that uses an input file in the Systems Biology Markup Lan-
guage (SBML) [53] format to describe the model. SBML is
a community effort with the aim to standardize descrip-
tions of biochemical reaction network models. MesoRD
extends the format with a custom Consecutive Solid
Geometry (CSG) description of the domain geometry of
the model. SBML has been widely adopted as a standard
to exchange non-spatial models, but the limitations in
its capability to describe spatial models has restricted its
adoption for RDME simulations.

The post-processing environment of URDME is closely
integrated into Matlab. MesoRD provides a Matlab tool-
box for analyzing the simulation data files. STEPS utilizes

the Python programming environment and packages such
as NumPy, SciPy, and Matplotlib for post-processing and
analysis.

Compared to static XML input files, the programmatic
paradigm used by URDME and STEPS provides a more
powerful but also more complex modeling environment.
Constructing model files using a complete programming
language reduces the restrictions imposed on the software
by the model format. For example, the model of the neu-
ron presented in the Results section could not have been
described by an SBML document, nor the extended SBML
format used by MesoRD. Since propensities in URDME
are defined in a program file, any type of functional
propensity can be used in URDME models, including
Michaelis-Menten and Hill term style propensities, and
even arbitrary logical expressions can be employed.

This offers great flexibility in terms of the models that
can be simulated, but also places more responsibility
on the end-user. MesoRD uses MathML as part of the
SBML definition, which allows the use of any mathemati-
cal expression in the propensities and facilitates handling
of units and error checking. This is a powerful and robust,
but also a computationally very expensive strategy. The
STEPS reaction object only supports mass action kinetics,
which results in an efficient but less flexible strategy.

In addition to having the most efficient and expandable
design of the model propensity, URDME also provides
the largest set of geometry and mesh model features of
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the three software packages. URDME supports volume
compartments with internal and external 2D surfaces
embedded in the 3D geometry, as well as diffusion and
reactions on surfaces and in the 3D volume. URDME also
supports directed transport (convection) in 3D through
an add-on module. STEPS 1.3 supports 3D compart-
ments and volume diffusion. It is capable of localiz-
ing species to a curved surface embedded in 3D, but
does not support surface diffusion. MesoRD 1.0 sup-
ports 3D compartments and volume diffusion only.
To represent cellular membranes, their models typi-
cally use a small 3D volume on the exterior of the
domain.

In summary, as a consequence of the design of the
model environment, MesoRD is simpler to learn and use
than both URDME and STEPS and also offers a better
support for e.g. handling units, but the latter two offer
a much more flexible and efficient modeling and sim-
ulation environment. In addition to the programmatic
environment, both URDME and STEPS provide limited
support for SBML. URDME has an experimental conver-
sion utility that will create templates for the model and
propensity file from an SBML description of the chemi-
cal reactions, see Additional file 5. This utility will be fully
included in the next version of URDME. STEPS provides
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a function to convert an SBML file into Python model
objects. In addition to the SBML document defining the
biochemical reaction network, both URDME and STEPS
require a mesh describing the model domain geometry be
provided.

Simulation performance

To compare the performance of the software packages,
we implemented the model of Min oscillations in E. Coli
as described in [8] in each of the three software environ-
ments. Figure 7 shows simulation time as a function of
the number of voxels in the mesh. The simulation was
run for 900 seconds (simulation time), with the system
state recorded every second. A detailed description of
the model setup in the different packages can be found
in Additional file 6 and the scripts used for produc-
ing these benchmarks are provided in Additional file 7.
The URDME framework has a strong emphasis on effi-
cient simulation algorithms which is also visible in the
figure. URDME clearly outperforms the other packages
and we believe that this is in large parts due to URDME’s
modular design and the fact that the solver source files
and the propensity functions file are compiled into a
dedicated executable for each separate model (see the
Implementation section for details).

Performance Comparison of RDME simulation software

160007 = - MesoRD
—— STEPS
14000 —*— URDME

12000} -
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Figure 7 Performance comparison of the three software packages for an increasing number of voxels. Fach point shows the mean and the
error bars show the standard deviation of a ensemble of N = 5 runs. For URDME the number of voxels represents the number of mesh vertices, for
MesoRD it represents the number of cubic subvolumes, and for STEPS it represents the number of tetrahedrons. All simulations were performed on
a 1.8 GHz Intel core i7 processor with 4GB of memory.
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The numerical treatment of mesoscopic diffusion

URDME emphasizes the use of unstructured tetrahe-
dral and triangular meshes to discretize the geometry.
Unstructured meshes offer distinct advantages over
Cartesian meshes for resolving complex geometries with
non-trivial boundaries and they are more flexible than
cut-cell approaches when it comes to describing pro-
cesses occurring on a curved boundary embedded in
3D space, such as the cell membrane of a spherical
cell or the nuclear membrane [54]. The first version of
URDME was developed as a product of theoretical work
on how to obtain mesoscopic diffusion jump constants
on triangular and tetrahedral meshes [33]. In short, the
methodology used by URDME is based on the fact that
a numerical discretization scheme for the standard dif-
fusion equation will give jump coeflicients that result in
mesoscopic simulations that are consistent with both the
behavior of mean values of a large ensemble of particles
and the probability density function for a single parti-
cle diffusing according to Brownian motion. The latter is
true since the Fokker-Planck equation for the one-particle
probability density function is mathematically equivalent
to the macroscopic diffusion equation. URDME currently
uses a discretization with the Finite Element method to
obtain the diffusion jump coefficients.

The quality of the tetrahedral mesh is an important
aspect of a numerical discretization. An in-depth dis-
cussion of the requirements on the mesh for use in the
mesoscopic model is given in [33]. Tetrahedra should
not be too irregular, and between regions in the domain
with much different resolution, the size of the elements
should not grow too fast. This is also true for the solu-
tion of PDEs, and mesh generation software is aware of
these issues and attempts to optimize the meshes accord-
ingly. Surface meshes in 2D from state-of-the art mesh
generation software such as Comsol tend to be of very
high quality. In 3D, many meshes will violate the assump-
tions in [33] to some degree. Generation of high quality
unstructured meshes is an active area of research due to
their importance in industrial applications. The modu-
lar design of URDME ensures that we can accommodate
new results in this area without major restructuring of the
code.

The influence of mesh quality on RDME simulations on
unstructured meshes in 3D was studied for several dif-
ferent discretization schemes in [55] using particularly
revealing and highly sensitive model problems. They show
that unless the meshes are of high quality, discretization
errors may lead to small but persisting errors for both
the Finite Element and the Finite Volume methods, i.e.
the convergence properties of the schemes are affected
negatively. In some of these cases, simulations using
a structured Cartesian mesh will have better numeri-
cal properties if the geometry permits resolution of the
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domain with a feasible number of subvolumes. On the
other hand, itis not difficult to think of cases for which this
is very difficult and for which sensitive processes occur on
the parts of the domain which are hard to resolve.

Using MesoRD, surfaces in a 3D model are modeled as
volume geometry objects by ensuring that the thickness
of the membrane is small compared to its size, approach-
ing a true 2D model as the thickness of the membrane
becomes small. Unless one desires to resolve some dynam-
ics on such high level of detail as to consider vertical
movement of molecules in the membrane, this will be
unnecessarily expensive since the mesh elements has to be
sufficiently small to resolve the narrow 3D volume. The
mesh generation in MesoRD needs several grid points in
the extent of a membrane to give a fully connected dif-
fusion volume [56](Figure eleven). With a uniform grid,
this will lead to expensive simulations since the size of
the voxels necessary to accurately resolve the membrane
must be used everywhere in the domain. In order to
demonstrate this, we conducted a simple diffusion-only
numerical experiment, described in detail in Additional
file 6. We let molecules diffuse freely on the surface of
a unit sphere, and be absorbed by a small circular patch
at one of the poles. Simulations using URDME are in
excellent agreement with the exact solution even for fairly
coarse meshes (Additional file 6: Figure S1). For exam-
ple, using an ensemble size of 10> molecules to compute
the mean absorption time, the error was ~ 0.2% for a
mesh with 4343 voxels. The computing time to generate
the solution was 21 seconds. By contrast, for a membrane
thickness of 100 nm and a voxel size of 20 nm, MesoRD
1.0 produces a solution with about 14% error using 157128
voxels and a simulation time of 1 hour and 50 minutes on
the same 2.66 Ghz Intel Core i7 with 8GB of RAM.

For complex models with both volume diffusion, sur-
face diffusion, and reactions, it is difficult to predict what
impact different sources of error in the diffusion will have
on the output metric of interest. For example, for the Min
system used to benchmark the different software pack-
ages in Figure 7, URDME, STEPS, and MesoRD give quite
similar period times of oscillations (Additional file 6).

In addition to errors caused by the discretization, errors
intrinsic to the RDME mathematical model arise for
highly diffusion limited reactions when the voxels become
very small [12]. To some extent, this can be alleviated
using modified, mesh dependent bimolecular reaction
rates [13,57], but there is a critical size of the voxels under
which no correction to the traditional RDME can make
it consistent with more fine scaled particle based meth-
ods [58]. Since unstructured meshes can more accurately
resolve complex geometries, their spatial accuracy is often
higher for equivalently sized voxels when compared to
Cartesian meshes. This can help in avoiding geometrical
features of the model to force us to approach the critical
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regime for the voxel sizes. The combined effects of diffu-
sion discretization error and error caused by small sub-
volumes were investigated for several additional models in
[55]. For the examples studied there, it was concluded that
the error introduced by small subvolumes in 3D could be
a bigger source of error than any numerical discretization
errors of the diffusion operator.

Conclusions

As demonstrated by the examples in this paper, the
URDME infrastructure offers great flexibility at the stage
of model construction and execution. Using a simple
script in Matlab, URDME was used to set up and conduct
a series of experiments in which the geometry of an E. Coli
bacterium was automatically varied. In another exam-
ple, the basic reaction-diffusion modeling framework was
extended to include active transport in a highly com-
plex geometry obtained from external CAD and meshing
software.

The URDME software framework offers unique features
for both model and methods developers in computational
systems biology. The support of unstructured meshes
provides the capability to create models with a complex
geometry that closely match the physical descriptions of
the systems under study. URDME integrates easily with
widely used scientific computing software to provide a
versatile platform for mathematical and computational
modeling, allowing for the implementation of complex
and customized models and pre- and post-processing
routines. The modular design ensures extensibility and
interchangeability of the third-party tools used for model
specification and mesh generation, as well as of the core
simulation algorithms.

Availability and requirements

Project name: URDME.

Project home page: http://www.urdme.org.
Operating systems: Linux, MacOS X.

Programming language: C, Matlab, Bash shell script.
Other requirements: GNU GCC version > 4.2,
Matlab, Comsol Multiphysics 3.5a.

License: GNU General Public License, version 3.
Any restrictions to use by non-academics: none.

Additional files

Additional file 1: urdme.tar.gz. The current release of URDME. Also
available for download via http://www.urdme.org.

Additional file 2: minsweep.tar.gz. Model files required to run the first
example in the main paper.

Additional file 3: benchmark.tar.gz. Model files required to run the
second example in the main paper.

Additional file 4: neuron.tar.gz. Model files required to run the third
example in the main paper.
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Additional file 5: urdme sbml converter.tar.gz. SBML conversion tool
to create URDME model files from a SBML model file describing chemical
reactions.

Additional file 6: validation.pdf. Simulation results for a simple diffusion
problem on the surface of a sphere and for the Min system
[8,34,55,56,59,60].

Additional file 7: urdme software comparision.tar.gz. Model files and
scripts used to conduct the performance benchmark in the discussion
section and the simulations described in Additional file 6.
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