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Abstract

Background: Stochastic biochemical reaction networks are commonly modelled by the chemical master equation,
and can be simulated as first order linear differential equations through a finite state projection. Due to the very high
state space dimension of these equations, numerical simulations are computationally expensive. This is a particular
problem for analysis tasks requiring repeated simulations for different parameter values. Such tasks are
computationally expensive to the point of infeasibility with the chemical master equation.

Results: In this article, we apply parametric model order reduction techniques in order to construct accurate
low-dimensional parametric models of the chemical master equation. These surrogate models can be used in various
parametric analysis task such as identifiability analysis, parameter estimation, or sensitivity analysis. As biological
examples, we consider two models for gene regulation networks, a bistable switch and a network displaying
stochastic oscillations.

Conclusions: The results show that the parametric model reduction yields efficient models of stochastic biochemical
reaction networks, and that these models can be useful for systems biology applications involving parametric analysis
problems such as parameter exploration, optimization, estimation or sensitivity analysis.

Keywords: Stochastic biochemical network, Model reduction, Reduced basis, Genetic regulatory network,
Computational efficiency, Parameter estimation

Background
The chemical master equation (CME) is the most basic
mathematical description of stochastic biomolecular reac-
tion networks [1,2]. The CME is a generally infinite-
dimensional linear differential equation. It characterizes
the temporal development of the probabilities that the
network is in any of its possible configurations, where the
different configurations are characterized by the molecu-
lar copy numbers of the network’s chemical species.
Due to its infinite dimension, the CME is usually not

directly solvable, not even with numerical methods. A
recent breakthrough in the numerical treatment of the
CME was the establishment of the finite state projec-
tion (FSP) method by Munsky and Khammash [3]. They
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showed that it is possible to compute a good approxi-
mation to the real solution by projecting the CME to a
suitable finite subdomain of the network’s state space, and
solving the resulting finite-dimensional linear differential
equation on that domain. Nevertheless, the FSP approach
still yields very high-dimensional models which are com-
putationally expensive to simulate, even for small bio-
chemical networks. The efficient simulation of the CME
is an area of active research, and recently other simulation
methods have been developed that can also be used for
larger networks [4,5].
Despite this progress, the direct simulation of the CME

remains a computational bottleneck for common model
analysis tasks in systems biology. It is especially problem-
atic for tasks which require the repeated simulation of the
model using different parameter values, for example iden-
tifiability analysis, parameter estimation, or model sensi-
tivity analysis. Thereby, while a single or a few evaluations
of a CME model with the FSP or other approaches may

© 2012 Waldherr and Haasdonk; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Waldherr and Haasdonk BMC Systems Biology 2012, 6:81 Page 2 of 12
http://www.biomedcentral.com/1752-0509/6/81

still be computationally feasible, the necessity of many
repeated simulations will quickly render higher-level anal-
ysis tasks infeasible.
Mathematical methods that approximate the behaviour

of a high-dimensional original model through a low-
dimensional reduced model are a common way to deal
with complex models. Especially for linear differential
equations, model order reduction is a well established
field and several methods to compute reduced order mod-
els are available [6]. Note that the step of generating a
reduced model is usually computationally more expensive
than a single or even a few simulations of the origi-
nal high-dimensional model. But the simulation of the
resulting reduced models is frequently orders of magni-
tude faster than the solution of the original model. So,
model reduction is worth the effort if many repeated sim-
ulations are to be expected. Unfortunately, for analysis
tasks which require the repeated model simulation with
different parameters, classical model reduction methods
are not helpful. With these methods, the reduced model
depends on specific parameter values in the original
model, and the reduction needs to be redone for different
parameter values. Thus, for the mentioned analysis tasks,
the model reduction process would have to be repeated
for each new parameter value, and no gain in computa-
tional efficiency would typically be possible. While classi-
cal model reduction techniques have been applied to the
CME in the past [7], they are not so suitable for parametric
analysis tasks.
Fortunately, model reduction methods where parame-

ters from the original model are retained as adjustable
parameters also in the reduced model are now being
developed. These methods allow to compute a reduced
model which uses the same parameters as the original
model, and where the reduced model can directly be
simulated with any choice of parameter values [8-11].
The purpose of this paper is to introduce the application

of these parametric model reduction methods to finite-
state approximations of the chemicalmaster equation, and
to show possible usage scenarios of such an approach.
The structure is as follows. In the following section, we
introduce some background and notation concerning the
modelling of chemical reaction networks and parametric
model order reduction. We also show how the paramet-
ric model order reduction methods can in fact be applied
to the CME. Afterwards, we apply the reduction tech-
nique on two reaction network models and corresponding
parametric analysis tasks.

Methods
We start with some preparatory background on the chem-
ical master equation (CME) and parametric model order
reduction. This serves in particular to fix the notation
used throughout the remainder of the article. Then the

application of parametric model order reduction to the
CME is introduced.

The chemical master equation
The structure of a biochemical reaction network is charac-
terized completely by the list of involved species, denoted
as X1,X2 . . . ,Xn, and the list of reactions, denoted as

n∑
i=1

σijXi →
n∑

i=1
ϕijXi, j = 1, . . . ,m, (1)

where m is the number of reactions in the network, and
the factors σij ∈ N0 and ϕij ∈ N0 are the stoichiometric
coefficients of the reactant and product species, respec-
tively [12]. The net change in the amount of species i
occuring through reaction j is given by

Nij = ϕij − σij. (2)

Reversible reactions can always be written in the form (1)
by splitting the forward and reverse path into two separate
irreversible reactions.
For a stochastic network model, the variables of inter-

est are the probabilities that the network is in any of the
possible states which are characterized by the molecular
copy numbers of the individual species X1,X2 . . . ,Xn. We
denote the molecular copy number of Xi by [Xi]∈ N0.
Then, the state variables of the stochastic model are given
by the real numbers

p(t, x1, x2, . . . , xn) =Prob([X1]= x1, [X2]= x2,
. . . , [Xn]= xn at time t), (3)

for xi ∈ N0, i = 1, . . . , n. As a short-hand notation for (3),
we write p(t,x), with x ∈ N

n
0.

The transitions from one state to another are deter-
mined by chemical reactions according to (1). The
changes in the molecule numbers are described by the
stoichiometric reaction vectors

vj = (
N1j N2j · · · Nnj

)T ∈ Z
n. (4)

To avoid needlessly complicated cases, we assume vj �= vk
for j �= k.
The probabilities of the network being in any of the pos-

sible states x evolve over time, and their evolution is gov-
erned by the chemical master equation (CME) as derived
by [1]. From a given molecular state x, one can compute
the propensity νj that reaction j takes place according to
the law of mass action as

νj(x, θ) = θj

n∏
i=1

(
xi
σij

)
, (5)

where θ = (θj)
m
j=1 is the vector of reaction rate constants,

which are model parameters depending on the physical
properties of the molecules involved in the reactions. The
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propensities are related to the probability that reaction j
will occur in a short time interval of length dt when the
system is in state x:

Prob(reaction j occurs in [ t, t + dt] |[X]= x) =νj(x, θ)dt
+ O(dt).

(6)

Taking the possible transitions and the corresponding
reaction propensities together yields the chemical master
equation (CME), a linear differential equation where the
variables are the probabilities that the system is in each of
the possible molecular states x:

d
dt

p(t, x) =
m∑
j=1

(νj(x−vj, θ)p(t, x−vj)−νj(x, θ)p(t, x)),

(7)

for x ∈ N
n
0. The CME (7) is subject to an initial condition

p(t0, x) = p0(x) for x ∈ N
n
0.

Despite being linear, the CME is hard to solve numeri-
cally. This is due to the problem that the state space is for
most systems infinite-dimensional, since all possible states
x ∈ N

n
0 of the reaction network (1) must in general be con-

sidered. Instead of directly solving the CME (7), a number
of alternative approaches to study the stochastic dynam-
ics of biochemical reaction networks have been suggested.
The most common approach is to generate a simulated
realization of the stochastic process described by the reac-
tion network (1), using for example the Gillespie algorithm
[13]. In this approach, the probabilities p(t,x) for the pos-
sible system states are obtained from many simulated
realizations. However, since this requires a large number
of realizations, it is computationally expensive.
As a more direct approach, Munsky and Khammash [3]

have proposed the finite state projection (FSP), where the
CME is solved on a finite subset of the state space. Here,
this subset is denoted by �, and is defined as

� = {x(i) | i = 1, . . . , d} ⊂ N
n
0, (8)

where the x(i) are the system states for which the probabil-
ities are computed in the projected model. The underlying
assumption is that the probabilities for other states will be
very low on the time scale of interest—otherwise the FSP
may not yield good approximations to the solution of the
CME. In particular we assume the time interval of interest
to be given by [0,T] for final time T > 0. The probabil-
ities for the states x(i) in � are written in the vector P(t)
approximating p(x,t) at the finite number of states �:

P(t) = (Pi(t))i=1,...,d ≈
(
p(t, x(i))

)
i=1,...,d

∈[ 0, 1]d .
(9)

The equation to be solved with the FSP approximation is
d
dt

P(t) = A(θ)P(t) for t ∈ (0,T)

P(0) = P0,
(10)

where A(θ) ∈ R
d×d is the matrix of state transition

propensities, and P0 = (
p0(x(i))

)
i=1,...,d is a vector of ini-

tial probabilities for the states in �. The elements of the
matrix A(θ) are computed as

Aii(θ) = −
m∑
r=1

νr(x(i), θ)

Aij(θ) =
{

νr(x(j), θ) if x(j) = x(i) + vr , r = 1, . . . ,m
0 otherwise.

(11)

We will frequently omit the parameter dependence of
the solution (and other parametric quantities). Hence
the solution P(t), as abbreviation of P(t, θ), of (10) is an
approximation to the solution p(t,x) of the orginal CME
on the domain �. Munsky and Khammash [3] have also
derived an upper bound on the error between the solution
P(t) computed via the FSP, and the solution of the original
CME p(t,x) on �.
Here, we consider in addition an output vector y ∈ R

p

defined by

y(t) = CP(t), (12)

with C ∈ R
p×d . Examples for relevant outputs are the

probability that the molecular copy numbers are in a cer-
tain domain �̄ ⊂ �, which is achieved by the row vector
output matrix C defined by Ci = 1 if x(i) ∈ �̄, other-
wise Ci = 0, with p=1, or the expected molecular copy
numbers, given by

ye(t) =
d∑

i=1
x(i)Pi(t), (13)

i.e. C = (x(1), . . . , x(d)) with p=n.
The basic motivation for the model reduction presented

here is that we are interested in parametric analysis of
the model, where the model (10) has to be solved many
times with different values for the parameters θ . Due to
the typical high dimensions of the matrix A(θ), already a
single simulation is computationally expensive, and anal-
ysis tasks requiring many repeated simulations are often
computationally infeasible. Thus, the primary goal is to
derive a reduced model which is rapidly solvable and pro-
vides an approximation ŷ(t) to the output y(t), potentially
without any consideration of the original state vector P(t).

Order reduction of parametric models
Model order reduction of parametric problems is a very
active research field in systems theory, engineering and
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applied mathematics. We refer to [8,10,11] and references
therein for more information on the topic.
Here, we apply the reduction technique for paramet-

ric problems presented in [9] adopted to our notation. It
is based on two biorthogonal global projection matrices
V ,W ∈ R

d×r with r � d and WTV = Id, where r is the
dimension of the reducedmodel. ThematrixV is assumed
to span a space that approximates the system state vari-
ation for all parameters and times. The construction of
such matrices will be detailed in the next subsection.
The gain of computational efficiency in repeated simu-

lations comes from a separation of the simulation task into
a computationally expensive “offline” phase and a com-
putationally cheap “online” phase. In the offline phase,
suitable projection matrices V andW are computed with-
out fixing specific parameter values. With the projection
matrices, a reduced model with the same free param-
eters as the original model is computed. In the online
phase, the reduced model is simulated with the actu-
ally chosen parameter values, which is typically several
orders of magnitude faster than the simulation of the orig-
inal model. For analysis tasks with repeated simulations,
only the online phase has to be repeated for different
choices of the parameter values, yielding an overall gain in
computational efficiency.

Decomposition in parametric and non-parametric part
The reduction technique assumes a separable parameter
dependence of the full systemmatrices and the initial con-
dition. This means, we assume that there exist a suitable
small constant QA ∈ N, parameter independent com-
ponents A[q] ∈ R

d×d and parameter dependent scalar
coefficient functions ϑ

[q]
A (θ) for q = 1, . . . ,QA such that

A(θ) =
QA∑
q=1

ϑ
[q]
A (θ)A[q] (14)

and similarly for the system matrix C and initial condi-
tion P0. We assume that θ ∈ P stems from some domain
P ⊂ R

m of admissible parameters. In the next step, the
reduced component matrices and initial conditions are
determined by

A[q]
r := WTA[q]V , C[q]

r := C[q]V , P[q]0r := WTP[q]0 .
(15)

for q = 1, . . . ,QA. The resulting quantities A[q]
r , C[q]

r , and
P[q]0r are r-dimensional vectors or matrices and indepen-
dent of the high dimension d. The basis computation and
the computation of these reduced system components
is performed once and parameter-independently in the
offline-phase. Then, in the online-phase, for any new

parameter θ the reduced system matrices and the initial
condition are assembled by

Ar(θ) =
QA∑
q=1

ϑ [q](θ)A[q]
r (16)

and similarly for Pr0(θ) and Cr(θ). The low dimensional
reduced system that remains to be solved is

d
dt

Pr(t) = Ar(θ)Pr(t) for t ∈ (0,T)

Pr(0) = Pr0(θ)

ŷ(t) = Cr(θ)Pr(t).

(17)

From the reduced state Pr(t), an approximate state for the
full system can be reconstructed at any desired time by
P̂(t) = VPr(t). Also the difference between the approx-
imated output ŷ(t) and the output y(t) of the original
model can be bounded by so called error estimators.
A-posteriori error bounds for the reduced systems as
considered here are given in [9].

Basis generation
Different methods for the computation of the projec-
tion bases V and W exist. In systems theory, methods
like balanced truncation, Hankel-norm approximation
or moment matching are applied, that approximate the
input-output behaviour of a linear time-invariant system
[6]. The resulting reduced models can be applied for vary-
ing input signals. Extensions to parametric problems exist,
e.g. [8,11]. As we do not have varying inputs in the prob-
lem studied here, we consider snapshot-based approaches
to be more suitable. This means, the projection bases are
constructed by solution snapshots, i.e. special solutions
computed for selected parameter values.
The generation of projection matrices V and W must

be done in such a way, that they are globally well approx-
imating the system states over the parameter and time
domain. A possible way to achieve this is the POD-
Greedy algorithm, which has been introduced in [14]
and is meanwhile a standard procedure in reduced basis
methods [15,16]. The algorithm makes use of a repeated
proper orthogonal decomposition (POD) of trajectories
P :[ 0,T]→ R

d, which for our purposes can be defined as

POD(P) := arg min
v∈Rd ,||v||=1

∫ T

0
||P(t) − (vTP(t))v||2dt.

(18)

Intuitively, POD(P) ∈ R
d is a state space vector rep-

resenting the single dominant mode that minimizes the
squared mean projection error. Computationally, this
minimization task is solved by a reformulation as a suit-
able eigenvalue problem. Consider the correlation matrix
C = ∫ T

0 P(t)P(t)Tdt. Then, v∗ = POD(P) ∈ R
d is an
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eigenvector corresponding to the largest eigenvalue λmax
of C, i.e., Cv∗ = λmaxv∗. For additional theoretical and
computational details on POD we refer to [17,18]. We fur-
ther require a finite subset of parameters Ptrain ⊂ P , that
are used in the basis generation process. As error indicator
	(θ ,V ) we use the projection error of the full system tra-
jectory on the reduced space spanned by the orthonormal
columns of V, i.e.

	(θ ,V ) :=
∫ T

0
||P(t, θ) − VVTP(t, θ)||2dt. (19)

The POD-Greedy procedure which is given in the pseudo-
code below, starts with an arbitrary orthonormal initial
basis VN0 ∈ R

d×N0 and performs an incremental basis
extension. The algorithm repeatedly identifies the cur-
rently worst resolved parameter (a), orthogonalizes the
corresponding full trajectory with the current reduced
space (b), computes a POD of the error trajectory (c), and
inserts the dominant mode into the basis (d).
function V = POD-Greedy(Ptrain,VN0 , εtol)

1. N := N0
2. while εN := maxθ∈Ptrain 	(θ ,VN ) > εtol

(a) θ∗ := argmaxθ∈Ptrain 	(θ ,VN )

(b) E(t) := P(t, θ∗) − VN (VT
N P(t, θ∗))

(c) vN+1 := POD(E)

(d) VN+1 :=[VN , vN+1]
(e) N := N + 1

3. end while

Note that the algorithm is implemented such that the
simulation of the full model, yielding P(t, θ) in (19), is only
performed once for each θ in the training set Ptrain.
For concluding the basis generation, we set W := V .

This satisfies the biorthogonality conditionWTV = Id, as
V has orthonormal columns by construction. In practice
the time-integrals in (18) are realized by a finite sampling
of the time interval.
A theoretical underpinning for the POD-Greedy algo-

rithm has recently been provided by the analysis of con-
vergence rates [19]. This is based on the approximation-
theoretical notion of the Kolmogorov n-width dN (F) of a
given set F ⊂ R

d, which quantifies how well the set can
be approximated by arbitrary N-dimensional linear sub-
spaces of Rd. The convergence statement for the case of
exponential convergence then can be summarized as fol-
lows: If the set of solutions F := {P(t, θ)|t ∈[ 0,T] , θ ∈
P} ⊂ R

d is compact and has an exponentially decay-
ing Kolmogorov n-width dN (F) ≤ Me−aNα for some
M, a,α > 0 and all N ∈ N, then the error sequence
(εN )N∈N generated by the POD-Greedy procedure (cf. the
definition in Step 2. in the pseudo code) also decays with

an exponential rate, εN ≤ CMe−cNβ with suitable con-
stants β , c,C > 0 depending on M, a,α. Thus, if the
set of solutions can be approximated by linear subspaces
with an exponentially decaying error term, then the POD-
Greedy algorithm will in fact find an approximation with
an exponentially decaying error term, though possibly
with suboptimal parameters in the error bound.
Extensions of the POD-Greedy algorithm exist, e.g.

allowing more than one mode per extension step, per-
forming adaptive parameter and time-interval partition-
ing, or enabling training-set adaptation [15,16,20].

Reducedmodels of the parametrized chemical master
equation
In this section, we describe how to apply the reduction
method for parametrized models presented in the pre-
vious section to FSP models for the chemical master
equation.
As discussed in the previous section, the first step in

the proposed reduction method is a decomposition of
the d-dimensional system matrix A(θ) as in (14). Such
a decomposition is possible for the case of mass action
reaction propensities, as defined in (5), or generalized
mass action, as recently suggested for the chemical mas-
ter equation [21]. In this case, the length of the parameter
vector θ is equal to the number of reactions m, and we
decompose A(θ) intom terms as

A(θ) = θ1A[1] + · · · + θmA[m]. (20)

Hence, concerning the notation given before, we have
QA = m components A[q] and coefficient functions
ϑ
[q]
A (θ) = θq. Each matrix A[q] in this decomposition

comes from just the transition propensities corresponding
to reaction q, and is defined by

A[q]
ii = −

n∏
k=1

(x(i)
k )σkq

A[q]
ij =

⎧⎪⎪⎨
⎪⎪⎩

n∏
k=1

(x(j)
k )σkq if x(j) = x(i) + vq

0 otherwise.

(21)

More generally, such a decomposition is also possible if
reaction rate propensities can be decomposed into the
product of two terms, with the first term depending on
parameters only, and the second term on molecule num-
bers only. This case is for example encountered when
the temperature-dependance of the reaction rate constant
is relevant, and the temperature T is a variable param-
eter in the Arrhenius equation θ = Ae

−EA
RT . Since the

output matrix C and the initial condition P0 are usu-
ally not depending on parameters in this framework, a
decomposition of C and P0 is not considered.
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The situation is more difficult for reaction propensities
involving for example rational terms with parameters in
the denominator. The denominator parameters can not
be included in the reduced order model by the decom-
position outlined in (20) and (21). If variations in these
parameters are however not relevant to the planned anal-
ysis, then they can be set to their nominal value, and the
decomposition can directly be done as described above.
Alternatively, approximation steps can be performed, such
as Taylor series expansion or empirical interpolation
[22], that generate an approximating parameter-separable
expansion.

Results
In this section, we present the study of two example net-
works with the proposed model reduction method. With
these examples, the applicability of the reduced modeling
approach especially for analysis tasks requiring repeated
simulations with different parameter values is illustrated.
The first network is a bistable genetic toggle switch, where
cells may switch randomly between two states, based on
themodel in [23]. For this network, the problem of param-
eter estimation with a reduced model is studied. The
second network is a second-order genetic oscillator, based
on [24], where we perform a sensitivity analysis over a
wide parameter range.

Parameter estimation in a genetic toggle switch model
Network description
The genetic toggle switch considered here is an ovarian
follicle switch model from [23]. It is a system of two genes
which activate each other. The switch is modelled as a
reaction network with two species X1, X2, representing
the gene products. The network reactions are specified in
Table 1, and the network parameters in Table 2.
In [23], this network was shown to describe a bistable

switch with two probability peaks, one close to x(off ) =
(0, 0)T and the other close to x(on) = (V1,V2)T.
In the study [23], only the lower probability peak was

of interest. Here, we are interested in the transition of the
system from x(off ) to x(on). Therefore, the system is trun-
cated to a rectangle �̄ := {0, . . . , 150} × {0, . . . , 150} such
that x(on), x(off ) ∈ �̄, yielding a good approximation in the

Table 1 The follicle switchmodel

Reaction Stoichiometry vj Propensity νj

Production of X1 (1, 0)T u1(k1 + V1x32
M3
1+x32

)

Degradation of X1 (−1, 0)T u1x1

Production of X2 (0, 1)T u2(
V2x31

M3
2+x31

)

Degradation of X2 (0,−1)T u2x2

List of reactions and reaction propensity functions for the follicle switch model
[23].

Table 2 Parameters for the follicle switchmodel

k1 V1 M1 u1 V2 M2 u2

4 75 25 0.01 1
min 75 25 0.01 1

min

Parameter values for the follicle switch model in Table 1.

finite state projection to the infinite-dimensional chemical
master equation.
The next step is to apply the decomposition of the

matrix A(θ) as described in the methods section. Note
that A(θ) for the switch network contains rational terms
with the parameters M1 and M2. Considering these two
parameters as fixed quantities, the truncated CME for the
follicle switch can be written as

Ṗ(t) = (k1A[1]+V1A[2]+u1A[3]+V2A[4]+u2A[5])P(t),
(22)

where A[i], i = 1, . . . , 5 are of dimension 1512 × 1512 =
22801 × 22801.
As initial condition we choose a probability distributed

over some lower states

p(0, x) =
⎧⎨
⎩

1
210

for x1 + x2 ≤ 20

0 otherwise.
(23)

For the parametric model reduction, we consider only
variations in the parameters u1 and u2. These influence
both the steady state level of gene activity in the on-state
as well as the switching kinetics and are thus of high
biological significance in the model. Hence we set θ :=
(u1, u2)T ∈[ 0.005, 0.02]2 as the parametric domainP . As
final time we choose T = 107 which corresponds to a time
range of approximately 19 years, i.e. about three times the
half-life time of the off-state estimated in [23].
Some state plots from the simulation of the full model

are shown in Figure 1. These snapshots clearly show
the transition of the switch from the off-state with low
values for x1 and x2 to the on state with high values.
The parameter influence is mainly reflected in the speed
of the transition: for the parameter vector (u1, u2) =
(0.005, 0.02) in the lower row, most of the probability is
already arranged around the on-state at the end of the
simulation time. In contrast, for the parameter vector
(u1, u2) = (0.05, 0.005) in the upper row, a signifi-
cant portion of the probability is still located around the
off-state at this time point. Also, the transition paths are
different: in the first case, the values for x2 are lower than
the values for x1 during the transition, while in the second
case, this relation is reversed.
As typical simulation time for a single trajectory of the

full system, we obtain 98.2 seconds on a IBM Lenovo 2.53
GHz Dual Core Laptop.
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Figure 1 Illustration of solution snapshots of the switch model. Illustration of some solution snapshots P(t) of the switch model (22) for
parameter vector (u1, u2) = (0.05, 0.005) (upper row) and (u1, u2) = (0.005, 0.02) (lower row) at times t=0, 2 ·105, 5 ·106, and 1 ·107 from left to right.

Basis generation
We generated a reduced basis with the POD-Greedy algo-
rithm, where the training set was chosen as the vertices of
a mesh with 92 logarithmically equidistant parameter val-
ues over the parameter domain P . We set εtol = 10−12

as target accuracy. We use the projection error as error
measure, hence precompute the 81 trajectories for con-
struction of the reduced basis. As initial basis we setN0 =
1 and VN0 := P0 using the parameter independent initial
condition.
The POD-Greedy algorithm produces a basis of 33 vec-

tors and the overall computation of the reduced basis
takes 7.9 hours, the dominating computation time being
spent in the error evaluations and POD computations.
Some of the resulting orthonormal basis vectors are illus-
trated in Figure 2. The error decay curve and the selected

parameters in the parameter domain are illustrated in
Figure 3. We nicely observe an exponential error decay,
which indicates a parametric smoothness of the solution
manifold, cf. the convergence rate statement given before
for the POD-Greedy algorithm. The selected parameters
seem to be located at the boundary of the parameter
domain, indicating that the model behaviour in between
can well be interpolated from the model behaviours along
the boundary of the parameter domain.
The final reduced model of dimension 33 can then be

simulated in 0.135 seconds, corresponding to a computa-
tional speedup factor of more than 700.

Parameter estimation
We exemplify a possible application of the reduced order
model in parameter estimation, where we assume that a

Figure 2 Basis vectors for the switch model. Illustration of the first eight basis vectors for the switch model generated by the POD-Greedy
algorithm.
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Figure 3 Results of the POD-Greedy algorithm for the switch model. Illustration of the error decay during the POD-Greedy algorithm (left)
applied to the switch model and the selected parameters (right) being a small subset of the 81 training parameter points.

distorted output y(t) as the expected values E[ x1] is avail-
able from population-averaged measurements. The task is
to estimate the parameter values u1 and u2 from such a
noisy measurement.
The reference parameter is θref = (u1,u2) =

(0.01, 0.01)T , and, for the purpose of this example, the
measured output is produced by simulating the original
model with the reference parameter values and adding 5%
relative random white noise n(t) sampled from a standard
normal distribution, ymeas(t) := y(t, θref )(1+0.05n(t)). An
illustration of the reference output y(t, θref ) and the noisy
signal ymeas(t) is given in the left of Figure 4.
We want to recover the values of the parameters u1

and u2 based on fitting the reduced parametric model’s
output ŷ(t, θ) to the measured output ymeas(t). As is com-
monly done in parameter estimation, we formulate a least
squares cost function as

J(θ) =
∫ T

0
(ymeas(t) − ŷ(t, θ))2dt, (24)

and estimate the parameters by

θest = argmin
θ∈P J(θ). (25)

In such an optimization problem, typically many for-
ward simulations are required for adjusting ŷ to the
measurement. This is a particular beneficial scenario for
reduced order models, as these simulations can be com-
puted rapidly.
In order to gain a deeper insight into the optimization

problem (25), we plot the values of the error functional
J(θ) over the parameter domain (middle of Figure 4).
Using the reducedmodel, the computation of the required
212 = 441 trajectories is realized in less than one minute.
This would be a significant computational effort when
using a non-reduced model.
From the cost function plot, we observe a narrow area of

parameters which seem to produce a similar output as the
reference parameter θref . This shows that the two model
parameters are not simultaneously identifiable from the
considered output, and indicates that there may exist a

Figure 4 Parametric analysis for the reduced switch model. Application of parametric reduced models for parametric analysis: Illustration of the
clean and noisy signals y(t, θref ) and ymeas(t), respectively (left), the optimization target J(θ) over the parameter domain (middle), interactive
parameter exploration by a graphical user interface (right).
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functional dependence between the parameters u1 and u2
such that the model yields similar outputs y(t).
Assuming a functional dependence of u1 and u2 we

now consider the 1-dimensional optimization problem
along the line u2 = u2,ref = 0.01. We would like to
recover u1 from the optimization problem. The corre-
sponding value of the cost function is J(θref ) = 3330.68,
indicating a significant contribution of the noise. This
restricted optimization problem is well conditioned and
the optimization with a standard active set algorithm
by MATLAB’s command fmincon yields the estimated
parameter θest := (u1,est , 0.01) with u1,est = 0.0100204,
using 27 evaluations of the cost function. This accounts to
a relative error in the u1 value of 0.204%, hence excellent
recovery. We refrain from plotting the recovered output
ŷ(t, θest) as it is visually indiscriminable from the output
in the left of Figure 4. Interestingly, the optimization tar-
get value J(θest) = 3329.56 implies J(θest) < J(θref ), which
may stem from a slight approximation error in the reduced
model or from the effects of the measurement noise.
The right plot in Figure 4 illustrates another applica-

tion of reduced parametric models: We incorporated the
model in an interactive graphical user interface in RBmat-
lab, a matlab package for model order reduction, available
for download at www.morepas.org. This allows inter-
active parameter variations and instantaneous simulation
response.

Sensitivity analysis in a stochastic oscillator
Network description
The second case study is built on a genetic oscillator
model showing stochastic resonance, which was pre-
sented in [24]. The oscillator is based on a negative
feedback loop between two genes with one gene having
positive autoregulation. The oscillator is modelled as a
reaction network with two species X1, X2, representing
the gene products. The network reactions are specified
in Table 3, with parameters as in Table 4. In the original
model in [24], the dynamics were described as stochas-
tic differential equation for the amounts of X1 and X2,
coming from a Langevin approximation to the stochastic
dynamics [12]. For the framework used in this paper, the
dynamics have to be described directly by the underlying

Table 3 The oscillator model

Reaction Stoichiometry vj Propensity νj

Production of X1 (1, 0)T k1s2

k2s+x2

Degradation of X1 (−1, 0)T k3x1

Production of X2 (0, 1)T k4s + k5x22x1
k6s2+x22

Degradation of X2 (0,−1)T k7x2

List of reactions and reaction propensity functions for the oscillator model
adopted from [24].

Table 4 Parameters for the oscillator model

k1 k2 k3 k4 k5 k6 k7 s

15 1
s 0.2 1 1

s 10 1
s 100 1

s 6.5 100 1
s 10

Parameter values for the oscillator model from Table 3.

CME. To achieve this, we introduce the parameter swhich
maps the dimensionless state variables from [24] to actual
molecule numbers as required for the CME. Thus, s is also
a measure for the network’s noise level: the higher s, the
larger the molecule number that is considered, and the
smaller the noise level will be.
The network model in Table 3 shows oscillations only

in a stochastic description. The deterministic model has
a unique asymptotically stable equilibrium point, but in
a stochastic model, fluctuations may push the molecular
numbers beyond a certain threshold, inducing a dynami-
cal response along a slow manifold, which corresponds to
one oscillatory period [24]. Depending on the noise level,
such responses will be initiated more or less often, corre-
sponding to a more or less regular oscillatory pattern.
The system is truncated to the rectangle �̄ :=

{0, . . . , 300} × {0, . . . , 300}, which contains the relevant
system states for the parameter ranges of interest.
Similarly as in the switch example, the reaction propen-

sity expressions contain rational terms in the parame-
ters s, k2, and k6. These three cannot be decomposed
directly, so we do the decomposition described in the
methods section for the other five parameters only. With
this decomposition, the truncated CME for the genetic
oscillator can be written as

Ṗ(t) =
(
k1A[1] + k3A[2] + k4A[3] + k5A[4] + k7A[5]

)
P(t),

(26)

where A[i], i = 1, . . . , 5 are of dimension 3012 × 3012 =
90601 × 90601. The initial condition for (26) is chosen
as a uniform distribution over the rectangle {0, . . . , 50} ×
{0, . . . , 50}:

p(0, x) =
⎧⎨
⎩

1
512

for x1 ≤ 50, x2 ≤ 50

0 otherwise.
(27)

The time scale of interest for the model in (26) is for
0 ≤ t ≤ T = 6. At the end of the interval, the probability
distribution seems to approach a steady state.
Some state plots are given in Figure 5. One observes

a significant effect of the parameter k4 on the amplitude
of the oscillations. The simulation time for the detailed
model was in average 7.3 minutes on a Dell desktop com-
puter with 3.2 GHz dual-core Intel 4 processor and 1 GB
RAM, without including the computation time for the
construction of the state transition matrix A(θ).

www.morepas.org
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Figure 5 Illustration of solution snapshots of the oscillator model. Illustration of some solution snapshots P(t) of the oscillator CME model for
parameter values k4 = 15 (upper row) and k4 = 30 (lower row) at times t = 0, 0.2, 0.6, 6.0 from left to right.

Basis generation
For the basis generation, the parameter k4 was assumed
to vary within the interval [10, 100]. A reduced basis with
the POD-Greedy algorithmwas computed from a training
set of 30 logarithmically equidistant parameters over the
parameter domain ( Figure 6). As in the switch example,
the target accuracy was chosen as εtol = 10−12, and the
initial basis was chosen from the initial condition V1 :=
P0.
The POD-Greedy algorithm produces a basis of 109

vectors, with an overall computation time of 16.5 hours
on the hardware as in the previous subsection. The first

10 20 30 40
0

0.05

0.1

0.15

detailed simulation

4

Pr
ob

(X
2
>

10
0)

Figure 6 Parametric analysis results for the oscillator model.
Sensitivity analysis of oscillation amplitude over a parameter interval.
Blue line shows oscillatory amplitude over the parameter k4 predicted
from the reduced model. Red dots are validation results from a
simulation of the original model. Triangles on the parameter axis
indicate parameter values which were used in the construction of the
reduced basis.

20 basis vectors are shown in Figure 7. It is apparent
that several of the basis vectors are directly included in
order to reproduce the different amplitudes of oscilla-
tions that will occur under variations of the parameter k4.
The error decay curve is shown in Figure 8, displaying an
exponential error decay as also observed for the switch
example.
With the reduced basis V ∈ R

90601×109, we can con-
struct a reduced parametric model for the CME of the
oscillator as

Ṗr(t) = (k4A[3]
r + A[o]

r )Pr(t)
Pr(0) = VTP(0),

(28)

with A[3]
r = VTA[3]V ∈ R

109×109 and A[o]
r = VT (

k1A[1]+
k3A[2] + k5A[4] + k7A[5])V ∈ R

109×109. Note that since
only k4 has been varied in the reduction process, the other
parameters are no longer present as parameters in the
reduced model, but just take their nominal values. While
the same basis V could be used to construct another
reduced model where all parameters are retained, it is
unlikely that this other model will be a good approxima-
tion of the original one for varying values of the other
parameters.

Sensitivity analysis of the oscillation amplitude
As an application of the reduced order parametric model
obtained in the previous section, we study the variations of
oscillatory amplitude over a parameter range. Specifically,
we consider 200 equally spaced values for the parameter
k4 in the interval [12, 40] and compute the probability that
the amount of X2 is larger than 100:

Prob(x2 > 100) =
∑

x:x2>100
p(T , x), (29)
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Figure 7 Basis vectors for the oscillator model. First 20 basis vectors for the oscillator model.

with T = 6 the final time of the simulation. The results
are shown in Figure 6 and show a clear decay of oscillatory
amplitude for increasing values of k4. Due to the signifi-
cant time savings from the reduced model, this sensitivity
curve can be computed with a high resolution.
To evaluate the quality of the reduced model, we also

computed the probability (29) using the original model
(26) at two points within the considered interval for the

Figure 8 Results of the POD-Greedy algorithm for the oscillator
model. Error decay curve for the oscillator model.

parameter k4. As shown in Figure 6, the results from the
original model are in perfect agreement with the predic-
tions from the reduced model at these points. Since the
points at which the original model was evaluated in this
experiment were not part of the training set (shown as
triangles on the parameter axis in Figure 6), this shows
that it is in fact possible to extrapolate the reduced model
to parameter values that were not used to construct
the basis.

Conclusions
In this paper, we have introduced the application of para-
metric model reduction methods to finite-state approxi-
mations of the chemical master equation. We have also
presented two case studies where these methods are
applied to CME models of different networks in order to
make parametric analysis tasks computationally efficient.
By this, it has become clear that parametric model reduc-
tion methods are a very useful tool for the analysis of
stochastic biochemical reaction network described by the
CME.
Especially analysis tasks where many repeated simula-

tions of a network with different parameter values are
required can profit significantly from parametric model
reduction. This includes for example sensitivity analysis or
parameter optimization tasks such as identifiability anal-
ysis or estimation. Moreover, the significant speedup of
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the simulation for the reduced model allows an inter-
active exploration of the network’s dynamics within the
parameter space within a suitable graphical user interface.
This contribution is just a first step in the application

of parametric model reduction methods to the CME. One
particularly important aspect that we have not discussed
here is the computation of error estimates for certifying
that the simulation output of the reduced model is within
some tolerance of the corresponding simulation output of
the original model. To maintain computational efficiency,
the error estimation should be done without actually sim-
ulating the original model. Error estimation methods have
been developed for parametricmodel reduction of generic
models [9], but tighter estimates could likely be obtained
by taking into account the special structure of the CME
models. Recent work for example refined the previous
generic error bounds for stable models [25].
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