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Abstract

Background: Identifying corresponding genes (orthologs) in different species is an important step in genome-
wide comparative analysis. In particular, one-to-one correspondences between genes in different species greatly
simplify certain problems such as transfer of function annotation and genome rearrangement studies. Positional
homologs are the direct descendants of a single ancestral gene in the most recent common ancestor and by
definition form one-to-one correspondence.

Results: In this work, we present a simple yet effective method (BBH-LS) for the identification of positional
homologs from the comparative analysis of two genomes. Our BBH-LS method integrates sequence similarity and
gene context similarity in order to get more accurate ortholog assignments. Specifically, BBH-LS applies the
bidirectional best hit heuristic to a combination of sequence similarity and gene context similarity scores.

Conclusion: We applied our method to the human, mouse, and rat genomes and found that BBH-LS produced
the best results when using both sequence and gene context information equally. Compared to the state-of-the-
art algorithms, such as MSOAR2, BBH-LS is able to identify more positional homologs with fewer false positives.

Background
Genome-wide comparative analysis of different species is
only possible if we can identify conserved elements
across species boundaries [1]. For many studies, the ele-
ments under consideration are the set of protein coding
genes. Therefore, the identification of corresponding
genes between different species is an important step in
any genome-wide comparative analysis. In particular,
one-to-one correspondences between genes in different
species are preferred in certain applications such as
transfer of function annotation [2] and genome rearran-
gement studies [3] as they greatly simplify subsequent
analysis.

Consider a set of extant genomes and their most
recent common ancestor (MRCA). For each gene in the
MRCA, there is at most one direct descendant of the
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gene in each of the extant genomes. The direct descen-
dants of a gene in the MRCA form a set of positional
homologs [4]. A single ancestral gene may have multiple
descendants due to gene duplication, or no descendants
because of gene loss. In the case of gene duplication, we
distinguish between the gene that remains in the origi-
nal location and the copy inserted into a new location.
The gene that retains its ancestral location is the direct
descendant. Positional homologs represent a set of
genes in one-to-one correspondence with each other
where each member best reflect the original location of
the ancestral gene in the MRCA. Similar concepts in the
literature include exemplars [3], ancestral homologs [5],
and main orthologs [6]. Orthologs are genes separated
by a speciation event, while paralogs are genes separated
by a duplication event. Orthologs and paralogs together
make up the set of homologs [7]. Positional homologs
are a subset of orthologs. Figure 1 shows the gene tree
for three genes found in two genomes and it illustrates
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Figure 1 Gene tree for three gene showing the different types
of homologs. The gene tree for three genes g, h, and h' that
descended from a single ancestral gene in the most recent
common ancestor (MRCA) of genome G and H. Gene g is
orthologous to both h and h’, but only g and h are positional
homologs because h is the direct descendant of the ancestral gene.
Genes h and h'" are paralogs as they are separated by a duplication
event.

the concept of positional homologs, orthologs, and
paralogs.

The problem of finding the set of positional homologs
between two genomes is known as the ORTHOLOG
ASSIGNMENT problem [6]. Current methods for the
ORTHOLOG ASSIGNMENT problem fall into three
categories: distance minimization, similarity maximiza-
tion, and rule-based. Distance minimization methods
relies on the parsimony principle. They assume that the
removal of all the genes except for the positional homo-
logs minimizes the genomic distance (usually some form
of edit distance with genomic operations) between two
genomes. Genomic distance measures such as the rever-
sal distance [8] and breakpoint distance [9] have been
considered using a branch-and-bound approach [3] as
the corresponding computational problems are NP-hard
[10]. MSOAR?2 [11] uses a number of heuristic algo-
rithms to assign positional homolog pairs in several
phases to minimize the number of reversals, transloca-
tions, fusions, fissions, and gene duplications between
two genomes.

Closely related to distance minimization are the simi-
larity maximization approaches. By identifying con-
served structures between genomes, we can determine
the similarity between them. We can model the
ORTHOLOG ASSIGNMENT problem as finding the set
of positional homologs that maximize the degree of
similarity between two genomes. Bourque et al. [5] uses
heuristics for the MAX-SAT problem to maximize the
number of common or conserved intervals. The pro-
blem of maximizing the number conserved intervals is
NP-hard [12]. Blin et al. [13] proposed a greedy method
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based on algorithms for global alignment that first finds
a set of anchors and then recursively match genes found
in large common intervals.

All of the preceding methods need a pre-processing
step to compute gene families. This is typically accom-
plished using sequence similarity search followed by
clustering of similar genes [14]. After that, sequence
similarity is essentially reduced to a simple binary rela-
tion; two genes are the equivalent if they are in the
same gene family and different otherwise. The main
step uses heuristics to find a subset of genes that opti-
mizes an NP-hard problem on gene orders. In short, the
preceding methods use sequence similarity to build gene
families and gene order information to further refine the
gene families to get one-to-one gene matchings.

In contrast, rule-based methods do not need to build
gene families. A widely used method for finding pairwise
orthologs based on sequence similarity is the bidirec-
tional best hit (BBH) heuristic. Two genes g and / form
bidirectional best hits if the similarity between g and &
is greater than that between g and any other gene (% is
the best hit for g) and vice versa. In [4], a pair of BBHs
are positional homologs if they are next to another pair
of BBHs. Subsequently, [15] relaxed this condition and
defined a local synteny test to determine whether a
given pair of genes is a positional homolog pair. A gene
pair passes the local synteny check if there are at least
two pairs of genes (excluding the gene pair being tested)
nearby with a sequence similarity above a certain
threshold. Note that the local synteny test does not con-
sider the sequence similarity between the gene pair
being tested. Since positional homologs are a subset of
all orthologs, other rule based methods designed for
finding orthologs [16,17] can also be used to identify
positional homologs by restricting ourselves to one-to-
one orthologous groups.

So far, existing methods have used sequence similarity
information and gene order separately. In this paper, we
propose to combine sequence similarity and gene context
similarity into a single similarity score and identify posi-
tional homologs using the bidirectional best hit heuristic.

This has the advantage that the method is easy to
implement and computationally efficient. Furthermore,
we can easily vary the weightage of each type of similar-
ity. We expected sequence similarity to play a larger
role. Surprisingly, we get the best results using equal
weightage for sequence and gene context similarity. Our
method outperforms more complex methods, such as
MSOAR?2, in identifying positional homologs between
human, mouse, and rat.

Methods
Our approach is to approximate positional homologs
as bidirectional best hits using a scoring scheme that
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integrates both sequence and gene context similarity
scores.

Bidirectional (or reciprocal) best hits (BBH) is a widely
used heuristic for finding orthologs between two species.
[18] compared a number of ortholog inference algo-
rithms and found that BBH’s overall performance is sur-
prisingly good despite the simplicity of the method. In
particular, they found that orthologs predicted by BBH
show close functional relatedness. Another advantage of
BBH is that it is easy to compute and commonly used
in the literature.

However, using sequence similarity alone is not
enough to identify the positional homolog among several
orthologs [4]. In such cases, gene context can be used
to disambiguate between the paralogs because positional
homologs tend to have more similar gene context as
evidenced by the presence of large synteny blocks (see
Figure 2).

Furthermore, [19] showed that in 29-38 percent of the
orthologs they investigated in bacteria, the gene pair
with the lower sequence similarity have a higher gene
context similarity. Hence, they advised combining gene
context information with protein sequence information
to predict functional orthologs. In this work, we inte-
grate sequence similarity score with a gene context simi-
larity score that reflects the shared gene neighborhood
between two genes.

In the following subsections, we give the details for
computing sequence and gene context similarity scores
and explain how to combine them to compute bidirec-
tional best hits.

Computing sequence similarity scores

We define the sequence similarity score between two
genes as the Smith-Waterman alignment score between
the respective peptide sequences. As a gene may have
multiple transcripts, we use the transcript with the long-
est peptide sequence to represent the gene. We use the
SSEARCH program from the FASTA v36 package [20]
to compute the Smith-Waterman alignment score
between all pairs of peptide sequences using default
parameters optimized for high sensitivity (BLOSUM50
substitution matrix and E-value cutoff of 10).

We use peptide sequences as the basis of sequence
comparison as they have a number of advantages over
using nucleotide sequences [21]. Peptide sequences are
not affected by synonymous substitution and hence able
to detect more distant homology. Furthermore, the
alignments are faster to compute since the peptide
sequence is only one third the length of the nucleotide
sequence. Heuristic search algorithms, such as BLAST,
are often used to find homologous sequences since they
avoid computing the expensive dynamic programming
alignment. However, a serious drawback is that the
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derived scores (bit score or E-value) are not symmetric
and are difficult to easily integrate with other scores. On
the other hand, the Smith-Waterman alignment score is
symmetric and modern implementations are sufficiently
fast for our purpose.

Since we want to integrate both sequence similarity
and gene context similarity scores, we normalize the
Smith-Waterman scores so that it ranges from 0 to 1
with a score of 1 indicating maximum sequence similar-
ity. The Smith-Waterman alignment score is roughly
linearly proportional to the length of the peptide
sequences compared; longer peptide sequences tend to
have higher alignment scores. Therefore, we remove this
dependence on the length of the peptide sequence and
normalize the score to range between 0 and 1 by divid-
ing by the maximum Smith-Waterman score of the two
self alignments. We formally defined the normalized
Smith-Waterman score, sWyorm, as follows:

sw(g )

SWnorm (g/ h) = max{SW(gf g), SW(h/ h)}

where sw(g, /) is the Smith-Waterman alignment
score between the peptide sequences of genes g and 4.

Computing gene context similarity scores

Gene context similarity refers to the similarity in the
genomic context of two genes. In contrast to sequence
similarity, there is no widely accepted method to deter-
mine the level of gene context similarity between two
genes. In this work, we make use of the concept of local
synteny proposed in [15,19].

Jun et al. [15] proposed a local synteny test that con-
siders three genes upstream and downstream of two
genes of interest to decide if they are orthologs. They
modelled the sequence similarity between the two sets
of six genes as a bipartite graph; there is an edge
between two genes if their BLASTP E-value is less than
le®. They then compute a maximum matching of the
graph. Two genes are putative orthologs if the size of
the maximum matching is greater than one. In other
words, they test if there is at least two other matching
gene pairs in the vicinity of the gene pair of interest.
They determine the BLASTP threshold and size of gene
neighborhood by finding the values that maximizes the
agreement with InParanoid [17] and Ensembl Compara
[22] orthologs. They found that 93 percent of sampled
inter-species pairs in five mammalian genomes (human,
chimpanzee, mouse, rat, and dog) identified by their
local synteny test are also found by InParanoid. By ana-
lyzing the remaining seven percent of the pairs, they
conclude that the use of a local synteny test can resolve
ambiguous many-to-many orthologous groups into one-
to-one pairs. While the binary test proposed in [15]
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Figure 2 Clustering of homologous genes between human and mouse. Clusters of homologous genes form conserved synteny blocks
between human and mouse genome. Generated by the Cinteny web server [26].

J

detects the presence of other matching gene pairs in the
vicinity of g and /, it does not capture the strength of
the gene context similarity nor does it make use of the
sequence similarity of the gene pair being tested. Thus,
it may cause errors in special cases: (a) false positives
when the local context similarity is high, but the
sequence similarity is low, or (b) false negatives when
the local context similarity is low (only one other
matching pair), while the sequence similarity is high.

We define the local synteny score, Iss(g, k), as an
extension of the binary test proposed in [15], to capture
the degree of gene context similarity between g and 4.
The local synteny score of two genes g and 4 is the size
of the maximum matching between the six genes sur-
rounding g and % (see Figure 3). This gives us a number
between 0 and 6, which we normalize by dividing by 6.
This is similar to the gene-neighborhood conservation

score [19].
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Figure 3 Computing the local synteny score for g and h. We
consider three genes upstream and downstream of the two genes
of interest and add an edge between two genes if their BLASTP E-
value is less than 1¢”. The thick edges show one of the possible
maximum matching. The local synteny score of g and h is 4 since
there are 4 edges in the maximum matching.

Formally, we define the normalized local synteny
score, 1ss,orm, as follows:

|max matching of graph G = (U UV, E)|

lssnorm (g, h) = 6

where U is the set of six genes around g, V is the set
of six genes around / and there is an edge (u, v) in E if
the BLASTP E-value of u and v is less than 1e™.

Combining sequence and gene context similarity and
computing bidirectional best hits

Given the normalized sequence similarity scores
(SWnorm) and normalized gene context similarity scores
(IsSporm), We combine them into a single similarity score
(sim) with a parameter « to represent the weightage of
gene context similarity. Formally, we define the com-
bined similarity score, sim , as follows:

sim(g, h) = (1 — @) X SWnom (& 1) + & X 18Spom (& 1)

Using the combined score, we compute the set of
bidirectional best hits by sorting all gene pairs in
decreasing score and scanning this list once. A gene pair
(g, h) is a bidirectional best hit if sim(g, %) is strictly
greater than sim(g, /') for all other genes 4’ and sim(g,
h) is strictly greater than sim(g, 4) for all other genes g
This guarantees that the set of bidirectional best hits is
always one-to-one.

Reducing the number of false positives

A drawback of the bidirectional best hit criteria is that it
does not take into account the actual similarity between
two genes. This may lead to false positives when two
genes with very low similarity form bidirectional best
hits simply because there are no other similar genes.
We found that we can quantify the strength of a parti-
cular bidirectional best hit by comparing the similarity
of the best hit and the second best hit. Based on this
observation, we define the strength of a bidirectional
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best bit pair (g, /) as:
strength (g, h) = v/(sim(g, h) — sim(g, h')) x (sim(g, h) — sim(g’, h))

where /1’ is the second best hit of g and g’ is the sec-
ond best hit of . When there is only one hit, the simi-
larity between a gene and its second best hit is defined
to be 0.

We can reduce the number of false positives by only
keeping those bidirectional best hits whose strength is
greater than a minimum strength threshold S.

Results and discussion

We evaluate our BBH-LS method by applying it to the
human, mouse, and rat genomes. For each pair of gen-
ome, we compared the performance of BBH-LS, BBH
using only normalized Smith-Waterman score (BBH),
MSOAR2 [11], InParanoid 4.0 [17], OMA [21], Ensembl
Compara [22], and OrthoMCL [14].

By definition, positional homologs are the direct des-
cendants of a single ancestral gene in the most recent
common ancestor. It is impossible to confirm the ances-
try of a gene unless we have been able to observe its
evolution. In practice, we verify our predictions against
manually curated gene symbols. This is also the
approach used by MSOAR2 [11]. Gene symbols are
manually curated based on gene function [23] and they
are used by researchers to represent the same gene
across different species. The assignment of a gene sym-
bol to a gene is approved by a nomenclature committee
to ensure scientific accuracy. However, in the absence of
experimentally verified function, genes may be assigned
an anonymous and temporary gene symbol based on
their sequence/structural similarity to other genes. For
the purpose of our experiments, we consider such genes
to have not been assigned a meaningful gene symbol.

Using this approach, we can classify the predicted
positional homolog pairs into the following three cate-
gories:

+ true positive: both genes share a common gene
symbol

+ false positive: gene symbols are completely
different

« unknown: either one of the two genes have not
been assigned a meaningful(We filter away symbols
matching the regular expression “orf” in human
genes, “Rik$” or “*GM[0-9]+$” in mouse genes, and
“LOC[0-9]+$” or “"RGD[0-9]+$” in rat genes.) gene
symbol

The peptide sequences and locations of genes in each
of three genomes were download from the Ensembl
Release 60(retrieved from ftp://ftp.ensembl.org/pub/
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release-60/fasta/ in Nov 2010). There are 20801, 22842,
and 22925 genes in the human, mouse and rat genome.
We downloaded official gene symbols from the follow-
ing species specific databases: HUGO Gene Nomencla-
ture Committee(retrieved from http://www.genenames.
org in Dec 2010), Mouse Genome Informatics(retrieved
from http://www.informatics.jax.org in Dec 2010), and
Rat Genome Database (retrieved from http://rgd.mcw.
edu in Dec 2010).

Parameter tuning for BBH-LS

Our scoring scheme uses the parameter & to controls
the weightage of gene context similarity score. If o is 1,
then we only use gene context similarity. If « is 0, then
we only use sequence similarity.

We want to determine the optimal value of the para-
meter o on the human-mouse and mouse-rat dataset.
To do this, we ran BBH-LS on the human-mouse and
mouse-rat dataset over a range of values of o and tabu-
lated the number of true positives, false positives and
unknown pairs for each value. Figure 4 and Figure 5
shows how the number of true positives, false positives
and unknown pairs varies as a function of o for each
dataset.

For the human-mouse dataset (Figure 4) we observe
that the number of true positives increases rapidly as o
increases and then decreases at the same rate after
reaching a maximum of 14133 when « is 0.53.
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However, the number of false positives and unknown
pairs also increased slightly as « increases. The same
general trend for the true positives is observed for the
mouse-rat dataset shown in Figure 5 (maximum of
12996 when o is 0.52).

We initially thought that the weightage of gene con-
text similarity score should be much lower that of the
sequence similarity as many existing methods make use
of sequence similarity but not gene context similarity.
To our surprise, we found that setting « close to 0.50
maximizes the number of true positives for both data-
sets. In the following experiments, we set & as 0.50.

It is estimated that the last common ancestor of
human and mouse existed 87 million years ago while
the mouse-rat ancestor existed 16 million years ago
[24], furthermore there are 297 large scale rearrange-
ment events between human and mouse but only 106
rearrangement events between mouse and rat [25].
Despite the difference in the genomic distance in these
two datasets, the best value of ¢ is consistently around
0.50. Additional experiments using genomes of varying
evolutionary distances will be necessary to determine
whether this observation holds more generally.

Similarly, we considered the effect of the strength
threshold § using the human-mouse dataset. Figure 6
shows how the number of true positives, false positives
and unknown pairs varies as a function of B. All three
quantities decrease to zero as the threshold increases.
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Figure 4 Determining the optimal combination of sequence and gene context similarity for BBH-LS on the human-mouse dataset.
Performance of BBH-LS for different weightage of gene context similarity to sequence similarity on the human-mouse dataset. Left axis indicates
the number of pairs of true positives and the right axis indicate the number of unknown pairs and false positives.
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<
Performance tuning for BBH-LS on the human-mouse dataset
16000 T 9 T T T 1600
‘L true positives - - unknown
14000 [ +--+ false positives |]1400
\
12000 - b 41200
¥ 10000} {1000
© E
Q “
. 8000 ™ {800
'Q .
-
Z 6000} ) 4600
4000 4400
2000 4200
8o 0.2 0.4 0.6 08 1.8
Minimum strength threshold (3)
Figure 6 Reducing the number of false positives predicted by BBH-LS. Performance of BBH-LS for different strength threshold S on the
human-mouse dataset. Left axis indicates the number of pairs of true positives and the right axis indicate the number of unknown pairs and
false positives.

.




Zhang and Leong BMC Systems Biology 2012, 6(Suppl 1):522
http://www.biomedcentral.com/1752-0509/6/51/522

Importantly, the number of true positives decreases
slowly for small values of 8 while the number of false
positives and unknown pairs drops significantly. This
shows that our definition for the strength of a BBH pair
is effective at reducing the number of false positives
without too much effect on the number of true
positives.

Performance on human-mouse-rat dataset

We obtained the output of the methods in our compari-
son by running the respective programs on the input
data, except for OMA and Ensembl Compara as we did
not have access to the programs. We downloaded the
orthologs predicted by OMA (retrieved from http://
omabrowser.org in Dec 2010) and Ensembl Compara
(retrieved from http://www.ensembl.org in Dec 2010)
from their respective websites.

Analysis of one-to-one pairs

In this analysis, we only focus on one-to-one pairs.
InParanoid, OMA, and Ensembl Compara produces
pairs of orthologous groups instead of one-to-one posi-
tional homolog pairs. We get ortholog pairs by post-
processing the output. InParanoid builds its groups from
pairs of seed orthologs, we extract the seed orthologs
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from each group. For OMA, Ensembl Compara, and
OrthoMCL, we use only the one-to-one groups.

Figure 7 shows the number of true positives and false
positives for each method on three datasets. The results
for OrthoMCL were not included in Figure 7 as is an
outlier; for human-mouse dataset OrthoMCL has 8936
true positives and 498 false positives, for human-rat
dataset there are 7409 true positives and 530 false posi-
tives, and for mouse-rat dataset there are 7812 true
positives and 819 false positives.

For the human-mouse dataset, BBH-LS (& = 0.50, § =
0.00) identified the largest number of true positives
(14128), followed by Ensembl Compara (13856), and
MSOAR2 (13718). InParanoid which uses BLAST to
compute sequence similarity does significantly worst
that BBH using normalized Smith-Waterman alignment
scores. In terms of the number of false positives, the
methods we evaluated fall into three categories: low
false positives (OrthoMCL, OMA, Ensembl Compara),
medium false positives (InParanoid, BBH, BBH-LS), and
high false positives (MSOAR2). We can reduce the
number of false positives to 838 (low false positives), by
increasing 3 to 0.05. The corresponding number of true
positives is 14018, which is still the highest among all

Number of TP/FP for the human-mouse-rat dataset

many pairs are discarded.

g8H-1s —_human-mouse
14000 .
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w
Q
>
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Figure 7 Comparing the number of true positives and false positives for six different methods on three datasets using only one-to-
one pairs. Plot of number of true positives vs number of false positives in the output of BBH-LS (e = 0.50, B = 0.00), BBH, MSOAR?2, InParanoid,

OMA, and Ensembl Compara for the human-mouse, human-rat, and mouse-rat dataset. Only the one-to-one pairs were used in this analysis. For
InParanoid, each many-to-many pair is converted to a one-to-one pair by extracting the seed ortholog pair. For OMA and Ensembl, the many-to-
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the methods compared. OMA and Ensembl Compara
performed surprisingly well given that we only consider
the one-to-one groups that were generated.

The results for the human-rat dataset shown in Figure
7 is similar to that of the human-mouse data except
that the number of true positives produced by Ensembl
Compara and OMA has decrease relative to the other
methods, but Ensembl Compara still has more true
positives than InParanoid. For the mouse-rat dataset
(Figure 7), OMA and Ensembl Compara is now worse
than InParanoid. Another interesting characteristic of
the mouse-rat dataset is the higher number of false posi-
tives, roughly doubled that of the human-mouse or
human-rat dataset for all the methods.

Overall, in all three experiments, our BBH-LS method
consistently produced the highest number of true posi-
tives as validated using gene symbols with a medium
level of false positives. The number of false positives can
be further reduced by removing BBH pairs with low
strength.

Figure 8 shows a more detailed comparison of the true
positives reported by BBH-LS, MSOAR2, and InPara-
noid. A total of 17081 true positives pairs are identified
by at least one of the three methods and 57.5 percent
(9322/17081) are identified by all three methods. There-
fore, only slightly over half of the true positive pairs
exhibit strong signals and are easy to detect. The rest
require the combination of a number of different
sources of information.

Analysis of one-to-one and many-to-many pairs

The previous analysis is biased against methods that
produce many-to-many pairs as we excluded all non
one-to-one pairs of orthologous groups. In this section,
we consider a different definition of true positives and
false positives that takes into account many-to-many
pairs.

Using the official gene symbol of each gene, we clas-
sify each many-to-many pair into the following three

MSOAR?2

v/

Figure 8 Overlap between the true positives of BBH-LS,
MSOAR?2, and InParanoid. Venn diagram showing the overlap
between the true positive one-to-one pairs reported by BBH-LS,
MSOAR2, and InParanoid for the human-mouse dataset.

BBH-LS InParanoid
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categories:

« true positive: there exist a pair of genes (one from
each group) that share a common gene symbol

» false positive: all genes have been assigned gene
symbols, but there is no pair of genes with a com-
mon symbol

+ unknown: neither a true positive nor a false
positive

We plot the number of true positives versus the num-
ber of false positives for all six methods (excluding
OrthoMCL as it is an outlier) on all three datasets and
obtained Figure 9. Note that the position of BBH-LS,
BBH, and MSOAR?2 is the same as in Figure 7 since
these methods only predict one-to-one pairs. Only the
position of InParanoid, OMA, and Ensembl Compara
changed as these methods were designed to predict
many-to-many orthologous groups.

InParanoid has much fewer false positives and about
the same number of true positives as in the previous
analysis. Most of the false positives are now classified as
unknown, as a many-to-many pair can only be a false
positive if all of the genes have been assigned gene sym-
bols. In contrast, the number of false positives for OMA
and Ensembl Compara did not change significantly, but
the number of true positives have gone up.

In particular, we note that in this analysis, Ensembl

Compara has the highest number of true positives, with
BBH-LS coming in at a close second. This is expected
as this method of analysis is biased towards methods
that generates many-to-many pairs. Recall that only one
out of the n x m possible gene pairs in a n-to-m pair
need to have a common gene symbol for the n-to-m
pair to be considered a true positive.
Two cases where gene context similarity made a difference
In the following, we illustrate a number of specific
instances where gene context similarity made a signifi-
cant differences. Figure 10 shows an instance where a
large difference in the gene context similarity helped to
identify the positional homolog among genes with simi-
lar sequence similarity. There are a total of 48 cases
where gene context similarity helped to converted a
false positive found by BBH to a true positive found by
BBH-LS. However, in four cases, the local synteny score
caused a true positives identified by BBH to become a
pair of false positives. Figure 11 illustrates one of these
cases.

Conclusion

The ORTHOLOG ASSIGNMENT problem is challen-
ging in practice due to gene duplications and gene loss.
Several sophisticated methods, which make use of com-
plex heuristics (InParanoid) or require solving
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Figure 9 Comparing the number of true positives and false positives for six different methods on three datasets using all pairs. Plot of
number of true positives vs number of false positives in the output of BBH-LS (¢ = 0.50, § = 0.00), BBH, MSOAR2, InParanoid, OMA, and Ensembl
Compara for the human-mouse, human-rat, and mouse-rat dataset.
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Human ¢Cpea3 MYL2 CUX2 Human EMID2 MYLI10 CuUXl1
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Mouse (CyUx2 MYL2 CCDCG3 Mouse CUX1 MYL10 EMID2

chr 5 chr 5
Figure 10 Incorrect pairing due to similar sequence similarity corrected by BBH-LS. BBH erroneously paired MYL2 (human) to MYL10
(mouse) because of high Smith-Waterman score, this was corrected by BBH-LS with the help of local synteny score. Bold edges are the pairing

from BBH-LS, thin edges are the pairing from BBH, sw = normalized Smith-Waterman score, Ic = normalized local synteny score.

Human
chr 19
sw = 0.1
Is = 1.0

sw = 0.50
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;—g 0.
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chr 7
Figure 11 BBH-LS mislead by high local synteny. BBH-LS paired LILRA5 (human) with PIRA5 (mouse) and LAIR2 (human) with LIRA5 (mouse)
due to the high local synteny produced by the five pairs of genes in between. The correct pairing should be LILRA5 (human) with LILRAS
(mouse) and this was picked up by BBH using just the normalized Smith-Waterman score.

_

computationally hard problems (MSOAR2), have been
proposed to tackle this problem. However, we show in
this paper that the simple bidirectional best hit heuristic,
coupled with a scoring scheme that combines both
sequence and gene context similarity, is surprisingly
good at identifying positional homologs. In all three
pairwise comparison between human, mouse, and rat
genomes, our BBH-LS method identified the most

number of positional homolog (as validated using gene
symbols) with a medium number of false positives.

We are current investigating the application of our
method for ortholog assignment in plant genomes.
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