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Abstract

Background: A great success of the genome wide association study enabled us to give more attention on the
personal genome and clinical application such as diagnosis and disease risk prediction. However, previous
prediction studies using known disease associated loci have not been successful (Area Under Curve 0.55 ~ 0.68 for
type 2 diabetes and coronary heart disease). There are several reasons for poor predictability such as small number
of known disease-associated loci, simple analysis not considering complexity in phenotype, and a limited number
of features used for prediction.

Methods: In this research, we investigated the effect of feature selection and prediction algorithm on the
performance of prediction method thoroughly. In particular, we considered the following feature selection and
prediction methods: regression analysis, regularized regression analysis, linear discriminant analysis, non-linear
support vector machine, and random forest. For these methods, we studied the effects of feature selection and the
number of features on prediction. Our investigation was based on the analysis of 8,842 Korean individuals
genotyped by Affymetrix SNP array 5.0, for predicting smoking behaviors.

Results: To observe the effect of feature selection methods on prediction performance, selected features were
used for prediction and area under the curve score was measured. For feature selection, the performances of
support vector machine (SVM) and elastic-net (EN) showed better results than those of linear discriminant analysis
(LDA), random forest (RF) and simple logistic regression (LR) methods. For prediction, SVM showed the best
performance based on area under the curve score. With less than 100 SNPs, EN was the best prediction method
while SVM was the best if over 400 SNPs were used for the prediction.

Conclusions: Based on combination of feature selection and prediction methods, SVM showed the best
performance in feature selection and prediction.

Background
The main goal of genome-wide association studies
(GWAS) is to identify the complex phenotype associated
loci. A great success of the GWAS leads us to move our
focus on the application to personal genomics and clini-
cal practice such as diagnosis, disease risk prediction
and prevention.

In personal genomics, one can genotype their own gen-
ome using direct-to-consumer (DTC) genotyping service
provided by personal genomics companies such as
23andMe (https://www.23andme.com/) and DecodeMe
(http://www.decodeme.com/). Personal genotyping will
be followed by genome analysis and annotation for pro-
viding brief summary of genetic effects on various pheno-
types of an individual. Moreover, SNPedia, a wiki based
SNP database, can be used to expand the information
regarding genetic effect of SNPs [1]. Personal genome
data will be the baseline information for personal medical

* Correspondence: tspark@stats.snu.ac.kr
1Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul,
151-742, Korea
Full list of author information is available at the end of the article

Yoon et al. BMC Systems Biology 2012, 6(Suppl 2):S11
http://www.biomedcentral.com/1752-0509/6/S2/S11

© 2012 Yoon et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://www.23andme.com/
http://www.decodeme.com/
mailto:tspark@stats.snu.ac.kr
http://creativecommons.org/licenses/by/2.0


treatment and scientific research as the number of
GWAS and genomics studies are growing. Personal
genomics has already played an important role for scien-
tific research. GWAS using personal genome data suc-
cessfully have unveiled novel loci for common traits and
Parkinson’s disease [2,3].
In a clinical aspect, genetic analysis has provided valu-

able information for clinical treatment. For example,
mutation analysis of BRCA1 and BRCA2 in breast can-
cer is valuable for clinical treatment [4,5]. Genotype
information of VKORC1 and CYP2C9 can potentially be
used as clinical information for estimating individual
warfarin dose [6]. In genome-wide scale, Ashley et al.
studied clinical usefulness of genome information [7].
The efforts described above are mainly focusing on

interpretation of genomic information using previously
identified phenotype associations. For diagnosis and clini-
cal treatment, however, a more accurate phenotype predic-
tion model is required. Previous studies have performed
the disease prediction using phenotype-associated SNPs
[8,9]. However, the prediction using previously known dis-
ease associated loci has not been quite successful [8,9]. For
example, the prediction performance for type 2 diabetes
and coronary heart disease using known associated loci
have area under the curve (AUC) ranging from 0.55 ~
0.68 [8,9]. There are three main reasons of this poor pre-
dictability [10]. Firstly, a limited number of previously
known susceptibility variants were shown to explain only a
small proportion of phenotypic variation [11]. Secondly, in
previous studies, relatively simple statistical approaches
were applied to GWAS data to explore disease associated
loci. Additive mode of genetic inheritance and regression
model were used, while not considering the complex rela-
tionships of interactions between multiple loci contribut-
ing to disease risk. Finally, genetic effect of variants would
vary across phenotypes. Previous studies reported a wide
range of heritability ranging from 0.2 to 0.99 [12]. A cer-
tain phenotype would be a result from the interaction of
genetic and environmental effects.
There are two approaches to improve the poor pre-

dictability of phenotype based on the genetic variants.
The first approach is to identify additional phenotype-
associated loci and causal variants. A large scale gen-
ome-wide meta-analysis comprising tens of thousands
individuals and next-generation sequencing technology
are expected to unveil the hidden phenotype related
loci. These methods would find more phenotype-asso-
ciated loci and causal variants. Although this approach is
promising, it requires a relatively high cost. The second
is to develop a more accurate and reliable prediction
method. In general, the prediction procedure consists of
two steps: feature selection and prediction. Most previous
efforts on disease prediction have largely focused on
improving the performance of the prediction methods.

Moreover, most studies used a set of SNPs selected by
p-values of simple linear regression model [8,9,13]. Low
prediction performance of previous studies may partly
be due to a failure to include genetic variants with com-
plex relationship with phenotype. Recently, Wei et al.
reported that prediction performance is varied by the
number of variants used [10], demonstrating that selec-
tion of number of variants for the prediction is impor-
tant to predict the risk of phenotypes. Single SNP
analysis may not be adequate for identifying multiple
causal variants and predicting risk of disease [14]. How-
ever, only a few studies discussed about the variable
selection methods on GWAS data despite the impor-
tance of feature selection [13,15].
In this study, we investigated the effect of feature selec-

tion on the performance of the prediction methods more
thoroughly. In particular, we considered the following
methods for feature selection and prediction: logistic
regression, linear discriminant analysis, regularized
regression analysis, support vector machine, and random
forest. For these models we studied the effect of feature
selection on the performance of prediction and suggested
an optimal number of features for improving the predict-
ability of phenotypes. Our investigation was based on the
analysis of GWA dataset of 8,842 KARE samples, for pre-
dicting smoking behaviors.

Methods
Data
Dataset was obtained from the Korea Association
REsource (KARE) project as a part of Korea Genome Epi-
demiology Study (KoGES). Briefly, 10,004 samples were
genotyped using Affymetrix Genome-Wide Human SNP
Array 5.0. After quality control for samples and SNPs,
8,842 samples and 352,228 SNPs remained for subse-
quent analysis. The detailed information has been
described in the previous studies [16]. In this analysis, we
only used male samples for predicting smoking beha-
viors, because there are insufficient numbers of female
smokers. Among 4,183 males, there were 807 individuals
of non-smokers, 1,293 individuals of former and 2,164
individuals of current smokers. For number of cigarettes
smoked per day (CPD) among smokers, KARE provides
samples of 441 (CPD ≤ 10), 1,179 (11 ≤ CPD ≤ 20), 209
(21 ≤ CPD ≤ 30), and 129 (CPD ≥ 31). Given the smoking
status, we defined three dichotomous traits such as
smoking initiation ("never smoked defined as controls”
vs. “former, occasional, or habitual smoker defined as
cases”), CPD10 ("light smoking as controls with CPD
≤10” vs. “heavy smokers with CPD > 20 defined as
cases”), and smoking cessation (SC) ("former smoker
defined as controls” vs. “current smoker defined as
cases”). Smoking behavior phenotypes are summarized in
Table 1. The association results between the smoking
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behavior phenotypes and the SNPs have been reported in
the previous studies [17-19].
For multiple SNP analysis, we often encounter infor-

mation loss due to missing values. Therefore, we
imputed missing genotypes using fastphase software [20]
and obtained complete genotype data for multiple SNPs
analysis. In particular, we imputed 8,842 samples with
fastphase using options -T 10, -K 20 and -C 30.

Feature Selection and risk prediction
Stronger statistical significance of SNP in the association
analysis does not always assure a better disease risk pre-
diction [21]. Moreover, most of previous prediction stu-
dies selected features based on the p-values from simple
linear regression analysis. The emphasis on linear rela-
tionship between genotype and phenotype would omit
the variants having complex relationship with phenotype.
For studying the effect of feature selection on prediction
performance, we used five statistical methods including
logistic regression, linear discriminant analysis, penalized
regression and data mining methods including support
vector machine and random forest.
For feature selection, we used the scores computed by

each prediction method to rank and select features.
Considering complex relationship between variants and
phenotype, simultaneous variable selection using the
whole chromosome would be the most appropriate
approach. Due to the immense amount of computation,
however, we could not perform the analysis using the
whole SNPs at the same time. Alternatively, the two
step approach was used for the feature selection as sug-
gested by Xu et al. [22]. First, all SNPs were partitioned
into 22 chromosomal subsets. From each subset, feature
selection was performed. Second, all SNPs were ordered
based on their scores and 22,000 SNPs were selected for
the additional joint feature selection. In this way, the
SNPs showing the strongest association with the trait
were selected for the subsequent prediction analysis.
This two step approach was performed for each predic-
tion method. We selected 22,000 SNPs due to limitation
of computing resource in our laboratory.
For phenotype prediction, we used the same five pre-

diction methods which were used for the feature selec-
tion step to observe the effect of combination of
different methods in feature selection and prediction.

Logistic regression
A logistic regression model is one of most widely used
methods in the analysis of genomic data. Let
yi(i = 1, ..., n) be as a binary variable standing for the dis-
ease status (0 = control, 1 = case), and xij(j = 1, ..., p)
defines as additive SNP value (0, 1, 2) according to the
number of minor allele) for the jth SNP.
For feature selection, single SNP logistic regression

(LR) analysis was conducted.

log
Pr(yi = 1)

1 − Pr(yi = 1)
= β0 + β1xij

where Pr(yi = 1) is the probability of subjects being
cases (y = 1).b0 and b1 are the coefficients of intercept
and SNP, respectively.
Multiple logistic regression (MLR) was used for pre-

diction.

log
Pr(yi = 1)

1 − Pr(yi = 1)
= β0 +

∑k
j=1 βjxij

where k is the number of the selected SNPs in the fea-
ture selection step. b0 and bj’s are the intercept and
effect sizes of SNPs, respectively.

Elastic-Net Analysis
One caveat of using LR model in GWAS is that linkage
disequilibrium (LD) dependency of input markers may
make the parameter estimation unstable [10]. To
address this issue, we imposed elastic-net regularization
on the LR model building [23]. Elastic-net regularization
uses ridge and LASSO penalties simultaneously to take
advantages of both regularization methods. Thus, it pro-
vides shrinkage and automatic variable selection and can
handle more efficiently with the severe multicollinearity
that often exists in GWA analysis. Elastic-net regulariza-
tion would perform better than LASSO in GWA analy-
sis, in which multicollinearity persistently exists due to
linkage disequilibrium among nearby SNPs [24]. Elastic-
net regularization is particularly useful when the num-
ber of highly correlated predictor variables is much lar-
ger than the sample size. Elastic-net regularization
solves the following problem:

min
β

[
n∑
i=1

(yi − β0 − x
′
iβ)

2
+ λPα(β)]

where xi = (xi1,...,xip)T and β = (β1, . . . , βp)T. Elastic-net

penalty is defined as Pα(β) = (1 − α)
∑

|β| + α
∑

β2

where a is a weight of a value between 0 to 1. Cross vali-
dation (e.g., 10-fold) is generally employed to find the best
values of l and a, which minimize mean-squared predic-
tion error [24]. Based on the result of EN, we selected
SNPs with non-zero coefficients

Table 1 Smoking behaviours phenotypes

Phenotype # of cases # of controls

CPD10* 602 752

Smoking Initiation (SI) 3357 807

Smoking Cessation (SC) 2064 1293

CPD10: binary phenotype of nicotine dependence (ND) defined as <10
cigarettes/day and >21 cigarettes/day
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Linear discriminant analysis
Linear discriminant analysis (LDA) is used to find linear
combinations of features which characterize or discrimi-
nate two or more classes. LDA is simple and fast. It
often produces models with accuracy comparable to
more complex methods [25]. LDA is the classifier that
separates the two or more classes by determining the
projection matrix that maximizes the ratio of between-
class covariance to within-class covariance [25].
Linear discriminant function is

L(x) = xT�−1(μ0 − μ1) − 1
2
(μ0 − μ1)

T�−1(μ0 − μ1) + log
π0

π1

Where μ0 and μ1 are means of the controls and cases,∑
is common covariance matrix.

Feature selection is based on ranking SNPs by correla-
tion-adjusted t (CAT) scores [26]. The cat score mea-
sures the individual contribution of each single feature
to separate two groups, after removing the effect of all
other genes.

Support Vector Machine
Support vector machine (SVM) is a data mining
approach for classification, regression, and other learn-
ing tasks [27,28], which shows empirically good perfor-
mance and successful applications in many fields such
as bioinformatics, text and image recognition. No
assumptions are required about the underlying model.
SVM finds an optimal hyperplane separating cases and
controls and this process is based on large margin
separation and kernel functions [27,28].
For function

f(x) =< ω,�(x) > +b

where � is a mapping function of × to a high dimen-
sional space, SVM find ω and b such that

minw,ξ
1
2ωTω + C

∑
ξi all {(xi,yi)} , under the constraint

yi(ω
Txi + b) ≥ 1 - ξi and ξi ≥ 0 for all i.

We used the radial-basis function as a kernel function.

K(xi,x’i) = exp
(

−‖ xi − x’i‖2
2σ 2

)

For SNP selection, SVM-RFE (Recursive Feature Elim-
ination) algorithm for the variable selection task algo-
rithm [29,30] is used. We used R statistics package
e1071. For model building, we adopted default options
including the radial kernel.

Random Forest
Random Forest (RF) [31,32] is a classification algorithm
using sets of random decision trees which are generated
by a bootstrap sampling for decision and voting. Ran-
dom subset of the variables is selected as the candidate

at each split. RF has been widely used in pattern recog-
nition and bioinformatics such as identification of gene
and gene-gene interaction [33]. For feature selection, RF
importance scores were used to rank and select SNPs.
RF importance score is a measure for the relative contri-
bution of a feature to the model.

Cross-validation
The best strategy for performance comparison would be
to use a separate validation set for accessing the perfor-
mance of prediction models. However, the limited
access to genomic data and phenotype information is
often an obstacle to acquire a separate validation set.
The second best strategy would be k-fold cross-valida-
tion comprising training data to fit the model and test
data to measure the prediction performance.
In general, the whole data are split into k equal-sized

subsets. Typically, selecting k is depending on the user’s
choice, usually 5 or 10 are recommended. For building
prediction model, k-1 sets among k subsets are used as
training set and the rest is used as a test set for measuring
performance. This procedure iterates k times. Specifically,
for i = 1,2,...,k the overall prediction performance is calcu-
lated from the k estimates of prediction performance [28].
In this study, 10 fold cross-validation was used to estimate
the predictive performance for each prediction method.

Prediction performance measure
For measuring prediction performance, we used the
AUC of the receiver operating characteristic (ROC)
curve that is most widely used method for measuring
prediction performance [34,35]. ROC shows the rela-
tionship between sensitivity (true positive rate) and
1-specificity (false positive) at all possible threshold
values. The AUC score is used as the indicator of discri-
mination power for binary traits. The score is ranging
from 0.5 to 1 and higher score represents better discri-
minatory power.

Results
We compared the performance of the prediction meth-
ods such as logistic regression (LR), LDA, SVM, elastic
net (EN) and random forest (RF). After the initial feature
selection, we measured AUC of each prediction algo-
rithm by increasing the number of features (5 ~ 1000
SNPs) used for the prediction. Performance comparison
was based on 10-fold CV comprising 90% of samples for
training set and rest 10% of samples for test set. AUC
was calculated by averaging the performance scores of
ten trials of cross validation. Figure 1 is the graph of pre-
diction performance by various feature selection method
varying the number of SNPs used in prediction for
CPD10. Overall, the performance improves, as the num-
ber of features used for the prediction increases. LR and
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LDA, however, showed decreasing tendency in their per-
formance when more than 300~700 variants were used
for prediction. Although an increasing trend of perfor-
mance was observed over the number of features, a quite
large number of features would not be required to
achieve the best performance. For example, the perfor-
mance of each algorithm increases rapidly until the num-
ber of SNPs reaches 400 and then increase slowly, as
shown in Figure 1.
Tables 2, 3 and 4 are the results of performance com-

parison with various feature selection methods for
CPD10, SI and SC, respectively. Each column provides
information about the performance of feature selection
for a given prediction method, while each row does
about the performance of prediction methods for a
given feature selection method. In each column, the best
performance among feature selection methods for a
given prediction method is marked as underlined. In
each row, the best performance of prediction methods
for a given feature selection method is boldfaced.
For feature selection, the performance of SVM and EN

showed better results than LDA, RF and simple LR
methods. In overall, SVM showed the best performance
for feature selection. SVM was the best with 400 and
500 SNPs for CPD10 and SC, while EN showed the best

performance with 100 SNPs for SC (Table 2 and Table
4). As expected, simple LR and LDA did not perform
well enough to explain complex relationship between
SNPs and phenotypes. However, LR was not the worst
in feature selection for SI and SC phenotypes. For SI
phenotype, EN and LR were the best with 100 and 500
SNPs, respectively (Table 3).

Figure 1 Prediction performance according to feature selection method (a) logistic regression (LOG), (b) linear discriminant analysis
(LDA), (c) Elastic Net (EN), (d) support vector machine (SVM), and (e) random forest (RF) varying # of SNPs used in prediction for
CPD10. X-axis represents the # of SNPs, Y-axis stands for the AUC score.

Table 2 Performance results for CPD10

CPD10 Prediction method

Feature selection
method

# of
SNP

LR SVM RF EN LDA

LR 100 0.7973 0.8128 0.7715 0.8145 0.8078

400 0.8017 0.9289 0.8606 0.9137 0.8966

SVM 100 0.8605 0.8699 0.8295 0.873 0.87

400 0.8474 0.961 0.8961 0.9405 0.9399

RF 100 0.8143 0.8326 0.7999 0.821 0.8206

400 0.7752 0.9164 0.8709 0.8813 0.8669

EN 100a 0.8547 0.8594 0.8273 0.8567 0.8585

250a 0.8621 0.9235 0.8731 0.9046 0.9022

LDA 100 0.7758 0.7801 0.7205 0.7862 0.7814

400 0.7948 0.9283 0.8411 0.911 0.8939

In each column, the best results are shown as underlined. In each row, the
best results are boldfaced. a. # of SNPs with non-zero coefficient
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These results imply that one feature selection method
would not be always the best for various phenotypes.
Thus, the prediction method seems to be carefully
selected depending on the phenotypes.
For prediction, SVM outperformed other prediction

algorithms for any feature selection method. Although
SVM showed the best performance in overall, it was not
the best method when a relatively small number of fea-
tures were used. For example, LR, LDA and EN methods
outperformed the SVM algorithm with features smaller
than 400 for all phenotypes. With less than 100 SNPs, EN
was the best prediction method while SVM was the best if
over 400 SNPs were used for the prediction. For SI and
SC phenotype, the results were similar to those of CPD10.
Figure 2 shows the performance results when the same

method is used for feature selection and prediction. SVM
was the best with more than 200 SNPs for CPD10 and SC
(Figure 2 (a) and 2(c)). For SI phenotype, LR was the best
with less than 700 SNPs while SVM outperformed LR
with more than 700 SNPs (Figure 2 (b)). It is noteworthy

that EN with less than 200 SNPs was the best for all phe-
notypes. We could not test EN with more than 300 SNPs
because non-zero coefficient of SNPs from EN feature
selection was less than 300 SNPs.
We investigated the best combination of feature selec-

tion and prediction algorithm. The best combination of
feature selection and prediction algorithm with 100 SNPs
were SVM-EN (AUC: 0.873 for CPD10), EN-LDA (AUC:
0.793 for SI) and EN-EN (AUC: 0.769 for SC). The best
combinations for more than 400 SNPs, however, were
SVM-SVM (AUC: 0.961 for CPD10), LR-SVM (AUC:
0.914 for SI), and SVM-SVM (AUC: 0.893 for SC).
In the current study, we examined the performance of

prediction methods in combination of feature selection
and prediction algorithm. All prediction methods showed
the best performances when around 400~500 features
were used. For prediction method, SVM with radial
kernel outperformed the other methods regardless of
algorithms used in the feature selection.

Discussion
In this study, the performance of prediction methods was
compared in combination of various feature selection
and prediction algorithms. Also, the effect of the number
of SNPs on prediction performance was investigated. In
earlier study of Wei et al. [10] and Kooperberg et al. [15],
limited studies of the prediction performance were pre-
sented. Wei et al. used SVM and logistic regression while
Kooperberg et al. used logistic regression and penalized
regression such as lasso and elastic net. Further, they
have not discussed about the effect of various feature
selection methods. Although Kooperberg et al. suggested
penalized regression based feature selection during cross-
validation using subset of data, they did not compare
their results to other statistical methods such as SVM,
LDA and RF which are used in our study. Our study
thoroughly performed the comparison analysis of combi-
nations of feature selection and prediction algorithms
including logistic regression, EN, LDA, SVM and RF.
Complex relationship between phenotype and genetic
variants was considered by using various statistical meth-
ods. Therefore, our study is particularly valuable in the
context of comprehensive comparison analysis for
improving prediction performance by the various condi-
tion of the number of features, feature selection, and pre-
diction algorithm. In addition, it is noteworthy that the
feature selection in our study was conducted on genome-
wide scale. This is an important difference in that the
previous studies have a limitation in the feature selection,
because it used the p-values from the simple linear
regression method [8-10,13,15].
The performance of prediction method via AUC varied

by phenotypes. The difference in magnitude of the predic-
tion performance is dependent on the proportion of

Table 3 Performance results for SI

SI Prediction method

Feature selection
method

# of
SNP

LR SVM RF EN LDA

LR 100 0.7597 0.7171 0.7067 0.7670 0.7605

500 0.8792 0.9139 0.8132 0.9038 0.8964

SVM 100 0.6819 0.6421 0.6204 0.6794 0.6813

500 0.7953 0.8178 0.6930 0.7943 0.8075

RF 100 0.5961 0.6101 0.5980 0.5848 0.5957

500 0.6185 0.6312 0.6138 0.6010 0.6210

EN 100a 0.7930 0.7708 0.7336 0.7929 0.7937

163a 0.8157 0.8084 0.7454 0.8188 0.8180

LDA 100 0.6338 0.5925 0.5807 0.6273 0.6343

500 0.7387 0.7503 0.6212 0.7176 0.7464

In each column, the best results are shown as underlined. In each row, the
best results are boldfaced. a. # of SNPs with non-zero coefficient

Table 4 Performance results for SC

SC Prediction method

Feature selection
method

# of
SNP

LR SVM RF EN LDA

LR 100 0.7290 0.7187 0.6919 0.7372 0.7308

500 0.8245 0.8644 0.7856 0.8587 0.8591

SVM 100 0.7417 0.7299 0.6975 0.7413 0.7414

500 0.8643 0.8934 0.8032 0.8780 0.8791

RF 100 0.7007 0.7053 0.7013 0.6992 0.7008

500 0.7728 0.8085 0.7598 0.7676 0.7714

EN 100a 0.7682 0.7606 0.7233 0.7691 0.7691

176a 0.7935 0.7964 0.7485 0.7967 0.7955

LDA 100 0.7015 0.6946 0.6585 0.7004 0.7019

500 0.8205 0.8466 0.7426 0.8275 0.8291

In each column, the best results are shown as underlined. In each row, the
best results are boldfaced. a. # of SNPs with non-zero coefficient.
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genetic effect on phenotypes [36]. For example, prediction
performance for CPD10 was the best among smoking phe-
notypes. This is consistent with the level of heritability of
smoking phenotypes. The estimated heritability was
known to be about 0.59 and 0.37 for CPD10 and SI,
respectively [37]. Based on these results, we may improve
the prediction model by including the clinical variables for
those of phenotypes with relatively low heritability.
Overall, SVM outperformed all other prediction meth-

ods in feature selection and prediction. Note that SVM is
the most complex prediction algorithm. Thus, the good
performance of SVM implies that complex relationship
of genetic effect on phenotypes should be taken into con-
sideration for selecting features and building a prediction
model. However, it is also important to emphasize that
SVM was not the best if a relatively small number of fea-
tures were used for phenotype prediction. Therefore, fea-
ture selection and prediction algorithms should be
carefully selected depending on the phenotypes. We first
expected that prediction performance would be the best
if the same algorithm is used for feature selection and
prediction. However, our results indicated that a certain
prediction methods did not provide the best fit for the
features selected by the same algorithm. Set operations,
like union, intersection, or majority voting, can be
applied to the feature selection process. For example, a
union set of all selected features from different methods
can be used for prediction. Alternatively, the common
features from two or more selection methods, defined as
an intersection set, can be used for prediction. Majority
voting approach which chooses the features selected by
more than half of the methods can also be used. How-
ever, our application of set operations to KARE data did
not improve the prediction results much (data not
shown). A further systematic study on set operations is
desirable.

For measuring the prediction performance, we adopted
10-fold cross-validation. Since we did within-study cross-
validation, our performance measures may be overesti-
mated. Independent genotype data may be required for
complete assessment of prediction performance compari-
son. The ultimate goal of genome study is clinical practice
based on personal genome. In this context, our prediction
analysis using genomic information is important in order
to understand human genome and apply it to clinical
studies.

Conclusions
In this study, we performed comprehensive comparison
analysis for improving prediction performance by the var-
ious condition of the number of features and combination
of feature selection and prediction algorithm including
logistic regression, EN, LDA, SVM and RF. Overall, SVM
outperformed other methods in feature selection and
model prediction. With less than 100 SNPs, EN was the
best prediction method while SVM was the best if over
400 SNPs were used for the prediction.
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