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Abstract

activity under test conditions.

Background: Despite large amounts of available genomic and proteomic data, predicting the structure and
response of signaling networks is still a significant challenge. While statistical method such as Bayesian network has
been explored to meet this challenge, employing existing biological knowledge for network prediction is difficult.
The objective of this study is to develop a novel approach that integrates prior biological knowledge in the form
of the Ontology Fingerprint to infer cell-type-specific signaling networks via data-driven Bayesian network learning;
and to further use the trained model to predict cellular responses.

Results: We applied our novel approach to address the Predictive Signaling Network Modeling challenge of the
fourth (2009) Dialog for Reverse Engineering Assessment’s and Methods (DREAM4) competition. The challenge
results showed that our method accurately captured signal transduction of a network of protein kinases and
phosphoproteins in that the predicted protein phosphorylation levels under all experimental conditions were
highly correlated (R* = 0.93) with the observed results. Based on the evaluation of the DREAM4 organizer, our team
was ranked as one of the top five best performers in predicting network structure and protein phosphorylation

Conclusions: Bayesian network can be used to simulate the propagation of signals in cellular systems.
Incorporating the Ontology Fingerprint as prior biological knowledge allows us to efficiently infer concise signaling
network structure and to accurately predict cellular responses.

Background

New proteomics techniques enabled large-scale experi-
ments that monitor phosphorylation states of many
proteins under different physiological stimuli and/or
pharmacological treatments. Each measurement captures
a static picture of how the cellular signaling network
responses to the binding of a ligand to its receptor, but
the interconnections among many different ligand-acti-
vated pathways are complex and dynamic. Thus, it is of
biological importance to infer which signaling path is at
work in response to a particular ligand and how path-
ways “cross-talk” to each other in a cell-type-specific
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manner, and eventually to develop computational mod-
els capable of predicting cellular responses under differ-
ent stimuli.

One of the most common approaches to signaling net-
work modeling is to represent the dynamic system as a set
of ordinary differential equations (ODEs) using mass
action kinetics, by which the concentration of species over
time can be analyzed [1,2]. Additionally, when spatial
information is important for such modeling, a system of
partial differential equations (PDEs) is considered to be
more precise tool to model biochemical processes in both
space and time dimension [3-5]. ODEs or PDEs mathema-
tically represent signal transduction by introducing many
parameters in the model, which becomes impractical for
extremely large networks due to the increasing difficulty
in parameter estimation [1]. To approach large-scale sig-
naling network modeling, several data-driven methods
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have emerged and applied to simulate signal transduction:
constraint-based network analysis that allows reconstruc-
tion of large systems of biochemical reactions in analyzing
genome-scale metabolic networks [6-8]; network compo-
nent analysis (NCA) which incorporates prior knowledge
of network topology to infer signaling pathways [9,10];
partial least squares regression (PLSR) analysis to investi-
gate complicated signaling networks by identifying optimal
principle component-based dimensions from a proposed
relationship [11-13]. Many of the approaches described
above are deterministic models, which are not aimed at
accommodating the noise inherent in biologically data
[14]. In contrast, Bayesian network analysis is an alterna-
tive probabilistic graphical approach to model signaling
pathways [15,16]. Bayesian network, which can explicitly
handle the uncertainty of unobserved events [14,17],
provides a compact graphical representation of the joint
probability distributions over all random variables, and has
been used for reconstruction of signaling networks
[18-24].

To assess the current state of the art network inference
methods, Columbia University, the New York Academy of
Sciences, and the IBM Computational Biology Center have
been organizing the Dialogue for Reverse Engineering
Assessments and Method (DREAM), an annual interna-
tional competition to assess methods that infer network
structures and predict cellular response to different combi-
nation of stimuli from actual experimental data [25].
Challenge 3 of the 2009 DREAM4 competition (will be
referred to as DREAM4 challenge) was titled Predictive
Signaling Network Modeling and included two tasks. In
the first part, a canonical protein phosphorylation network
was provided. This network was constructed by combining
pathways from different cell types reported in the current
literature. The participants were also provided with a data-
set of protein phosphorylation measurements collected
from HepG2 hepatocellular carcinoma cells that were trea-
ted with various stimuli and inhibitors. The task was to
induce a HepG2 cell specific protein phosphorylation
pathway out of the canonical network and to build a pre-
dictive model of how the cell responds to these stimuli
and inhibitors. The second part of the challenge was to
use this induced pathway to predict the activities of the
phosphoproteins under a new set of perturbations.

The provided canonical pathway consists of a union of
the known signaling pathways responding to the follow-
ing ligands TNFo, IL1c, IGF-1, and TGFa (see the Meth-
ods section for detailed description). The training data
consisted of the activities of seven downstream phospho-
proteins measured when cells were treated with four
cytokine (and control) stimuli in various combinations
with four inhibitors at 0, 30 minutes and 3 hours post-
stimulation. The test data was generated similarly, but
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the cells were treated with different combination of sti-
muli and inhibitors [26-28].

Our approach to this challenge is to employ an
enhanced Bayesian network to identify the most plausible
HepG2 specific signaling network and to predict the cel-
lular responses to new stimuli. Bayesian network is a
directed acyclic graph (DAG) model representing the
probabilistic relationships between a set of random vari-
ables [16]. Given a signal transduction pathway such as
the canonical network of DREAM4 challenge, a Bayesian
network can represent the propagation of cellular signal
for the biological network in such a way that the state of
a downstream phosphoprotein is determined by the
states of its upstream kinases, and their relationships can
be quantified by conditional probabilities [21]. We could
then transform the task of inducing cell-type-specific net-
work as a task to find a subnetwork within the canonical
network that explains the observed data as well as possi-
ble—a data-driven structure search problem. It is well
known that brute force exhaustive search of Bayesian
network structure is intractable [29] although different
heuristic algorithms exist to address the task. However,
solely employing these heuristic algorithms in our setting
would fail to utilize a wealth of biological knowledge
regarding genes and proteins and their relationships.
Ignoring this knowledge may result in a Bayesian net-
work that captures the statistical relationships between
the states of phosphoproteins perfectly but does not
make any biological sense—a phenomenon referred to as
equivalent classes of Bayesian networks in the machine
learning field [30,31]. In order to address this problem,
we developed a Bayesian network searching algorithm
that incorporates prior biological knowledge.

We recently developed the concept of the Ontology Fin-
gerprint from biomedical literature and Gene Ontology
(GO) [32]. The Ontology Fingerprint for a gene or a phe-
notype is a set of GO terms overrepresented in the
PubMed abstracts linked to the gene or phenotype, along
with these terms’ corresponding enrichment p-values [33].
By comparing two genes’ Ontology Fingerprints, we can
assess their biological relevance quantitatively. Such rele-
vance can be used to assess gene-gene connections for
model selection in Bayesian network-based signaling net-
work prediction. Incorporating this information accelerates
the network search process and helps to identify biologi-
cally sound connections in predicting signaling networks,
eventually leading to better models. We thus developed an
enhanced Bayesian network method by incorporating the
Ontology Fingerprint for model selection. This novel
approach was used to predict a signaling network for the
DREAM 4 challenge and performed very well, indicating
ontology and prior biological knowledge can make a signif-
icant contribution to signaling network predictions.
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Methods

Combining prior knowledge with experimental data, we
adopted a Bayesian network approach to infer the most
plausible signaling network from a web of complex net-
works. Figure 1 outlines the workflow of our method
and Figure 2 illustrates the graph-searching algorithm.
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Data

The training data were provided by the DREAM4 chal-
lenge 3, including phosphorylation measurements for 7
proteins under 25 experimental conditions (combina-
tions of different signal stimuli and kinase inhibition) at
3 time points. We used the provided canonical pathway
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Figure 1 Schematic representation of the methodology. The Ontology Fingerprints of the whole human genome were constructed,
followed by calculating gene-gene similarity scores using pair-wise comparison of their Ontology Fingerprints. When searching for a cell-type-
specific network, the canonical signaling network was repeatedly and stochastically modified by adding or deleting edges based on similarity
scores, i.e. the higher the similarity score of a gene pair, the greater possibility of adding the edges connecting the two genes. The candidate
networks were trained in parallel using an MCEM (MCMC sampling-based EM) algorithm to infer the states of hidden nodes and estimate
network parameters, and LASSO regression was applied in the last round of MCEM. A model selection criteria (BIC) is further calculated for each
candidate network. Finally, the best network was selected under the guidance of BIC criteria. The selected network was then applied to predict
the phosphorylation activities for the testing data.
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Figure 2 Heuristic network search algorithm based on the Ontology Fingerprint. A) The gene-gene similarity scores among the 40 genes
of interest were converted into probabilities of adding or deleting edges respectively: i) the similarity scores were ranked in ascending order,
and each pair of genes was assigned a corresponding rank R (column “Rank ascendingly”); the probability of adding an edge was obtained by
the percentage of its ascending rank out of the total ascending ranks (formula on the left of the arrow); ii) similarly, the probability of deleting
an edge was assigned by the percentage of the gene pair's descending rank (column “Rank decendingly”) out of the total descending ranks
(formula on the right of the arrow). These probabilities ensure that the higher the similarity score of a gene pair, the greater possibility of adding
the edge between the two genes; and the lower the similarity score of a gene pair, the more likely the edge between the two genes will be
deleted. B) Heuristic rules of adding or deleting edges from the canonical network. A network was updated by either deleting or adding an
edge sequentially: i) for deleting edges, an edge was sampled according to its deletion probability (p'); the sampled edge has to exist in the
current network and the edges from signals to their corresponding receptors were not allowed to be deleted; ii) for adding edges, an edge was
sampled according to its addition probability (p); the sampled edge should not appear in the current network, and the edges between signals,
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as the original DAG which contains 40 nodes and 58
edges (Figure 3A). The nodes were classified into four
color-coded categories: 1) four ligand receptor nodes
(green); 2) seven phosphoprotein nodes whose phos-
phorylation level were measured as fluorescent signal
readings (blue and magenta); 3) two inhibited nodes
(red), which were inhibited under some experimental
conditions; and 4) hidden nodes (grey). Nodes MEKI12
and P38 are both observed and inhibited nodes under
their inhibition condition. In addition, PI3K and IKK
were inhibited in some experiments but their phosphor-
ylation states were not measured.

In order to incorporate independent biological knowl-
edge to learn the network structure, we evaluated the

degree of biological relevance between genes by using
the gene-gene similarity scores derived from their
Ontology Fingerprints; the pairwise similarity scores
among the 40 nodes were calculated. The detailed pro-
cedures of constructing Ontology Fingerprint were
described in [33]. Specifically, we downloaded and pro-
cessed the June 13th, 2007 version of GO to extract GO
terms and their descriptions. The 2007 version of
PubMed abstracts in XML format was also downloaded
and processed to extract the PubMed ID and the text of
each abstract. The links between PubMed abstracts and
genes were obtained from the NCBI “pubmed2gene”
file. Abstracts that contained GO terms were identified
by exact string match. We also labeled the abstracts
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Figure 3 Full network comparison of the original canonical pathway and the inferred cell-type-specific pathway. A) Provided by DREAM
4 challenge, the original canonical pathway contains 40 nodes connected by 58 edges: 4 nodes in green represent 4 cytokine receptor which
originate signals; 7 nodes in blue or magenta represent observed phosphoprotein with activity measurements; 2 nodes in red represent proteins
that are inhibited under some experimental conditions; and 27 hidden nodes in grey have no experimental observation; B) Predicted cell-type-
specific pathway activated in HepG2 cell lines, with 37 nodes connected by 47 edges as determined by our algorithm.

containing a GO term with all of the term’s parent
terms. In addition, each abstract was labeled with a GO
term only once regardless of how many times the term
occurred in the abstract. The ontology fingerprints were
derived from 178,687 abstracts linked to at least one
human gene. In total, we constructed Ontology Finger-
prints for 25,357 human genes using 5,001 ontology
terms mapped to the PubMed abstracts that linked to
human genes.

Bayesian network

A Bayesian network was constructed based on the pro-
vided canonical signal transduction network, in which
nodes are proteins and directed edges represent signaling
flows [34]. For the proteins whose phosphorylation sig-
nals were measured, we represented their phosphoryla-
tion states using Bernulli variables, such that state = 1
(phosphorylated) and state = 0 (unphosphorylated).
Under such a setting, the observed fluorescent signals
reflecting the phosphorylation level of a protein (the con-
centration of phosphorylated protein) can be modeled

using a Gaussian distribution conditioning on their states
(Equation (1)):

p(vilsi = 0) ~ N(uio0, 0i0)

(1)
p(vilsi = 1) ~ N(ui1, 0i1)

Where v; denotes the activity reading of observed node
i, s; denotes its state; ;o and p; ; represent the average
activity reading of node i at sate 0 and state 1 respec-
tively; 0;0 and 0, represent the variance of activity read-
ings of node i at sate 0 and state 1 respectively. The
fluorescent measurements of the seven observed nodes
are modeled using a mixture of signals produced by
phosphorylated and unphosphorylated proteins.

Under the causal Markov assumption [35-37], we repre-
sented the conditional probabilistic relationship between a
phosphoprotein and its upstream signaling molecules
(kinases) with a logistic function, i.e. given the states of a
node i’s parents, the probability of the node i being at
active state (s; = 1) is independent of its nondescendents’
states. This logistic function was defined in Equation (2)
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1
—(Bio+ X Bijsj) (2)

jepa(s;)

p(si = 1lpa(si)) =

l+e

where pa(s;) denotes the set of parent nodes of node i,
and j denotes one of s parent nodes; s; represents the
state of j; B, is the interception and f3;; is the logistic
regression coefficient between node i and its parent
node j.

Learning structure of cell-type-specific signaling network
The DREAM 4 challenge requires inferring the cell-type-
specific signal network and predicting the cellular
response under certain stimulations. We formulated
these tasks as learning the structure and parameterization
of the Bayesian network and adopted a Bayesian learning
approach to determine the structure. Under this frame-
work, the goal is to identify a network structure, a model
M, which has the maximal posterior probability given
data D (Equation (3) and (4)):

M* = argmaxy,;p(M|D) 3)

p(MID) ~ p(M)p(D|M) (4)

The number of all possible network structures of a Baye-
sian network G (Equation (3)) is super exponential [38,39]
with respect to the number of nodes. Thus, exhaustive
search of all possible structures is intractable. In this
study, we developed a heuristic approach to utilize prior
biological knowledge to guide a stochastic search of biolo-
gically plausible candidate graphs, equivalent to selecting
networks with higher prior p(M). Based on these candidate
networks, we further performed a data-driven search of
network structure through parameterization. We identified
an optimal cell-type-specific network for HepG2 cells by
combining the networks that were preferentially selected
based on prior knowledge and that explained the observed
data well.

Searching for biological plausible network using the
Ontology Fingerprint

Using the provided canonical network as a starting point,
we explored the space of the cell-type-specific networks by
stochastically adding and deleting edges. The edge selec-
tion was based on the available prior biological knowledge
in order to search for network structures that are more
biologically sensible. To this end, we employed the Ontol-
ogy Fingerprint [33] to represent the prior knowledge of
proteins of interest. The Ontology Fingerprint of a gene
provides the characteristics of the cellular component,
molecular function, or biological process captured in the
literature with a quantitative measure. By comparing two
genes’ Ontology Fingerprints using a modified inner
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product, a similarity score is generated to quantify the
gene-gene relationship—the higher the score, the more the
two genes are biologically relevant. We used these similar-
ity scores to guide the exploration of model space of possi-
ble networks.

We calculated the similarity scores for all pairs of 40
genes in the canonical pathway. The similarity score was
used to assess whether an edge should be added or
deleted in the canonical network: edges linking two genes
with strong biological relevance (i.e. high similarity score)
will be added into the network with a higher chance,
while edges with weak biological relevance and weak data
support will be deleted from the network with a higher
chance. Figure 2 shows the heuristic rules of network
search. The candidate graphs were then used to infer the
parameters by applying the EM algorithm.

Searching for network structure based on observed data
Given a candidate network produced in the aforemen-
tioned space exploration, we further evaluated if the
model explains the observed experimental data well by
calculating the term p(D|M) in Equation (4). This
involves learning the parameters of the network model
and considering all possible combination of parameteri-
zation of the model to derive the marginal probability p
(D|M). In this study, we employed LASSO logistic regres-
sion to perform regularized (aka Bayesian) estimation of
parameters. We also used the Bayesian information cri-
teria (BIC) [40] as a surrogate of the marginal probability
of the network to assess the goodness of fit of the models.
In addition, we took advantage of the fact that, when the
logistic regression parameter between a target phospho-
protein and one of its parents is set to zero by the Lasso
logistic regression, we can effectively delete the edge
between these two proteins—searching for network model
through parameterization.

Bayesian learning of network model

The true phosphorylation states of the protein nodes were
not observed but indirectly reflected by the fluorescence
signals in the training data. Therefore the nodes represent-
ing protein phosphorylation states were latent variables.
We used an expectation-maximization (EM) algorithm to
infer the hidden state of each node and further estimated
the parameters of candidate models [41]. The hidden
states of the protein nodes were inferred using a Gibbs-
sampling-based belief propagation in the EM algorithm, i.
e. Monte Carlo EM algorithm (MCEM) [42]. In the E step,
the state of a node was inferred based on the states of its
Markov blanket nodes using a Gibbs sampling algorithm,
and all the nodes’ states were updated following the belief
propagation algorithm. In the M step the parameters asso-
ciated with edges were estimated based on the sampled
states of the nodes. The Markov blanket of node X is a set
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of nodes consisting of X’s parents, children, and other par-
ents of X’s children nodes. Given the states of the nodes
within X’s Markov blanket, the X’s state is independent of
the states of nodes outside the Markov blanket. We
derived the full conditional probability of a hidden node
(Equation (5.1) - (5.3)):

p(si = Olpa(si))p(ch(si)Ipa(ch(si)), si = 0)

p(si = OIMB(s)) = D, (5.1)
plsi = 1IMB(s)) = P15 = 1pats)p (Chl(;;)‘p a(ch(s) s = 1) (5.2)
Dy, =p(si = Olpa(si))p(ch(si)|pa(ch(si)), si = 0) (5.3)

+p(si = lpa(si))p(ch(si)Ipa(ch(si)), si = 1)

Similarly, the full conditional probability of the
observed node was described in Equation (6.1) - (6.3),
where the probability of each node’s state conditioned
on the states of its parents (p(s;|pa(s;))) can be deter-
mined using Equation (2):

s = OlMB(s) - P15 = 0P = Opa(s)p(eh(s)pa(eh(s)) 5 = 0)

D,
_ NG o)l = Opats(ehs patch(s) s - 0) (&)
D,
P = 118Gy = P15 = DR = PG pa( )5 = 1)
NG o0l = Hpats e ipatchis) s - 1) (2)
D,

Dy =N (15,0, 03,0)p(si = Olpa(s;))p(ch(si)Ipa(ch(s)), si = 0)

+N(in, 0i)p(si = Lpa(si))p(ch(si)Ipa(ch(si)), si = 1) (6.3)

Logistic regression was then used in the M-step to esti-
mate the parameters of the generalized linear model. In
order to reduce the search space, LASSO regression
implemented in the LARS package from R [43] was
applied in the final round of the EM algorithm to deter-
mine whether to perform regularization. This would set
certain parameters to zero between a parent-child protein
pair in the candidate network [44,45] while retaining the
edges that were sufficient to model the observed data.
Lasso regression could thus reduce the number of edges
in networks that have weak or duplicated effect on signal-
ing cascade.

Prediction of test data

To predict the fluorescent signals of 7 phosphoproteins
in response to cytokine stimuli under 40 testing condi-
tions, the phosphorylation states of these proteins were
sampled using the aforementioned EM algorithms (E
step only) and the belief propagation algorithm. The
fluorescent signals were then simulated by mixture of
the signals of proteins in both phosphorylated and
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unphosphorylated states defined in Equation (1). We
generated 50 samples of the activation state for each
protein node according to its posterior probability and
each sample predicted the strength of fluorescent signal
of the monitored proteins from the learned normal dis-
tribution conditioned on sampled states. The final pre-
diction was then produced by averaging the predicted
measurements of the observed nodes across all samples.

Results

The task of learning cell-type-specific network is equiva-
lent to determining which subset of vertices and edges
from the canonical network should be retained for that
cell type. We addressed the task of learning network
structure through combining prior knowledge and
experimental data in the following steps: 1) stochastically
exploring candidate network structures based on prior
knowledge; 2) training candidate Bayesian network using
experimental data, which further modifies network struc-
ture through parameterization, i.e., setting the parameters
associated with certain edges to the values that would be
equivalent to deleting these edges; and 3) selecting the
network model that best simulates the experimental
results. A Bayesian network can also readily simulate the
propagation of a signal in the system using a belief propa-
gation algorithm [29], which can predict the system’s
response to cellular stimuli.

The novelty of our approach is to update the network by
leveraging prior biological knowledge captured in the
Ontology Fingerprints [33] in order to efficiently search
for better network structure. The similarity of the Ontol-
ogy Fingerprints of a pair of genes captures their biological
relevance, e.g. whether they participate in a common biol-
ogy process within a common biological setting such as
the same cell type. Therefore, two genes with similar
Ontology Fingerprints are more likely to cooperatively
work in a common biological environment than those that
are not. This information could be used as prior knowl-
edge to preferentially retain or reject the edges in the
canonical network in a principled manner.

Learning cell-type-specific signaling network

Using the provided experimental data, we trained our
Bayesian network-learning algorithm to infer a HepG2
cell specific network. Figure 3A shows the provided cano-
nical network and the final predicted network is shown in
Figure 3B. DREAM4 competition only required to report
a collapsed graph, i.e. all hidden nodes removed, and
only the paths among the observed phosphoproteins
(colored nodes) shown. Figure 4 shows the comparison
between the collapsed canonical network and the net-
work learned by our algorithm. The figure shows that the
learned graph is simpler than the canonical graph: it con-
tains 17 edges instead of 27 in the canonical network.



Qin et al. BMC Systems Biology 2012, 6(Suppl 3):53
http://www.biomedcentral.com/1752-0509/6/53/S3

Page 8 of 13

Figure 4 Comparison of the collapsed original canonical and the inferred cell-type-specific pathways. A) Collapsed canonical network
provided by DREAM4 challenge where all hidden nodes and corresponding edges are removed; B) Collapsed network predicted by our
Ontology-Fingerprint-based graph search algorithm.

Notably, the number of each receptor’s edges was
reduced to three, resulting in a narrower transduction
path for each receptor. An intermediary node (PI3K) lost
all outgoing signals except one, and two terminal nodes
(ERK1/2 and HSP2/7) lost their connecting edge.
Another intermediary node (JNK1/2) lost its incoming
signals from three of the four signal nodes (TGFa, IGF1
and TNFa).

The predicted network represents a biologically plausi-
ble signaling pathway specific to HepG2 cells, partially
due to the novel graph search algorithm based on the
Ontology Fingerprints. For instance, the connections
between /KK and IKB tended to be kept during graph
updating due to the relatively high similarity of their
Ontology Fingerprints, with the similarity score ranking
above the 80™ percentile. In contrast, the connection
between ERK1/2 and HSP2/7 was deleted with a high
probability since their similarity score lies on the 30"
percentile. Overall, the model updating process based on
the novel graph search algorithm seamlessly included
prior biological knowledge embedded in the literature
and GO. Based on the training data of HepG2 cell,
employing LASSO regression [46] in learning Bayesian
network parameters further identifies main paths specifi-
cally transducing the signal in this cell type, resulting in a
sparse network.

Our results also indicate that Bayesian network is parti-
cularly suitable for modeling cellular signal transduction
in that principled statistical inference algorithms, e.g., the
belief propagation algorithm, enabled us to represent

hidden variables (nodes without observations) in the graph
and to infer detailed signal transduction in the pathway. In
contrast, other modeling approaches reported at the
DREAM4 conference, e.g., methods based biochemical
systems theory [47], usually ignore all hidden variables to
reduce the complexity of network modeling and parameter
estimation at the cost of missing intermediate information.
The full network predicted by our approach consists of 37
nodes connected by totally 47 edges, and each edge is
associated with a parameter that quantifies the relationship
of the signal propagated from the parent node to its child
node (Figure 3B). In this network, twenty-four nodes are
hidden but our inference algorithm correctly inferred their
states and relationships between the nodes in the network.
For instance, the directed edge from RAS to RAF, both of
which are hidden nodes, was assigned with a positive coef-
ficient (B = 53.12), indicating that RAS plays a strong acti-
vation role for RAF1. This infer-ence agrees with previous
findings [48-50] that RAFI is a critical RAS effector target,
and its activation is a consequence of RAS activation and
the formation of RAS-GTP-RAFI complex. The positive
connection between another pair of hidden nodes, from
RAC to PAK (B = 16.49), is also consistent with the fact
that PAK is the downstream effector of RAC [51,52]. Zim-
merman and Moelling [53] suggested that AKT-mediated
phosphorylation of RAFI leads to the inhibition of the
Raf-MEK-ERK cascade and the modulation of the cellular
response [54,55]. Indeed, our algorithm correctly captured
this relationship, which assigned a negative coefficient (8 =
-1.17E-12) to the edge from AKT to RAFI in our predicted
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network. While the low coefficient may reflect the fact that
the inference used the measurement performed on two
distal nodes—AKT and ERK, the negative value is indeed
consistent with the known inhibitory effect. These evi-
dences demonstrate that our approach can utilize the lim-
ited observed data to infer the signal transduction of the
full network, even though the state of certain nodes are
not observed.

Predicting cellular responses to stimuli

Using the final graph and the associated parameters
learned from the Bayesian network approach, we per-
formed simulation studies to predict cellular responses to
a set of provided stimuli and compared the “predicted”
results with the observed training data. The comparison
showed a very significant correlation (R* = 0.93). Figure 5
shows the scatter plot between the predicted versus the
observed levels for the phosphoprotein activity of all 7
proteins under all conditions. Figure 6 compares the fit-
ting of the data under different conditions for each of the
7 proteins. The black curves denote the observed phos-
phoprotein activity levels, while the red curves represent
the corresponding predicted values. The blue-line within
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each box indicates the detection threshold of the detector
(~ 300). Overall, the predictions are highly consistent
with the observed data, indicating that our model is able
to capture the signal transduction in HepG2 cells with a
sparse network.

Using the predicted HepG2 specific network and the
learned parameters, we then predicted the phosphopro-
tein activity levels of the 7 proteins under the test condi-
tions given by the DREAM 4 Challenge. The predicated
phosphoprotein activities were evaluated against experi-
mental measurement by the organizers of DREAM4 chal-
lenge using two criteria: first, the accuracy evaluated by a
prediction cost function (sum of squared errors over all
the predictions); second, network parsimony. Our group
(Team 451) ranked within the top five (#4 or #5 depend-
ing on different DREAM4 ranking methods) among all
submissions for this challenge (http://wiki.c2b2.columbia.
edu/dream/results/DREAM4/?c=3_1). This outcome
demonstrates that incorporating prior biological knowl-
edge in the form of the Ontology Fingerprint with statis-
tical algorithms for graph searching and parameter
estimation can significantly outperform many other
approaches for signaling network inference. Our results
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Figure 5 Comparison of predicted and observed phosphoprotein activity of 7 proteins of interest across different experimental
conditions. We used trained Bayesian network to predict the phosphorylation activity of the 7 proteins of interest under all experimental
conditions in the training data set. The “predicted” results were compared with the provided observations and a correlation analysis shows
significant correlation (R? = 0.93).
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Figure 6 Phosphorylation activity plots of 7 proteins of interest under the treatments of 5 different stimuli. We used the trained
Bayesian network to predict the phosphorylation level of 7 phosphoproteins under all conditions and compared with the observed data in
time-course plots. Within each box, the phosphorylation activity were predicted or observed at 3 time point (0 min, 30 min, and 3 hours post
stimulus are plotted, in which the observed data are shown in black and predicted data are shown as red. The blue lines appearing in some
boxes indicate that the activity measurement lies within the noise error of the detector (the reading is less than 300).

also demonstrate a novel way to integrate ontological
data and literature in learning signaling network con-
struction, as well as the feasibility of applying ontology as
biological information in other challenging data-mining
problems.

Discussion

A signaling network is a complex and dynamic system that
governs biological activities and coordinates cellular func-
tions [56,57]. Defects in signal transduction are responsi-
ble for diseases such as cancer, autoimmunity, and

diabetes [58]. By understanding signaling networks,
mechanisms of diseases can be investigated more specifi-
cally, and the disease could be targeted and treated more
efficiently. Moreover, different cell types often activate dif-
ferent parts of signaling networks, resulting in different
responses to the same perturbation. In this study, we
addressed the DREAM4 challenge of predicting signaling
networks using two innovative approaches: 1) by incorpor-
ating prior knowledge in the form of the Ontology Finger-
print, we efficiently and preferentially search biologically
plausible models, and 2) by using LASSO regression,
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we unified the Bayesian network parameter learning and
structure learning in a data-driven manner. These
improvements are principled from a statistical learning
point of view and sensible from a biological point of view.

Participants of the DREAM4 challenge developed var-
ious computational approaches to model the signaling
network and predict their cellular responses to different
stimuli. Dynamic mathematical modeling implemented
in a system of differential equations is one of the main-
stream approaches [59,60]. The method represents signal
transduction as detailed and biochemically realistic math-
ematical equations with the need to estimate many free
parameters. However, the parameter estimation becomes
extremely challenge as the number of species in the net-
work increases [1]. To circumvent this pitfall, one of the
participant teams using this approach omitted all hidden
nodes, i.e. species not subjected to experimental manipu-
lation or measurement. Such simplification resulted in
missing information of network topology and intermedi-
ate signal transduction. An alternative approach is to
depict the signaling pathway as a logical model and uti-
lize a two-state discrete (Boolean) logic to approximate
the signal propagation in the network. However, the Boo-
lean model is a deterministic approach not rigorous
enough to capture real biological events. Furthermore,
this model also involved node compression process to
remove non-identifiable elements [26].

By contrast, Bayesian network analysis represents an
effective mean to encode both the prior knowledge of
network topology and the probabilistic dependency in
signaling networks [19,61]. This approach has the advan-
tage of being able to handle hidden nodes in a principled
manner and to model mixed information of both the
noisy continuous measurements and the discrete regula-
tory logic by modeling these nodes as latent variables and
infer novel signaling paths from observed data. Such
advantage is particularly useful in real world application
where experimental measurements are expansive and
limited to certain selected proteins. The utility of these
data can be maximized by using latent variables to infer
novel signaling paths that contain proteins not been mea-
sured. However, the application of Bayesian network in
real world modeling is limited due to the super exponen-
tial space one has to search in order to identify the
optimal model [62]. Compared with other approaches
applied in the DREAM4 challenge, our approach has sev-
eral significant advantages: 1) it is able to predict the dis-
crete state of proteins in a probabilistic manner under
different stimuli, without the requirement of node com-
pression; 2) the incorporation of prior biological knowl-
edge embedded in the Ontology Fingerprint accelerates
the search for optimal network topology, in other words,
it increases the probability of obtaining an optimal net-
work within limited learning time; 3) the Ontology
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Fingerprint enhanced network search process makes the
inferred network more biologically sensible; 4) the
LASSO model regularization method efficiently assist the
search for a sparse network.

Our algorithm was further improved by embedding
biological information from the Ontology Fingerprint
into the learning stage of the Bayesian network model-
ing. This was accomplished through the introduction of
prior distributions for the variables. The seamless inte-
gration of prior knowledge into the Bayesian network
framework allowed us to construct a cell-type specific
signal transduction pathway and to use the pathway to
predict novel perturbation outcomes in the DREAM4
competition. The Ontology Fingerprint derived from
PubMed literature and biomedical ontology serve as a
comprehensive characterization of genes. Compared to
current gene annotation, the Ontology Fingerprints were
generated by a largely unsupervised method, thus do
not need well-annotated corpus which is difficult to
assemble. In addition, the enrichment p-value associated
with each ontology term in an Ontology Fingerprint can
be used as a quantitative measure of biological relevance
between genes—a feature that is lacking in current gene
annotations. This comprehensive and quantitative char-
acterization of genes works well as prior knowledge in
our graph searching strategy. In contrast, commonly
used graph searching algorithms, such as genetic algo-
rithms, only rely on a randomized exhaustive search
that is not able to utilize useful prior information. This
limitation not only makes these algorithms inefficient in
searching the plausible model space but also potentially
lead to networks that are biologically irrelevant.

To assess the contribution of the Ontology Fingerprints
to Bayesian network learning algorithm, we compared the
likelihoods of Bayesian networks iteratively updated with
or without the guidance of prior knowledge derived from
the Ontology Fingerprints. Starting with the canonical net-
work, we iteratively updated network structure until a
fixed number of networks were obtained. The converged
likelihood of each network was obtained by Monte Carlo
EM algorithm (MCEM) [42]. The likelihoods from Ontol-
ogy Fingerprint-guided network update were significantly
higher than those without the guide (Wilcoxon signed-
rank test, p-value = 3.4 x 10%). In addition, we investi-
gated the performance of Ontology Fingerprint enhanced
Bayesian network in eliminating biologically irrelevant
relationships from the network. We randomly added
edges with similarity scores of zero into the canonical net-
work, and considered the new network as a noisy network.
Starting with this noisy network, we performed the same
comparison as described above, and the resulting likeli-
hoods from Ontology Fingerprint-guided network update
were also significantly higher than the update process
without prior knowledge (Wilcoxon signed-rank test,
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p-value = 1.5 x 107). Furthermore, the network update
with prior knowledge successfully identified and elimi-
nated noisy edges quickly at the first several iterations.
These results demonstrated that integrating the Ontology
Fingerprint as prior knowledge can speed up the conver-
gence of likelihood, resulting in the increased efficiency of
both identifying optimal network structure and retaining
biological meaningful connections in the final network.

In addition to prior knowledge, our approach also
employed the LASSO technique [46] to select a plausible
model in a data driven manner. LASSO is one of the regu-
larization algorithms originally proposed for linear regres-
sion models, and has become a popular model shrinkage
and selection method. The LASSO method combines
shrinkage and model selection by automatically setting
certain regression coefficients to zero [63]. This approach
effectively deleted certain candidate edges between signal-
ing molecules, and helped to remove redundant variables
to obtain a concise model in the final step.

Conclusion

By incorporating prior biological knowledge, utilizing
advanced statistical method for parameter estimation and
modeling unobserved nodes as latent variables, we devel-
oped a novel approach to infer active signaling networks
from experimental data and a canonical network. Our
results demonstrated that these improvements allow us
to predict signaling network structure and responses that
match closely to those identified by experimental
approaches.
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