
Dent and Nardini BMC Systems Biology 2013, 7:10
http://www.biomedcentral.com/1752-0509/7/10
RESEARCH ARTICLE Open Access
From desk to bed: Computational simulations
provide indication for rheumatoid arthritis clinical
trials
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Abstract

Background: Rheumatoid arthritis (RA) is among the most common human systemic autoimmune diseases,
affecting approximately 1% of the population worldwide. To date, there is no cure for the disease and current
treatments show undesirable side effects. As the disease affects a growing number of individuals, and during their
working age, the gathering of all information able to improve therapies -by understanding their and the disease
mechanisms of action- represents an important area of research, benefiting not only patients but also societies. In
this direction, network analysis methods have been used in previous work to further our understanding of this
complex disease, leading to the identification of CRKL as a potential drug target for treatment of RA. Here, we use
computational methods to expand on this work, testing the hypothesis in silico.

Results: Analysis of the CRKL network -available at http://www.picb.ac.cn/ClinicalGenomicNTW/software.html-
allows for investigation of the potential effect of perturbing genes of interest. Within the group of genes that are
significantly affected by simulated perturbation of CRKL, we are lead to further investigate the importance of PXN.
Our results allow us to (1) refine the hypothesis on CRKL as a novel drug target (2) indicate potential causes of side
effects in on-going trials and (3) importantly, provide recommendations with impact on on-going clinical studies.

Conclusions: Based on a virtual network that collects and connects a large number of the molecules known to be
involved in a disease, one can simulate the effects of controlling molecules, allowing for the observation of how
this affects the rest of the network. This is important to mimic the effect of a drug, but also to be aware of -and
possibly control- its side effects. Using this approach in RA research we have been able to contribute to the field by
suggesting molecules to be targeted in new therapies and more importantly, to warrant efficacy, to hypothesise
novel recommendations on existing drugs currently under test.
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Background
Rheumatoid Arthritis (RA) is a complex disease involv-
ing a yet unknown number of molecules and their
alterations (from susceptibility genes [1], to unsustained
methylation [2], to metagenomic alterations [3]). The
disease affects a large number of organs, tissues and sites
across the body [4-7], typically causing recruitment and
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activation of inflammatory cells, synovial hyperplasia
and destruction of cartilage and bone. A complete loss
of mobility and functioning can be the final evolution of
the disease [8]. Affecting approximately 1% of the popu-
lation worldwide [9], extensive research into the treat-
ment of the disease is thus warranted. Highly relevant to
RA research is the identification of new therapies as, in
fact, some of the most common drugs used to treat RA,
such as MTX (Methotrexate [10], the most common
Disease Modifying Antirheumatic Drug, DMARD) can
cause further liver, lung and kidney damage as well as
strong immunodepression. More advanced therapies that
target focused pathways (anti-TNFα [10]) and reduce
-but do not eliminate- this type of side effect are
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extremely costly, whereas traditional approaches receive
controversial favour and lack molecular evidence [11].
To gain more insight into the basic mechanisms of action

of the disease and to develop more specific and useful
drugs, molecular data have been collected and combined so
that the whole structure of the molecular networks
involved in RA can be studied [12]. Specifically, gene
microarray data have contributed greatly to pathogenesis
and to the identification of biomarkers for diagnosis, to pa-
tient stratification and prognostication of RA [12]. Other
methods such as Genome-Wide Association Studies
(GWAS) have been used to scan the whole genome in
search of loci susceptible to carry mutations related to RA
[13-15] and in some cases information from these 2
approaches are joined to better predict candidate suscepti-
bility genes of the disease [16]. Furthermore, some signal
transduction pathways have also been identified as being
involved in the disease and have been recommended as
drug targets to treat RA [17-19].
Where possible, these data have already been combined

and analysed in [12], in which a comprehensive map for
RA was built to combine together the molecules and path-
ways that were so far found to be associated with RA,
based on systemic, high-throughput data and made avail-
able following the CellDesigner standard [20] (see also
Additional File 1). Expanding on this work, here we present
the outcome of further investigation into one of the most
important results from the aforementioned publication.
Specifically, we investigate further the potential of CRKL
(approved name: v-crk sarcoma virus CT10 oncogene
homolog (avian)-like), and its close network, as a drug tar-
get for RA. CRKL is believed to activate a number of signal-
ling pathways and may also be involved in tumour growth.
As CRKL is currently not a known drug target for RA, it is
potentially interesting for further research [21].
In the present study, the hypothesis that CRKL could act

as a potential drug target has been tested using computa-
tional methods to simulate the likely effect that perturbing
CRKL will have on the rest of the molecular interaction
network presented in [12]. In order to achieve this, the up-
and down-regulation of CRKL have been simulated using
the computational software BioLayout Express [12] and a
biological interpretation of the results is discussed. By add-
ing here dynamics and regulations to a sub-network of the
static reconstruction of the global molecular network in
[12], the current study allows us to show how, in time,
perturbation of the expression of molecules of interest in
the network can lead to a novel state of up- or down- regu-
lation of other molecules in the network.

Methods
Network reconstruction
In the first instance, a directional network of molecular
interactions between components involved in RA,
including CRKL, was extracted from the RA map publi-
cally available at [22]. Where necessary, Disease Atlas
[23] was used to clarify or disambiguate the literature
regarding the known state of the maps’ molecules in RA.
As the original map contained some nodes that were

not connected to CRKL (the molecule of interest in
this study), the aforementioned static interaction map
was trimmed using Cytoscape [24]. Specifically, using
Tarjan’s algorithm, available in the Cytoscape plug-in
BiNoM [25], all nodes that were strongly connected to
CRKL were identified, forming the core of the CRKL
sub-network. Nodes that were weakly connected to the
CRKL core-network (i.e. those nodes that are connected
to CRKL in only one direction) were identified and
added back to the network using a clustering algorithm
in Cytoscape that considers node overlap [25]. In this
way, isolated clusters of nodes (isolated clusters have no
effect on the rest of the network) and pathways that
were part of the original RA map but did not contain
CRKL and/or could not be affected by perturbation of
CRKL (due to limitations in connectivity between path-
ways) were removed. The resulting network, shown in
Additional File 2 (and available for download in graphml
format at [26]) contains 223 molecules linked to CRKL.
In order to use the pathway diagram as a resource for
modelling the CRKL network, and to simulate a dynamic
element, the Signalling Petri Net (SPN) algorithm pro-
posed in [27] was adopted.

(Signalling) Petri Net
Petri net models, first described in 1939 [28], character-
ise the dynamics of signal flow using token distribution
and sampling. Specifically, a Petri net is a directed net-
work in which nodes are connected by transitions, where
the edges describe the conditions for which transitions
can occur. Nodes in a Petri net contain a discrete num-
ber of ‘tokens’, the distribution of which across all nodes
describes the state of the system. In a Petri net a transi-
tion causes the number of tokens at a node to change by
‘firing’ whenever there are sufficient tokens at the start-
ing node of an edge. When a transition fires, tokens are
placed at the end node of the edge over which the tran-
sition occurs. The execution of a Petri net is nondeter-
ministic so that when multiple transitions are enabled at
the same time any one (or none) of them may fire, thus
representing the stochastic nature of the system.
Signalling Petri net (SPN) extends the Petri net model

by allowing for nonparametric modelling of cellular sig-
nalling networks; adding a simulator for modelling the
average flow of tokens over multiple time steps [27].
Compared to Petri nets, SPN can model different transi-
tions and different node types, corresponding to those
available in the commonly used System Biology Mark-up
Language (SBML). SBML is “a machine-readable format



Dent and Nardini BMC Systems Biology 2013, 7:10 Page 3 of 7
http://www.biomedcentral.com/1752-0509/7/10
for representing models, oriented towards describing
systems where biological entities are involved in, and
modified by, processes that occur over time” [29]. SBML
is particularly suitable for representing models com-
monly found in research on cell signalling pathways,
metabolic pathways, biochemical reactions and gene
regulation [29] to give examples, thus making it an ap-
propriate language to adopt here. A major advantage of
using software based on SBML is that it allows the sys-
tems biology community to share, evaluate and coopera-
tively develop models.
The addition of a simulator in SPN allows for one to

repeat the process of firing tokens over multiple time
blocks and to determine the state of a system on average
and after perturbation. Here, using BioLayout Express, a
software for the visualisation of biological data as net-
works [30] that incorporates SPN, it was possible to
allow each node of the CRKL sub-network to represent
a molecule and the number of tokens associated with a
node at each time point to represent its expression level.
Network simulation
By altering the number of tokens associated with CRKL
at time t = 0, BioLayout Express was used to simulate a
change in expression level of CRKL and the potential
consequential effect on the CRKL sub-network. To
achieve this, the CRKL sub-network was first trans-
formed by adding transition gates to the network. Nodes
at the edge of the network -representing the beginning
of a path- were (arbitrarily) assigned 100 tokens at time
zero. Those nodes that were at the end of a path were
allowed to lose a random number of tokens at each time
point chosen, as with movement of tokens downstream,
uniformly from 0 to the number of tokens present at the
parent node. This is necessary to avoid a build-up of
tokens at the end of a pathway as this would lead to
biased results for nodes that have zero out-degree (i.e.
nodes from which no other node can be reached). Bio-
logically, this assumption represents self-regulation of
molecules. To simulate up- and down-regulation the
number of starting tokens for CRKL was increased to
500 and reduced to 10, respectively. Each scenario (con-
trol, down-regulation and up-regulation, with 100, 10
and 500 tokens at time zero, respectively) was simulated
500 times, over 20 time points. The mean number of
tokens per node per time point was recorded (mean cal-
culated over all simulations, 500, per scenario).
Interpretation
The t-value and corresponding p-values were calcu-
lated for each node in its active state (n.b. the original
static network distinguishes between molecules in
their active and inactive state to allow, for example,
other proteins to catalyse activation). Namely, for
each of the 223 nodes of the network the statistical
significance of the 20th, and thus most stable, time
point was computed by calculating the t-value for the
control and perturbed distributions according to the
equation:

t � value ¼ μi;c�μi;pffiffiffiffiffiffiffiffiffiffiffi
σ2
i;c
500þ

σ2
i;p
500

q , where the μi ' s and σi
2 ' s represent

the mean and variance of the number of tokens at
node i at time point 20, for the control (c) and per-
turbed (p) networks. Comparing the absolute t-value
with the corresponding critical value (t0.05, 500 = 1.965),
those molecules whose expression level significantly
changed after perturbation of CRKL were identified.
After obtaining the novel equilibrium state of the

system, to verify whether or not the control on the
mechanisms of interest was already under way via
existing drugs (and to investigate the possibility to
translate them to RA), we started our query from the
Drugs and Compound overlapping for relevant mole-
cules, using the GeneCards human gene database
[31,32], returning to the literature and on-going stud-
ies for further supporting material. This discussion is
turned to the RA-relevant case i.e. the forced down-
regulation of CRKL as a possible therapeutic ap-
proach as, in fact, CRKL appears to be up-regulated
in the disease.
Following the public availability of the RA network

used to inform this study, the network analysed here
is also made publically available at [26], where is can
be saved as a graphml file, suitable for running SPN
in BioLayout Express.
Results and discussion
For both scenarios (up- and down-regulation of
CRKL), there was little difference in the manner in
which expression levels of molecules changed over the
twenty time points, with both scenarios resulting in
two distinct groups of profiles: namely those that reach
a high expression level in a short number of time
points and a small number of less consistent more
scattered profiles (see Additional File 3 and Additional
File 4, which show examples of the expression profiles
for molecules after up- and down-regulation of CRKL).
In both scenarios, the majority (~76%) of molecules
appeared to reach a stable threshold in the first 10 time
steps. This result implies that when a single node is
perturbed, the topological structure of the network as
a whole remains stable, which is typical of biological
networks [33]. Figure 1 (and Additional File 5) shows
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Figure 1 Mean expression level of network molecules significantly affected by regulation of CRKL. a) Simulated change in expression
levels of molecules connected to CRKL, for CRKL down-regulated and b) Simulated change in expression levels of molecules connected to CRKL,
for CRKL up-regulated. CRKL omitted (see Additional File 5 for CRKL included). Nodes correspond to those in Table 1.
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the expression profile patterns of the molecules that
are significantly affected perturbation of CRKL, namely
ABL1 (by CRKL up-regulation only), PXN, RHOQ,
RAPGEF1 and RAP1B (full descriptions given in Add-
itional File 6 - see also Table 1 and Discussion). These
graphs are useful to observe the dynamics of the re-
sponse as they indicate how the number of tokens
builds up over time. However, these numbers are al-
ways positive and relative to the starting number of
tokens at CRKL. Therefore, to determine if these dif-
ferences in expression profiles are important, the
change in the mean number of tokens per node at the
20th time point, compared to the baseline (here 100
tokens at time zero), was considered for CRKL up-
(500 tokens at time zero) or down- (10 tokens at time
zero) regulated. This enables one to further understand
the affect that perturbing CRKL has on its neighbours.
These differences are summarised in columns 5 and 6
of Table 1, which shows the most statistically signifi-
cantly changed nodes.
Knowing that down-regulation of CRKL is of interest,

as the gene appears to be up-regulated in RA (see [34]
and related articles), few words are necessary to discuss
the case of ABL1, which was shown to be statistically
significant only when CRKL was up-regulated: ABL1 is a
well-known part of the network of interactions of CRKL,
with its activity contributing to the phosphorylation
-and therefore activation- of CRKL. The computational
result indicating that ABL1 appears to be significantly
affected by the enhanced activity of CRKL, but not by



Table 1 Results of t-test comparing mean expression levels (at time point 20) for all scenarios

Node name Mean number of tokens at 20th time point Absolute t-value (p-value)

Control CRKL up-regulated CRKL down-regulated CRKL up-regulated CRKL down-regulated

ABL1 130.05 145.27 120.51 2.51 (0.012) 1.7 (0.089)

CRKL 149.84 676.62 14.95 34.57 (<0.001) 39.34 (<0.001)

PXN 34.69 101.84 5.09 16.34 (<0.001) 20.54 (<0.001)

RAP1B 17.58 48.25 2.45 11.80 (<0.001) 14.96 (<0.001)

RAPGEF1 38.70 112.44 6.05 16.14 (<0.001) 19.34 (<0.001)

RHOQ 36.04 103.40 5.35 15.83 (<0.001) 19.10 (<0.001)
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the reverse, is clearly interpretable in biological terms as
ABL1 is, in a physiological condition, a trigger of CRKL
activity. Therefore, CRKL activation is necessarily due to
phosphorylation, requiring ABL1 to display significant
levels of activity (CRKL up, ABL1 up). Conversely in our
scenario, inhibition of CRKL is forced from outside the
network with the token depletion that mimics the
possible inhibitory activity of a novel drug. If this were
to be done directly on CRKL, indeed inhibition of ABL1
would not be relevant (CRKL down, ABL1 free).
However, despite the smooth (biological) interpret-

ation of this particular result, we wish to warn potential
users of our approach in that such situations (one-sided
statistical significance) can, in some cases, be ambiguous
and possibly interpretable as unreliable (ABL1 is indeed
no longer statistically significant at the 1% level for
CRKL up-regulated). As always, computational results,
obtained by more or less simplified modelling of the bio-
logical reality, require manually curated biological
interpretation.
For CRKL down-regulated (desirable effect for the

control of RA), we investigate the following further:
RAP1B, RAPGEF1, PXN and RHOQ. The known inter-
actions among these four molecules indicate that PXN
phosphorylation activates CRKL, which triggers the RAS
and JUN pathways involved in cytoskeleton remodelling
and cell adhesion [21]. Considering first the central mol-
ecule in this sub-network (RAPGEF1), we observed that
no compound was listed in [35] as being able to target
the gene of interest. Since RHOQ and RAP1B are dir-
ectly connected to RAPGEF1 in the activation of
GTPases (hydrolase enzymes that can bind and hydro-
lyse guanosine triphosphate, GTP) we concentrated our
efforts around PXN and CRKL to identify overlapping
compounds for discussion.
CRKL is associated with a number of pathways, for in-

stance the MAPK signalling pathway, chronic myeloid
leukaemia and regulation of the actin cytoskeleton path-
way. Most of these pathways are related to immune and
inflammation reactions. However, as far as searching
Pharmacogenomics Knowledge Base website [36] we
found no evidence to suggest that CRKL is being used as
a drug target. In the following we therefore discuss the
implication of CRKL down-regulation only, as this is
relevant to our original goal of identifying CRKL as pos-
sible drug target in RA.
CRKL is activated by phosphorylation and PXN binds

to CRKL once phosphorylated. Therefore, inhibitors of
tyrosine kinases can lead to the down-regulation of
CRKL and PXN, a fact that is being now taken into con-
sideration for the development of novel RA drugs [37].
Indeed, a recent clinical trial (phase II) shows promising
results in the control of a specific tyrosine [38], based on
clinical efficacy observed in mice where the small mol-
ecule R406 is used to target the spleen tyrosine kinase
(Syk), which plays a crucial role in the signalling of acti-
vating Fc receptors and the B-cell receptor [39]. From
our network analysis in human, we can suggest that the
control of synovium degeneration illustrated above
might be an additional reason to its efficacy, as Syk is
directly linked to CRKL [40,41]. Additionally, we can
suggest an interpretation to one of the side effects of the
therapy: neutropenia. Due to the crucial role of CRKL in
neutrophil adhesion (control of neutrophils’ spatial acti-
vation [35]), CRKL indirect down-regulation via Syk for
the control of synovium degeneration implies a reduc-
tion in neutrophils activity.
The control (down-regulation) of PXN was also pro-

posed as a novel therapeutic approach for RA, as PXN
is up-regulated in this disease via the triggering of the
FAK family kinases signalling cascade [42]. To our
knowledge this path has not (yet) been pursued. In gen-
eral, the control of PXN can be achieved through a hier-
archy of interactions and therefore this represents a
more subtle system that cannot be targeted by the
‘golden bullet’ therapy approach. Interestingly insulin,
via the tyrosine dephosphorylation of PXN, is able to
control (reduce) its activity in conjunction with Phos-
photyrosyne Phosphatase 1D [43]. Phosphotyrosyne
Phosphatase 1D is encoded by PTPN11 and controlled
(inhibited) by echistatin [44]. This is extremely signifi-
cant as a large amount of literature exists on insulin
related to diabetes. The overlap between RA and dia-
betes is an interesting one: in RA and diabetes, levels of
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inflammatory markers, such as C-reactive protein
(CRP), TNFα and interleukin-6 (IL-6) are typically
increased and drugs used to treat RA by reducing in-
flammation -through inhibition of TNFα- have shown
promising results in the treatment of diabetes [45].
Reducing inflammation with Remicade has also shown
to improve insulin sensitivity in people who had inflam-
matory diseases and were insulin resistant [46]. It there-
fore follows suite that some treatments for one
inflammatory disease may be effective in the treatment
of the other. In this direction, an on-going clinical study
(NCT00763139) is testing Pioglitazone (commonly used
for diabetes treatment) on RA. This trial is based on the
rationale that recent studies have shown an increased
prevalence of coronary artery atherosclerosis, metabolic
syndrome and insulin resistance among people with
RA. Furthermore, insulin resistance, which can lead to
hyperinsulinemia -too much insulin in the blood- has
been associated with RA disease activity and the severity
of coronary artery atherosclerosis. These correlations
corroborate the observation that inflammation and
hyperinsulinemia somehow interact and facilitate one
another. Interestingly, by joining all the above informa-
tion, thanks also to the systemic view that the map
allowed us to have, we can recommend not to use
Pioglitazone in conjunction with echistatin and
therefore add this interaction as an unsuitable one. This
is a non-trivial result of our simulation as echistatin has
already been suggested as a possible compound for the
treatment of RA [47].
Conclusions
The regulation of CRKL represents a typical systems
biology problem, such that in order to justify using ex-
perimental techniques to understand the mechanisms in
which the molecule(s) of interest is (are) involved, sound
hypotheses need to be formulated. The computational
methods adopted here have been specifically designed to
simulate a dynamic element in a previous static repre-
sentation of a biological network, providing essential
support for guiding future research, whilst also allowing
for a systemic view of the biological network of interest.
The results of the simulation modelling also draw our

attention to several genes known to be involved in RA
and, specifically, the triggering of the RAS and JUN
pathways; typical phenomena occurring in the degener-
ate synovium, characterizing the condition [21]. As
CRKL appears to be up-regulated in RA, we hypothesise
that the in silico analysis [12] that suggests CRKL as a
possible target for the RA therapy reflects the biological
rationale that the down-regulation of CRKL -which
controls the activation of PXN- represents a mean to
control the synovium degeneration.
Based on these observations, our approach has allowed
us, importantly, to move one step forward i.e. to use the
results of simulations to suggest practical and meaning-
ful information to be translated in clinical practice.
The results obtained thus have allowed us to generate

more refined hypothesis in silico that have the potential
to advise and impact the future of RA research.

Additional files

Additional File 1: Molecular-interaction map for RA. (a) protein-
protein interaction map, (b) gene regulation map. The two maps are
joined by transcription factors. For a more comprehensive view, we
recommend to visualize the figure with CellDesigner [22].

Additional File 2: CRKL sub-network. Edges correspond to SBML
reaction types: black - modifier; green - product; red - reactants.
Reactions are labelled by a circle and species are labelled by a diamond.

Additional File 3: Mean expression level of network molecules for
CRKL down-regulated. Simulated change in expression levels of a
sample of molecules connected to CRKL, for low starting levels of CRKL
(CRKL excluded). Sample chosen to display every 10th molecule, sorted
by expression level at time t = 20.

Additional File 4: Mean expression level of network molecules for
CRKL up-regulated. Simulated change in expression levels of a sample
of molecules connected to CRKL, for high starting levels of CRKL (CRKL
excluded). Sample chosen to display every 10th molecule, sorted by
expression level at time t = 20.

Additional File 5: Mean expression level of network molecules
significantly affected by regulation of CRKL. a) Simulated change in
expression levels of molecules connected to CRKL, for CRKL down-
regulated and b) Simulated change in expression levels of molecules
connected to CRKL, for CRKL up-regulated. Nodes correspond to those in
Table 1.

Additional File 6: Summary table of molecules. Summary of aliases,
function and ontology (as described by GeneCard [31]) for molecules in
Table 1.
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