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Abstract

Background: Meiosis is the sexual reproduction process common to eukaryotes. The diploid yeast Saccharomyces
cerevisiae undergoes meiosis in sporulation medium to form four haploid spores. Initiation of the process is tightly
controlled by intricate networks of positive and negative feedback loops. Intriguingly, expression of early meiotic
proteins occurs within a narrow time window. Further, sporulation efficiency is strikingly different for yeast strains
with distinct mutations or genetic backgrounds. To investigate signal transduction pathways that regulate transient
protein expression and sporulation efficiency, we develop a mathematical model using ordinary differential
equations. The model describes early meiotic events, particularly feedback mechanisms at the system level and
phosphorylation of signaling molecules for regulating protein activities.

Results: The mathematical model is capable of simulating the orderly and transient dynamics of meiotic proteins
including ImeT, the master regulator of meiotic initiation, and Ime2, a kinase encoded by an early gene. The model
is validated by quantitative sporulation phenotypes of single-gene knockouts. Thus, we can use the model to make
novel predictions on the cooperation between proteins in the signaling pathway. Virtual perturbations on feedback
loops suggest that both positive and negative feedback loops are required to terminate expression of early meiotic
proteins. Bifurcation analyses on feedback loops indicate that multiple feedback loops are coordinated to modulate
sporulation efficiency. In particular, positive auto-regulation of Ime2 produces a bistable system with a normal
meiotic state and a more efficient meiotic state.

Conclusions: By systematically scanning through feedback loops in the mathematical model, we demonstrate that,
in yeast, the decisions to terminate protein expression and to sporulate at different efficiencies stem from feedback
signals toward the master regulator Ime1 and the early meiotic protein Ime2. We argue that the architecture of

meiotic initiation pathway generates a robust mechanism that assures a rapid and complete transition into meiosis.
This type of systems-level regulation is a commonly used mechanism controlling developmental programs in yeast

high quality and quantity.

and other organisms. Our mathematical model uncovers key regulations that can be manipulated to enhance
sporulation efficiency, an important first step in the development of new strategies for producing gametes with

Background

The diploid yeast Saccharomyces cerevisiae undergoes mi-
tosis in glucose medium. Upon transfer to acetate sporula-
tion medium, cells commit to meiosis, a division process
that produces four spores [1]. Meiotic initiation involves a
sequential activation of signaling molecules. Importantly,
expression of these molecules occurs transiently within a
short time window [2-8], suggesting that protein turnover
and modification are under tight regulation. These short-
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lived signals are important for efficient entry and success-
ful completion of meiosis [9]. Further, interactions among
these signaling molecules can lead to different levels of
sporulation efficiency, as seen from yeast strains with dis-
tinct mutations or genetic background [10]. Understand-
ing how the transient signals are generated and trigger
sporulation at different efficiency represents an important
first step in the development of new strategies for produ-
cing gametes with high quality and quantity.

Many key players and their interactions that control yeast
meiotic initiation have now been identified (see Figure 1)
[11,12]. Imel, the master transcriptional activator for early
genes, is regulated by multiple input signals. Imel is re-
pressed in the presence of glucose and activated by acetate
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Figure 1 A signaling pathway that controls yeast meiotic
initiation. Proteins enclosed in an oval are model variables.
Phosphorylated proteins are labeled with the letter P in a grey circle.
Solid lines represent phosphorylation, dephosphorylation, or
degradation; dashed lines indicate regulatory interactions between
proteins. The arrow at the end of a dashed line depicts activation;
the bar at the end of a dashed line shows repression.

and nitrogen depletion [13]. When glucose is present, Imel
expression is inhibited by Sok2, which is phosphorylated by
protein kinase A (PKA). Under meiotic conditions, PKA ac-
tivity is reduced, resulting in dephosphorylation of Sok2
and, thereby, the release of inhibition on Imel [6]. Imel
positively auto-regulates its own expression, potentially by
inhibiting Sok2 activity [6]. Imel is also regulated by G1
cyclins (Cln3/Cdc28), which reduce IME] transcription and
prevent Imel accumulation in the nucleus [14]. In contrast,
transcriptional activators Msn2/4 promote IMEI expres-
sion in the presence of acetate [15]. Similarly, Snfl, a kinase
in the glucose repression pathway, stimulates expression of
IMEI [16].

Inactivation of PKA under meiotic conditions leads to
enhanced activity of Rim11, a kinase that phosphorylates
Imel and Ume6 [2,4,7]. Phosphorylation stabilizes the
Ume6-Imel complex, which is recruited to the promoters
of early meiotic genes such as IME2 to activate their ex-
pression [17,18]. Ime2 is a kinase and functions as a posi-
tive regulator for premeiotic DNA replication and nuclear
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division [19]. Ime2 plays an important role in terminating
expression of early meiotic genes through promoting pro-
teolytic degradation of Imel [3,9]. This negative regulation
ensures that Imel is only expressed within a narrow time
window. In addition, Ime2 transcriptionally activates its
own expression via upstream activation sequences [17,20].
This positive auto-regulation allows Ime2 to activate mid-
dle meiotic genes independent of Imel. Further, mutual
antagonism between Ime2 and GI1 cyclins (Cln3/Cdc28)
may be responsible for distinct response modes of meiotic
genes to Imel levels [21].

NDT80 encodes a transcription factor that activates ex-
pression of mid-meiosis genes [22]. The phosphorylated
Imel-Ume6 complex is insufficient to activate NDT80 due
to the presence of a repressor, Suml, on its promoter.
Ime2 can activate expression of NDT80 by eliminating
Sum1-mediated repression [23,24]. Ime2 further phosphor-
ylates Ndt80, allowing Ndt80 to promote its own expres-
sion by competing with Sum1 for binding on the promoter
[25]. In turn, Ndt80 is a transcriptional activator of IME2.
Ndt80 boosts Ime2 activity during the middle stage of
sporulation [26,27], and premature transcription of NDT80
induces transcription of IME2 [21].

Because of complex feedback regulation on the meiotic
initiation pathway, mathematical modeling becomes an im-
portant tool to understand dynamic behaviors of signaling
molecules and how their interactions ensure different de-
grees of sporulation efficiency. Feedback controls, which
link the output of a circuit back to its input, are a key
mechanism to stabilize cell-fate decision. Both experimen-
tal data and computational modeling suggest important
roles of feedback loops in regulating mitotic entry and exit,
cell growth, cell cycle, and pheromone pathways [28-33].
Negative feedback loops can generate oscillations or mono-
tonic dynamics, while positive or double-negative feedback
loops can produce bistability, i.e,, having two coexisting
stable steady states [34-36]. In the case of stronger positive
or double-negative feedback loops, bistability can further
lead to irreversibility, where a cell is locked in the post-
transition state even after the stimulus disappears [29].
Likewise, feedback loops may be responsible for transient
dynamics of early meiotic proteins and different sporula-
tion outcomes.

Boolean network models—a discrete method—have
been developed to simulate the dynamics of meiotic initi-
ation pathways. One study focuses on predicting sporula-
tion efficiency upon gene deletions, and the other explains
transient transcription of IMEI and IME2 by introducing
two hypothetical repressors to shut down gene expression
[37,38]. Here, we develop an ordinary differential equation
(ODE) model, a continuous method, to faithfully describe
the nonlinear temporal dynamics of meiotic initiation
pathways, incorporating numeric values of protein expres-
sion, kinetic rates, and time. The model depicts a signaling
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cascade of early meiotic proteins. Importantly, the model
illustrates phosphorylation reactions and feedback loops
that are crucial for directing the initiation of meiosis,
based on the current knowledge available in the literature.
The model correctly captures transient dynamics of meiotic
proteins and accurately produces sporulation phenotypes of
single-gene knockouts. We apply this model to investigate
the contribution of feedback loops to transient behaviors of
signaling molecules and sporulation efficiency.

Results

A signaling pathway that controls yeast meiotic initiation
We construct a signaling pathway to describe the initial
phase of yeast meiosis based on the literature (Figure 1).
The pathway includes Rimll, pUme6 (the prefix “p”
stands for the phosphorylated form of the protein),
pSok2, Imel, pImel, and Ime2. Protein synthesis, deg-
radation, phosphorylation, and feedback regulations are
depicted in the pathway (Table 1). Rim11l, Ume6, and
Sok2 change their phosphorylation formalism in re-
sponse to external nutrients. Under meiotic conditions,
reduced activity of PKA results in dephosphorylation of
Riml11l and Sok2. Rim11l further mediates phosphoryl-
ation of Ume6 and Imel. Imel is the master regulator of
meiotic initiation. A double-negative feedback loop ex-
ists between Imel and pSok2. Imel and pUme6 together
induce Ime2 expression. Subsequently, Ime2 down-
regulates Imel through a negative feedback loop and
up-regulates itself through a positive feedback loop. This
signaling pathway has been converted into a set of
nonlinear ordinary differential equations that describe
the rate of change of proteins over time (Equations 1, 2,
3, 4, 5 and 6). The mathematical model allows for a sys-
tematic analysis of interactions between signaling mole-
cules and how these interactions lead to different
meiotic outcomes.

The constructed model is an abstract of real pathways,
incorporating major players and events. The effects of
other molecules are reflected indirectly in the model.
For example, we assume PKA remains constant at a low
level under meiotic conditions [39,40]; the effects of up-
stream regulators of Imel (e.g, Cln3/Cdc28, Msn2/4,
Snfl) are collectively represented by a general activation
signal and a repression signal through pSok2; mutual in-
hibition between Ime2 and Cln3/Cdc28 and mutual acti-
vation between Ime2 and Ndt80 are both captured by
positive auto-regulation of Ime2.

Table 1 Feedback loops in the model

Feedback Type
Ime1 —| pSok2 —| Ime1 Double-negative feedback
Imel — > plmel — >Ime2 —| Ime1 Negative feedback

Ime2 — > Ime2 Positive feedback
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Using mitotic initial conditions (all variables are 0 except
pSok2 with a value of 1) and baseline parameter values
(Table 2), we simulate the time-dependent dynamics of
early meiotic proteins (Figure 2). The model readily gener-
ates the pattern of protein expression that is consistent
with experimental evidence [2-8]. We find that early mei-
otic proteins are induced in a sequential and transient
manner. The decline of pSok2 occurs concurrently with
the rise of Rim11 and pUme6. Both unphosphorylated and
phosphorylated Imel exhibit a transient expression peak
around six hours, after which Ime2 reaches its highest ex-
pression level before decreases. At the steady state, Rim11
and pUme6 remain highly expressed, while the levels of all
other proteins drop from their peak values (Table 3). In
fact, the system evolves to this steady state regardless of
initial conditions (Additional file 1), suggesting that a sin-
gle, stable steady state exists for the ODE model. This is
further confirmed by the bifurcation analysis described
later (see the section “Feedback loops control sporulation
efficiency”).

Model validation by sporulation-deficient and proficient
genes
High-throughput screens of ~4,000 yeast deletion strains
have identified 267 genes required for sporulation (sporula-
tion-deficient genes) and 102 genes whose disruption en-
hances sporulation efficiency (sporulation-proficient genes)
[10]. Our mathematical model describes temporal dynam-
ics of meiotic proteins encoded by five genes, among which
RIM11, UMES6, IMEI, and IME?2 are sporulation-deficient
genes and SOK?2 is a sporulation-proficient gene. Because
the sporulation data are distinct from those used for model
building, they can be applied for evaluating model per-
formance. We virtually delete each of the five genes from
the wild type model and simulate temporal dynamics of
proteins in these knockout models (Additional file 2:
Tables S1, S2, S3, S4 and S5, Figures S1, S2, S3, S4 and S5).
Ime2 is used as the model readout for sporulation phe-
notypes because it is the most downstream protein that
reflects changes in all others in the pathway. We find that
Ime2 levels remain at zero in the knockout models of
sporulation-deficient genes RIMI11, UME6, IMEI, and
IME2 (Figure 3A). Virtual deletion of IME2 results in
non-transient expression of Imel (Additional file 2:
Figure S5), consistent with previous experimental observa-
tion [3]. In contrast, for the knockout model of SOK2, a
sporulation-proficient gene, Ime2 exhibits damped oscilla-
tions and enhanced expression compared to the wild type
model (Figure 3A). To further quantitatively evaluate the
ODE model for sporulation phenotypes, we calculate the
Pearson correlation coefficient between experimentally de-
termined sporulation/pre-sporulation ratios and simulated
steady state levels of Ime2 for five gene knockouts and
wild type (Figure 3B). Significant correlation is observed
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Table 2 Parameters defined in the model
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Parameter Definition Value Reference
Synthesis, dimension =/hour

Simer Synthesis rate of Ime1 10 [15,43-45]
Sime2 Synthesis rate of Ime2 10 [39]

Sime2 The maximum rate of auto-regulation-dependent Ime2 synthesis 3 Estimated
Degradation, dimension =/hour

imer Degradation rate of Ime1 1 [3]

et The maximum rate of Ime2-activated Ime1 degradation 1 [3]

Apimer Degradation rate of plmel 1 [3]

ime> Degradation rate of Ime2 8 [3]
Phosphorylation, dimension =/hour

Prim11 Phosphorylation rate of Rim11 0.01 [2], Estimated
Usim11 Dephosphorylation rate of Rim11 0.1 [2], Estimated
Dumes Phosphorylation rate of Ume6 03 [18], Estimated
Uymes Dephosphorylation rate of Ume6 0.01 [18], Estimated
Psok2 Phosphorylation rate of Sok2 0.7 [6], Estimated
Usoko Dephosphorylation rate of Sok2 1 [6], Estimated
Pime1 Phosphorylation rate of Ime1 2 Estimated
Constant, dimensionless

Csok2 Constant measuring half-maximum inhibition of Sok2 phosphorylation by Ime1 0.05 Estimated
Cimer Constant measuring half-maximum inhibition of Ime1 synthesis by pSok2 0.01 Estimated

¢ Constant measuring half-maximum activation of Ime1 degradation by Ime2 0.01 Estimated

C Constant measuring half-maximum activation of Ime2 synthesis through auto-regulation 14 Estimated

C3 Constant measuring half-maximum activation of Ime2 degradation 2 Estimated

between the measured and predicted sporulation effi-
ciency (Pearson correlation = 0.85, P-value = 0.033). These
results suggest that the mathematical model correctly
captures sporulation phenotypes of single-gene deletions.
Once the model is validated, we can then use the model to
explain and predict the role of feedback loops in regulating
sporulation efficiency and transient behaviors of signaling

molecules. Noteworthily, the constructed model (Figure 1)
may be one of many models that could generate protein
dynamics and knockout phenotypes in agreement with ex-
perimental evidences. The identification of other potential
models requires scanning all possible topologies linking
the six proteins that can satisfy the current knowledge of
yeast meiosis.
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Figure 2 Numerical simulations of protein levels in wild type. The mathematical model includes Equations 1, 2, 3, 4, 5 and 6. Initial condition
of all variables is 0 except for pSok2 with a value of 1. Parameter values are listed in Table 2.
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Table 3 Steady state value of variables using a mitotic
initial condition and baseline parameter values

Variable Steady state value
Rim11 091
pUme6b 0.96
pSok2 0.25
Ime1 0.05
plme1 0.10
Ime2 0.27

A global analysis of parameter sensitivity

When in silico models include a large number of parame-
ters describing biological processes, it is critical to under-
stand the role of each parameter in variations of model
outcome. Sensitivity analysis is used to investigate which
parameters have the greatest influence on model output.
It can help identify key parameters—and, thus, the associ-
ated biological processes—that determine distinct out-
comes. We perform multi-parametric sensitivity analysis
on the ODE model [41]. The response of six variables is
examined by simultaneously varying all 19 parameters in
the model over a wide range of choices. Sensitivity is in
the range of 0 and 1; more important parameters are asso-
ciated with larger sensitivity values (Figure 4).

The overall pattern indicates that early meiotic proteins
are sensitive to parameters that directly regulate their
homeostasis. Levels of Rimll, pUme6, and pSok2 are
mainly affected by phosphorylation and dephosphorylation.
Rim11 and pSok2 are more sensitive to dephosphorylation
than phosphorylation (#4,4,,11, Usor2), but the opposite is true
for pUmeb6 (p,,.e6)- The findings are consistent with the
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active forms of these proteins in meiosis. Synthesis and
phosphorylation are most important to alter the Imel level
(Simer> Pimer); both processes directly determine the gain or
loss of Imel. The level of pImel is primarily modulated by
the synthesis of Imel and degradation of Ime2 (s;,.es
dimez)- Imel synthesis indirectly controls pImel through
regulating Imel; Ime2 degradation indirectly influences
plmel through Ime2-activated Imel degradation. Parame-
ters that control Ime2 auto-regulation and degradation
have the greatest influence on Ime2 variations (Simez Dime2)-

Feedback loops control transient expression of signaling
molecules

Feedback regulations are important for coordinated and
transient behaviors of developmental systems [33,37].
Imel and Ime2 exhibit orderly and transient expression
during meiosis (Figure 2). These short-lived signals are
critical for the successful completion of sporulation [9].
We investigate how feedback loops affect dynamics of
early meiotic proteins. A total of three feedback loops
are described in the model: double-negative feedback be-
tween pSok2 and Imel, negative feedback from Ime2 to
Imel, and auto-positive feedback of Ime2 (Table 1). We
up-regulate, down-regulate, or delete each feedback loop
through manipulating corresponding parameters. Pro-
tein dynamics are monitored in these in silico perturb-
ation experiments.

Double-negative feedback between pSok2 and Ime1

Phosphorylated Sok2 is an upstream repressor of Imel,
and, conversely, Imel inhibits Sok2 phosphorylation,
forming a double-negative feedback loop. We first

A
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Figure 3 Model validation by simulating single-gene knockouts. A) Ime2 dynamics when deleting genes individually in the model. Red
dashed line: rim11, ume6, imel, and ime2 knockouts; red dotted curve: sok2 knockout; green curve: wild type. Mathematical models of single-gene
knockouts are described in Additional file 2: Tables S1, S2, S3, S4 and S5. B) Pearson correlation between experimental sporulation/pre-sporulation
ratios and simulated Ime2 values at steady state for five single-gene knockouts and wild type.
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Figure 4 Analyses of global parameter sensitivity. Global effects of parameters on model variables are investigated by simultaneously varying
all 19 parameters within a range of one order of magnitude larger and smaller than baseline values. A random sample of each parameter is
generated from the range with a uniform distribution; the sampling is performed 5,000 times to calculate parameter sensitivities. Sensitivity value
is between 0 and 1; the larger the value, the more important a parameter is to the output of a variable.
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evaluate the effect of inhibition from pSok2 to Imel, by
varying c;,,,.;, the constant measuring half-maximum in-
hibition of Imel synthesis by pSok2 (Figure 5A). When
this inhibition is enhanced (blue curves), no expression
is observed for Imel and Ime2; the entire meiotic path-
way is turned off. When this inhibition is partially or com-
pletely relieved (cyan and red curves), damped oscillations
appear for both Imel and Ime2, and Ime2 reaches a higher
steady state than wild type. Next, we evaluate the inhibition
from Imel to pSok2, by varying ¢, the constant measur-
ing half-maximum inhibition of Sok2 phosphorylation by
Imel (Figure 5B). Manipulating the inhibition toward
pSok2 produces the opposite effect: increasing the inhib-
ition (blue curves) activates the meiotic pathway, while de-
creasing or dismissing the inhibition (cyan and red curves)
represses the pathway. We further investigate the feedback
loop by simultaneously varying c;,,.; and ¢ (Figure 5C).
The results are similar to those from manipulating the in-
hibition from pSok2 to Imel. In particular, the feedback
knockout results in enhanced Ime2 expression (Additional
file 2: Table S6, Figure S6). The orderly and transient be-
havior of both Imel and Ime2, however, are not affected by
manipulating the different arm of feedback loop or the en-
tire feedback loop.

Negative feedback from Ime2 to Ime1

Protein destruction is a commonly used mechanism con-
trolling cell cycle transitions [28]. Imel activates Ime2,
while Ime2 inhibits Imel by promoting its degradation.
Previous studies indicate that negative feedback loops are
required for transient transcription of IMEI [3,9,37].
We test whether negative feedback from Ime2 to Imel is
responsible for confining expression of early meiotic

proteins to a narrow window. When increasing d’;,,.;, the
maximum rate of Ime2-activated Imel degradation, the
negative feedback is enhanced (blue curve). Both ampli-
tude and duration of Imel peak decrease, which lead to
no expression of Ime2 (Figure 6A). When the feedback
is reduced or dismissed by changing d’,,.; (cyan and
red curves), we observe not only increased peak height
but also increased peak width for both Imel and Ime2.
Ime2 rises to infinity in the feedback knockout model
(Figure 6A, Additional file 2: Table S7, Figure S7). The
negative feedback can also be manipulated by varying
¢, the constant measuring half-maximum activation of
Imel degradation by Ime2 (Figure 6B), or by varying
d’ime; and ¢; simultaneously (Figure 6C). The results are
similar to those of changing d’;,..;, suggesting that the
negative feedback ensures transient expression of both
Imel and Ime2.

Auto-positive feedback of Ime2

Multiple lines of evidence support positive auto-regulation
of Ime2: transcriptional activation of its own expression
[17,20], mutual antagonism between Ime2 and G1 cyclins
(CIn3/Cdc28) [21], and mutual activation between Ime2
and Ndt80 [21,23-27]. To examine the role of auto-
regulation in protein dynamics, we vary s%,,,, the max-
imum rate of auto-regulation-dependent Ime2 synthesis
(Figure 7A), cy, the constant measuring half-maximum
activation of Ime2 synthesis through auto-regulation
(Figure 7B), or both (Figure 7C). Up-regulation of the
feedback (blue curve) causes earlier decline of Imel peak
and earlier increase of Ime2 to a higher level than wild
type. The abrupt drop of Imel is due to negative feedback
from enhanced expression of Ime2. Ime2 is more sensitive
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described in Additional file 2: Table Sé.

Figure 5 Simulation analyses of double-negative feedback loop between pSok2 and Ime1. A) Imel and Ime2 dynamics when varying
Cimer, the constant measuring half-maximum inhibition of Ime1 synthesis by pSok2. Red curve: ¢j; = o= (deleting the inhibition); cyan curve:
Cimer = 0.1 (decreasing the inhibition); blue curve: ¢;e; = 0.001 (increasing the inhibition); green curve: ¢jne; = 0.01 (baseline value). B) Ime1 and
Ime2 dynamics when varying ¢,k the constant measuring half-maximum inhibition of Sok2 phosphorylation by Ime1. Red curve: ¢y, = oo
(deleting the inhibition); cyan curve: c,or> = 0.5 (decreasing the inhibition); blue curve: ¢, = 0.005 (increasing the inhibition); green curve:
Csok> = 0.05 (baseline value). C) Ime1 and Ime2 dynamics when varying Cime; and Csox> simultaneously. Red curve: Cime; = o0 and oo = o0
(deleting the feedback loop); cyan curve: ¢ipe; = 0.1 and ¢ = 0.5 (decreasing the feedback loop); blue curve: ¢ime; =0.001 and ¢sox, = 0.005
(increasing the feedback loop); green curve: Cj,e; =0.01 and csop = 0.05 (baseline value). The mathematical model of the feedback knockout is
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to variations in §%,,.» than in ¢,, consistent with the global
analysis of parameter sensitivity (Figure 4). When auto-
positive feedback is down-regulated or deleted (cyan and
red curves), both Imel and Ime2 exhibit similar dynamics
as for wild type (Additional file 2: Table S8, Figure S8).
These results indicate that the auto-regulation is respon-
sible for transient Ime2 expression. The transient dynamics

of Imel, however, are preserved regardless of the strength
of auto-regulation.

Feedback loops control sporulation efficiency

Feedback regulations are known to control cell fate deci-
sion [34]. In the context of yeast meiosis, feedback loops
linking early proteins may be responsible for distinct
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Figure 6 Simulation analyses of negative feedback loop from Ime2 to Ime1. A) Ime1 and Ime2 dynamics when varying d’;, the maximum
rate of Ime2-activated Ime1 degradation. Red curve: dn,.; =0 (deleting the feedback loop); cyan curve: d’e; = 0.1 (decreasing the feedback loop);
blue curve: d,e; =10 (increasing the feedback loop); green curve: d’ne; =1 (baseline value). B) Ime1 and Ime2 dynamics when varying ¢;, the
constant measuring half-maximum activation of Ime1 degradation by Ime2. Red curve: ¢; = e (deleting the feedback loop); cyan curve: ¢; =0.1
(decreasing the feedback loop); blue curve: ¢; =0.001 (increasing the feedback loop); green curve: ¢; =0.01 (baseline value). C) Ime1 and Ime2
dynamics when varying d’me; and ¢; simultaneously. Red curve: dy,e; =0 and ¢; = oo (deleting the feedback loop); cyan curve: d’ne; =0.1

and ¢; =0.1 (decreasing the feedback loop); blue curve: d,.; = 10 and ¢; = 0.001 (increasing the feedback loop); green curve: djp,e; =1 and

¢; =001 (baseline value). The mathematical model of the feedback knockout is described in Additional file 2: Table S7.
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sporulation efficiencies, traced by steady state levels of
Ime2, the most downstream protein in the model. We
perform bifurcation analyses on parameters governing
feedback loops to determine which ones cause changes
in the stability of Ime2 equilibrium.

Double-negative feedback between pSok2 and Ime1
Mutual antagonism between pSok2 and Imel is controlled
by Cimes and ceppo, half-maximum inhibition constants.

Varying either ¢;,.; or ¢y, produces two stable steady
states separated by an unstable steady state (Figure 8A-B).
When both parameters are close to their baseline values
(Cimer = 0.01, cyoro=0.05), the default equilibrium value of
Ime2 is obtained (Ime2=0.27). When c,,,.; increases or
Csor2 decreases, implying that Imel wins over pSok2, Ime2
reaches a higher stable state. This higher state indicates that
sporulation efficiency can be improved by manipulating
double-negative feedback loop between pSok2 and Imel.
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Figure 7 Simulation analyses of positive feedback loop of Ime2. A) Ime1 and Ime2 dynamics when varying S/me» the maximum rate of
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(baseline value). The mathematical model of the feedback knockout is described in Additional file 2: Table S8.
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PKA mediates phosphorylation of Sok2 and Rim11. To
examine whether PKA is also a bifurcation parameter,
we vary the phosphorylation rates of Sok2 and Riml1
simultaneously (Additional file 2: Figure S9). Two stable
steady states, separated by an unstable steady state, are
again observed. One stable state is the default equilib-
rium value of Ime2. When PKA activity is reduced, rep-
resented by lowering phosphorylation rates, the second
stable state of higher Ime2 appears, corresponding to

elevated sporulation efficiency. This result suggests that
sporulation efficiency can also be improved by suppress-
ing PKA activity.

Negative feedback from Ime2 to Ime1

Parameter c; is the half-maximum constant of Ime2 inhib-
ition on Imel. Changing c; results in two stable steady
states, separated by a very short segment of unstable
steady state (Figure 8C). Baseline value (c; = 0.01) leads to
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J

the default Ime2 equilibrium (Ime2 = 0.27). The inhibition
from Ime2 to Imel decreases with the increase of ¢;, pro-
ducing enhanced Ime2 level. This indicates that sporula-
tion efficiency can be improved by repressing negative
feedback from Ime2 to Imel.

Auto-positive feedback of Ime2

Auto-regulation of Ime2 is approximated by a Hill function
with the coefficient of 5. We use high Hill coefficient to
define cooperative and ultrasensitive regulatory processes
because this feedback loop represents not only auto-
regulation but also multiple interactions between Ime2 and
other molecules (e.g., Cln3/Cdc28, Ndt80). Parameter c, is
the half-maximum constant of Ime2 auto-regulation. Plot-
ting Ime2 as a function of ¢, (Figure 9) shows the default
Ime2 equilibrium (Ime2 = 0.27) at baseline parameter value
(c2=1.4). When c, is less than 0.5, the auto-regulation is

enhanced, which leads to a higher steady state response of
Ime2. With ¢, in the region of 0.5-0.7, the system becomes
bistable. Ime2 can take two different values, characterizing
states of default and higher sporulation efficiency. These
two stable states can be reached for the same set of param-
eters depending on initial conditions.

The Hill coefficient determines the switch-like behavior
of Ime2 equilibrium. We find that the range of ¢, in which
the system exhibits bistability is sensitive to the Hill coeffi-
cient (Figure 9). The system is monostable with coeffi-
cients of 1 or 3, since one value of ¢, corresponds to a
single value of Ime2. Higher coefficients result in the tran-
sition from a monostable to a bistable system. A Hill coef-
ficient of 7 expands the region of bistability across a broad
range of parameter space, making the cell fate more ro-
bust with respect to perturbations in the feedback loop.
This result indicates that cooperativity of Ime2 molecules
is essential for producing bistable sporulation outcomes.
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Figure 9 Bifurcation analyses of positive feedback loop of Ime2. Steady state value of Ime2 as a function of ¢,, the constant measuring
half-maximum activation of Ime2 synthesis through auto-regulation. The use of different Hill coefficients, n, as indicated on the plot reveals
monostability and bistability. Red segments represent stable steady states, whereas black segments trace unstable steady states. The bistability
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Discussion

Precise regulation of a gene cascade in a coordinated
manner is required for initiating a developmental pro-
gram at the right time. This is often achieved through
the activation of an upstream master regulator, which is
controlled by multiple input signals and further regulates
expression of downstream genes. Downstream genes, in
turn, feed back to the regulator to modulate the entire
pathway activity. The combinational nature of feedback
loops ensures correct temporal dynamics of a develop-
mental program [34-36].

The goal of this study is to understand and predict the
effect of the control structure, i.e., feedback loops, on tran-
sient expression of early meiotic proteins and on distinct
sporulation efficiencies observed in budding yeast. We
construct a meiotic initiation pathway using an ODE-
based model that includes regulation of Imel, the master
regulator, and five other early-meiotic proteins. We con-
sider three feedback loops that control expression of these
proteins: double-negative feedback between pSok2 and
Imel, negative feedback from Ime2 to Imel, and auto-
positive feedback of Ime2. In particular, Imel is controlled
by an upstream inhibitor, Sok2, and a downstream inhibi-
tor, Ime2.

The model is capable of simulating orderly and transient
expression of meiotic proteins, without relying on putative
repressors to shut down gene expression [37]. The model is
further validated by quantitative sporulation phenotypes of
single-gene knockouts. We analyze the sensitivity of the
model and find that proteins are sensitive to processes that
directly regulate their levels. Subsequently, we perform
in silico experiments on the model to understand the feed-
back mechanism on controlling transient protein expres-
sion and different sporulation efficiencies. The strength of
mathematical models is that they serve as easily manipulat-
able systems for many perturbation experiments that are ei-
ther extremely difficult or not tractable in a wet-lab setting.

The new insights gained from this study are two fold.
First, we conclude that feedback loops play important
roles in terminating expression of early meiotic proteins.
Negative feedback from Ime2 to Imel is responsible for
transient expression of both Imel and Ime2, in agreement
with previous finding [3,9,37]. However, our study eluci-
dates, for the first time, that the auto-positive feedback of
Ime2 also ensures that Ime2 expression is confined to a
narrow window. In our model, Ime2 responds in a graded
mode to the Imel levels (Figures 5, 6 and 7), consistent
with experimental observation that transcription of early
meiotic genes is regulated by a gradient effect produced
by Imel [21].

More importantly, the second new insight from ex-
ploration of the model is that feedback loops are respon-
sible for tuning the efficiency of meiotic pathways. We
perform bifurcation analyses on feedback loops using
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the equilibrium value of Ime2 as the pathway readout.
We find that, by adjusting each of the two arms of mutual
inhibition between pSok2 and Imel, the system is able to
move from a default meiotic state to a more efficient mei-
otic state. Similarly, by manipulating the strength of nega-
tive feedback loop from Ime2 to Imel, the model readily
produces a default meiotic state and a more efficient mei-
otic state. Auto-positive regulation of Ime2 is character-
ized by the Hill function with a high coefficient, providing
a simple, reasonably accurate approximation for multiple
regulations occurring on Ime2. This positive feedback gen-
erates a bistable pathway with two alternative stable steady
states—the default meiotic state and a more efficient
meiotic state. The robustness of bistability is sensitive to
the Hill coefficient, indicating a strong cooperativity and
nonlinearity in the response of Ime2 to the feedback. We
propose that the combinational feedback regulation con-
trols sporulation efficiency and guarantees that meiotic ini-
tiation proceeds in an accurate temporal scale.

Our mathematical model constitutes physical interactions
of early meiotic proteins and provides mechanistic insights
into ordered appearance of key regulators and sporulation
efficiency. Such a model illustrates how different feedback
regulations are integrated in the signaling pathway to cause
changes in protein expression and meiotic outcome. The
model is a reduced system of differential equations, includ-
ing only Rim11, Ume6, Sok2, Imel, and Ime2. Other pro-
teins and/or links involved in meiotic initiation are traced
indirectly. Validation using deletion mutants of meiotic
genes suggests that major regulatory interactions have been
captured. We demonstrate that the ordinary differential
equation method can depict the most prominent features
of signaling pathway during yeast meiotic initiation. Our
mathematical model allows for uncovering key regulations
that can lead to manipulation of the pathway to enhance
sporulation efficiency. This represents an important first
step in designing new strategies for producing gametes with
high quality and quantity.

Conclusions

We develop a dynamic model to describe signaling path-
ways that operate during yeast meiotic initiation. Our study
suggests that both positive and negative feedback loops
control transient expression of early meiotic proteins, and
multiple feedback loops regulate the efficiency of meiotic
progression. Thus, yeast meiotic initiation is the conse-
quence of systems-level feedback that leads cells into
distinct sporulation states.

Methods

An ODE model

We formulate a mathematical model to describe the tem-
poral dynamics of a signaling pathway that controls yeast
meiotic initiation. The kinetics is based on SK1, a strain
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commonly used for studying yeast meiosis. Six proteins in
either phosphorylated or unphosphorylated form are model
variables. All variables are dimensionless and represent rela-
tive protein levels within the range of zero to one unit. The
rate of change of protein levels is captured by ordinary dif-
ferential equations, which include terms describing protein
synthesis, degradation, phosphorylation, dephosphorylation,
as well as regulatory activation and repression.

dRim11 . .
T = Urpm11 »(I—Rll’l’lll)—pﬁmu -Rim11 (1)
dpUme6 .
7 = Pumee Rim1l '(l_pume6)_uume6 pUme6
(2)
dpSok?2 Csok
= ——— (1-pSok2)- -pSok?2
dr Psok2 Cookr + Imel ( po0 ) Usok2 - PO,
(3)
dlmel Cimel .
dr = Simel * m “Pimel -Rim11 'Imel—dimel
Imel-d;  me2. — ¢
. —-a. lmes —
imel ¢ + Imel
(4)
dplmel
% = Pimer -Rint11 Imel~dier -pImel (5)
dIme2
i Sime2 - pUme6 -pIlmel
g Ime2° Ime2 (6)
ime2" 05 + Ime25 e cs + Ime2

Phosphorylated or unphosphorylated Rim11l, Umes6,
and Sok2 are variables in Equations 1, 2 and 3. Because
these three proteins exhibit uniform expression levels
over the entire course of sporulation [2,39,40,42], the
total amount of phosphorylated and unphosphorylated
forms of each protein is assumed to be constant (one
unit). Phosphorylation and dephosphorylation are the
only events described. PKA catalyzes phosphorylation of
Rim11 and Sok2, although it is not included explicitly as
a variable in the model. Phosphorylation of Sok2 is
inhibited by Imel, which is described using an inhibitory
Hill function [6]. Phosphorylation of Ume6 is mediated
by Rim11 and modeled by mass action [4,7].

Unphosphorylated and phosphorylated Imel are vari-
ables in Equations 4 and 5. Imel synthesis is inhibited
by Sok2, as described using an inhibitory Hill function
[6]. Imel has a basal degradation rate, plus an Ime2-
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induced degradation [3,9]. We assume that the negative
feedback-dependent rate of Imel degradation is propor-
tional to a Hill function. Phosphorylation of Imel is me-
diated by Rim11 and defined by mass action [2].

Equation 6 describes the rate of change of Ime2, the
most downstream protein in the model. The synthesis of
Ime2 depends on phosphorylated forms of Imel and
Ume6 [17,18]. Ime2 synthesis is further enhanced through
positive auto-regulation [17,20]. We assume that the auto-
activation obeys cooperative kinetics, modeled by a Hill
function with the coefficient of 5. Ime2 degradation occurs
in a density-dependent manner.

The ODE model in the Systems Biology Markup Lan-
guage format is provided as Additional file 3. The model
is also available at the BioModels database (http://www.
ebi.ac.uk/biomodels/, MODEL1303060000).

Initial conditions of variables

We consider a mitotic initial state. All variables except
for pSok2 are set to zero because a very low level of
meiosis-specific proteins could be detected during vege-
tative growth [3,7,8,39,40,42]. Sok2 functions as a posi-
tive regulator of mitosis but as a negative regulator of
meiosis [6,12]. Thus, pSok2 is given the maximum level
of one as the initial condition.

Parameter values

Parameters are either rate coefficients with a dimension
of per hour or dimensionless constants (Table 2). Param-
eter values are estimated from the literature when they
are available. When no data exist for parameters, values
are manually explored over several orders of magnitude.
Baseline values of parameters are determined by compar-
ing model-generated output with experimental results in
the literature [2-8,25] and by constraining variable values
in the range of zero and one. Outlined below is how we
estimate parameter values.

Synthesis rates of genome-wide proteins have been cal-
culated from experiments when yeast cells grow mitoti-
cally in glucose medium [43]. Fold increase in the IME1
promoter activity has been measured when cells are trans-
ferred from glucose to sporulation medium [15,44,45].
Synthesis rate of Imel is estimated to be 10/hour during
meiosis based on the above two measurements. Protein
synthesis of sporulating cells has been monitored through
deep sequencing of ribosome-protected mRNAs [39]. We
obtain synthesis rate of Ime2 based on its protein produc-
tion relative to Imel and synthesis rate of Imel.

The half-life of Imel is 0.5 hour in the presence of Ime2
and 1 hour in the absence of Ime2 [3]. Thus, degradation
rates of Imel in the presence and absence of Ime2 are ap-
proximated as 2/hour (In2/0.5 hour ~ 2/hour) and 1/hour
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(In2/1 hour ~ 1/hour), respectively, assuming that Imel de-
grades exponentially with time. Accordingly, both Ime2-
independent and Ime2-activated Imel degradation rates are
set to 1/hour. We assume the phosphorylation status does
not influence Imel degradation; therefore, the same value
is used for the degradation rate of plmel. The half-life
of Ime2 is much shorter, approximately 5 minutes [3].
Accordingly, the degradation rate of Ime2 is calculated to
be 8/hour.

Although no kinetic data exist for phosphorylation,
the dephosphorylation rate is estimated to be higher
than the phosphorylation rate for Rim11 and Sok2 be-
cause the unphosphorylated forms of proteins are active
during meiosis [2,6]. On the other hand, phosphorylated
Ume6 is dominant under meiotic conditions; its rate
constant for phosphorylation is higher than that of de-
phosphorylation [18].

Numerical simulations

The ODE model is implemented in MATLAB. Numerical
simulation of the model is performed with MATLAB
using a non-stiff solver ode45. Numerical results are con-
firmed with other non-stiff or stiff solvers: ode23, odel13,
odel5s, ode23s, and ode23t.

Parameter sensitivity analysis

We perform global sensitivity analyses using the software
package SBML-SAT [41]. A global sensitivity analysis ex-
plores the variation of model output to simultaneous per-
turbation of all parameters over a large range. The method
of multi-parametric sensitivity analysis is utilized, which
implements Latin Hypercube Sampling to randomly gen-
erate parameter values from a given range using uniform
distributions. Parameter range is within one order of mag-
nitude larger and smaller than baseline values; a total of
5,000 samplings are performed for each analysis. For each
randomly generated parameter set, an objective function
is computed by the sum of square errors between model
outputs from random and baseline parameter sets. Each
parameter set is classified as “acceptable” or “unaccept-
able” if the objective function value is smaller or larger
than the average of all objective function values, respect-
ively. The cumulative frequency is calculated for both ac-
ceptable and unacceptable cases. Parameter sensitivity is
defined by the maximum distance of the two cumulative
frequencies according to the Kolmogorov-Smirnov statis-
tics. Therefore, sensitivity is in the range of 0 and 1; more
important parameters have larger sensitivity values.

Bifurcation analysis

We use the software XPPAUT (www.math.pitt.edu/~bard/
xpp/xpp.html) for bifurcation analysis. Baseline parameter
values and initial conditions are applied. Numerically
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stable and unstable steady states of the ODE model are de-
termined as a function of a bifurcation parameter.

Additional files

Additional file 1: InitialConditions.xls. Randomization of initial
conditions.

Additional file 2: Debjit031213S.pdf. Tables 51,52, S3, S4, S5, S6, S7
and S8, Figures S1, S2, S3, S4, S5, S6, S7, S8 and S9.

Additional file 3: YeastMeioticlnitiation.xml. The odel in the Systems
Biology Markup Language format.
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