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Abstract

Background: Parameter estimation from experimental data is critical for mathematical modeling of protein
regulatory networks. For realistic networks with dozens of species and reactions, parameter estimation is an especially
challenging task. In this study, we present an approach for parameter estimation that is effective in fitting a model of
the budding yeast cell cycle (comprising 26 nonlinear ordinary differential equations containing 126 rate constants) to
the experimentally observed phenotypes (viable or inviable) of 119 genetic strains carrying mutations of cell cycle
genes.

Results: Starting from an initial guess of the parameter values, which correctly captures the phenotypes of only 72
genetic strains, our parameter estimation algorithm quickly improves the success rate of the model to 105–111 of the
119 strains. This success rate is comparable to the best values achieved by a skilled modeler manually choosing
parameters over many weeks. The algorithm combines two search and optimization strategies. First, we use Latin
hypercube sampling to explore a region surrounding the initial guess. From these samples, we choose ∼20 different
sets of parameter values that correctly capture wild type viability. These sets form the starting generation of differential
evolution that selects new parameter values that perform better in terms of their success rate in capturing phenotypes.
In addition to producing highly successful combinations of parameter values, we analyze the results to determine the
parameters that are most critical for matching experimental outcomes and themost competitive strains whose correct
outcome with a given parameter vector forces numerous other strains to have incorrect outcomes. These “most critical
parameters” and “most competitive strains” provide biological insights into the model. Conversely, the “least critical
parameters” and “least competitive strains” suggest ways to reduce the computational complexity of the optimization.

Conclusions: Our approach proves to be a useful tool to help systems biologists fit complex dynamical models to
large experimental datasets. In the process of fitting the model to the data, the tool identifies suggestive correlations
among aspects of the model and the data.

Keywords: Optimization, Budding Yeast, Cell Cycle, ODE Model, Model Reduction, Phenotypic Constraints, Latin
Hypercube Sampling, Differential Evolution, Sensitivity Analysis, Phenotype Competition

Background
The challenges facing molecular systems biologists
include the development of accurate mathematical mod-
els of complex biological processes [1], the elucidation
of design principles that control biological behavior [2],
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and the generation of new insights into biology that are
not apparent solely from experimental studies [3]. A com-
mon mathematical method to address these challenges is
dynamical systems theory [4,5], the use of nonlinear ordi-
nary differential equations (ODEs) to describe the way
networks of biochemical reactions change in time. By
comparing the temporal development of the model under
conditions that simulate a variety of experimental proto-
cols with the observed behavior of the biological system
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under the same conditions, one can evaluate how well or
poorly the mathematical model performs.
Our focus in this study is parameter estimation of a non-

linear and high-dimensional ODE model (> 100 model
parameters) that is constrained by a large number of dis-
similar experimental observations. The non-differentiable
nature of our objective function (described in the next
section) led to our choice of a stochastic global optimiza-
tion approach [6,7] that relies on an evolutionary search,
namely differential evolution (DE) [8], starting from a
diverse population of parameter vectors scattered over a
feasible region of parameter space. DE is a popular global
optimization method due to its efficiency and simplicity.
However, we shouldmention that a recent novel (yet more
complex) algorithm outperformed DE in multiple opti-
mization tasks with large scale systems biology models
due to extensive local search capability [9] that is lacking
in the simplest form of DE. For a recent comprehensive
review regarding the application of DE and other meta-
heuristic optimization techniques in systems biology, we
refer the reader to [7].
Parameter estimation is not only about finding an

“optimal” set of parameter values for fitting a collection
of experimental observations. During the course of the
global optimization procedure, we expect to find many
different parameter vectors that do equally well (or nearly
as well) as the best one. Working with this sample of
“quite good” sets of parameter values, we can quan-
tify how well the experimental data constrain individual
parameter values. We can distinguish critical parameters
(highly constrained by the data) from irrelevant parame-
ters (those that have little bearing on optimization of the
objective function) [10]. We can distinguish those exper-
imental results that provide the most information about
the underlying model from those that provide the least,
and we can design new experiments that will provide the
most new information about the underlying molecular
regulatory system [11-13]. All these types of informa-
tion can be very useful in refining and extending the
model [14].
Our research group has been interested for many years

in the molecular mechanisms controlling the cell division
cycle of budding yeast. The main events of the cell cycle
(DNA synthesis and mitosis) are controlled in budding
yeast, and indeed in all eukaryotic cells, by a family of pro-
tein kinases called cyclin-dependent kinases (CDKs) [15].
We have built comprehensive and accurate models of the
periodic activation of CDKs, based on nonlinear ODEs
describing the underlying biochemical reaction network
[16]. The models are used to understand how CDKs con-
trol cell cycle progression in normal (“wild type”) yeast
cells, and also how cell cycle progression is altered in yeast
strains harboring mutations in genes of the CDK control
system. Each mutant strain is characterized as “viable” or

“inviable”. A viable mutant cell is able to grow and divide
despite its altered control system, whereas an inviable
mutant cell is blocked at some stage of the cell cycle and
eventually dies. The wild type strain is, of course, viable.
In this study, we present an optimization procedure

to maximize the number of strains for which the model
correctly captures viability or inviability (Figure 1). Our
approach applies quite generally to exploring the param-
eter space of a high-dimensional ODE model in order to
maximize how well the model accounts for a large collec-
tion of experimental data, particularly in cases where the
objective function may not depend smoothly on param-
eter values. We start with an initial region of parameter
space (we will refer to this region as a “hypercube”—
although we do not mean to imply that the edge lengths
of the box are identical) where we think a reasonable solu-
tion must lie. We use Latin Hypercube (LH) sampling to
provide a starting sample of parameter vectors, widely
distributed over the initial hypercube [17], that are consis-
tent with “wild type” (WT) viability. Next, we use DE that
starts from this population of WT parameter vectors and
searches for new combinations of parameter values that
satisfy an ever larger number of experimental constraints
(mutant phenotypes). Our approach not only produces a
sample of parameter assignments that provide good fits to
the collection of mutant phenotypes but it also provides
insights about how the model can be reduced without
compromising its ability to explain the experimental data.
Model reduction, parameter identifiability, and parame-
ter sensitivity are critical, related concepts for the analysis
and construction of models. Relevant recent work regard-
ing identifiability and model reduction in systems biology
includes implementations of singular value decomposi-
tion to reduce models where parameter estimation is
posed as a linear regression problem [18,19], computation
of confidence intervals by extensive parameter sampling
to detect non–identifiable parameters [20], and ranking of
parameters by means of sensitivities [21]. Recent reviews
on identifiability of systems biology models can be found
in [22,23]. Our main contribution is a new methodol-
ogy for model reduction in the absence of a continuous
objective function, unlike the aforementioned works that
use a continuous objective based on time-series data. We
also propose a novel way to quantify the competition
between individual experimental constraints and reduce
their number to speed up the optimization process in the
context of a discontinuous objective function.

Methods
Problem formulation
In this paper, we focus on biochemical reaction networks
modeled by nonlinear ODEs. Typical models of these net-
works that are considered high dimensional, at the present
time, consist of 10–100 ODEs defined in terms of ∼100
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Figure 1 Schematic of the parameter optimization and model reduction approach.

(or more) rate constants and other numerical parameters.
The models are developed in light of and the parame-
ters are constrained on the basis of large collections of
experimental data, which characterize the behavior of
cells under a wide variety of experimental conditions. The
data are rarely replicate measurements of time courses of
biochemical variables; the sort of ideal data assumed in
many optimization methods. Rather, the data are often
a disparate collection of quantitative measurements and
qualitative observations on a number of different mutant
strains under a wide variety of conditions. In this con-
text, a data-fitting algorithm must be able to search a
high-dimensional parameter space for parameter vectors
that are consistent with as much of the data as possible.
In our case, we characterize the data as a set of n con-
straints. For a specific parameter vector, the model either
satisfies the ith constraint (oi = 1) or not (oi = 0), and
the total objective function that we seek to maximize is
O = ∑n

i=1 oi. The discontinuous, stepwise nature of this
objective function prohibits the use of any gradient-based
optimization method, even if multiple starting points are
used. Therefore, in looking for optimal behavior of the
model, we search a region of parameter space stochasti-
cally and keep track of all parameter vectors encountered
during this search.
Using this collection of optimal (or near optimal)

parameter vectors, our second aim is to characterize the
roles of specific parameters and specific experiments in
the data-fitting exercise. Looking at the sensitivity of
experimental constraints with respect to parameter vari-
ations, we distinguish “critical” parameters, which have
strong effects on the total objective function, from “dis-
pensable” parameters, which have little or no effect on
the total objective function. We also distinguish “fragile”

phenotypes, which are most often broken (i.e., incorrectly
simulated) under parameter variations, from “robust”
phenotypes, which are correctly simulated even when
parameter values are widely perturbed. These distinctions
provide insights into the relationships between the model
and the data, and they also allow us to reduce the com-
plexity of the model (by eliminating dispensable parts)
and the computational demands of the algorithm. Finally,
we look at competition (negative correlations) between
experimental constraints (phenotypes). If two phenotypes
compete with each other, then it is difficult for the model
to account simultaneously for both. The list of most com-
petitive phenotypes suggests places where the structure of
the model may be incorrect or the experimental observa-
tions may be suspect.

Amathematical model of the budding yeast cell cycle
The cell cycle is the sequence of events by which a grow-
ing cell replicates all its components and divides them
more-or-less equally between two daughter cells, so that
the daughters inherit all the machinery and information
necessary to repeat the process [15,24]. The most impor-
tant components that need to be accurately replicated in
the mother cell and precisely partitioned to the progeny
cells are the DNA molecules of the cell’s genome. New
DNA molecules are synthesized during S phase and dis-
tributed to progeny nuclei duringM phase (mitosis). S and
M phases are separated by two gaps: G1 (DNA unrepli-
cated) and G2 (DNA replicated). The ordered sequence of
cell cycle phases, G1-S-G2-M, is governed by the periodic
activation of CDKs. Activity of CDKs depend on cyclins,
which are regulatory proteins that are needed to form
active cyclin-CDK complexes. In budding yeast, the ear-
liest CDKs to be activated are Cln1- and Cln2-dependent
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kinases, which promote the appearance of later cyclins
as well as initiating bud emergence. Clb5- and Clb6-
dependent kinases are essential for timely DNA synthesis,
and somewhat later, Clb1- and Clb2-dependent kinases
arise to drive the cell into mitosis. To exit from mito-
sis and return to G1, all the Clb-cyclins must be cleared
from the cell, which is the job of the APC (anaphase pro-
moting complex) in conjunction with its partners, Cdc20
and Cdh1. Some other important components of the con-
trol system are: Sic1 (a stoichiometric inhibitor of Clb-
dependent kinases), Cdc14 (a phosphatase that opposes
the action of CDKs), Net1 (a stoichiometric inhibitor
of Cdc14), SBF (a transcription factor for Cln1,2 and
Clb5,6), Mcm1 (a transcription factor for Clb2, Swi5 and
Cdc20), and Swi5 (a transcription factor for Sic1). All
thesemolecules (and some otherswe have notmentioned)
are involved in a complex biochemical reaction network
that controls the periodic activation and inactivation of
the CDKs (which drive the cell from G1 phase into and
through S-G2-M) and Cdc14-Cdc20-Cdh1-Sic1 (which
drive the cell out of mitosis and back to G1).
A mathematical model of this reaction network was

developed by Chen et al. [16]. This model consists of 36
ordinary differential equations (with 135 kinetic param-
eters) and reproduces the biological properties of ∼125
mutant strains of budding yeast. The “properties” include
not only viability-inviability of the strains but also average
size of cells at division, relative timing of bud emergence,
DNA synthesis andmitosis, and the precise phase of arrest
of inviable mutants. The Chen-2004 model evolved over
the course of about 10 years, as the experimental basis
of the model was being discovered by molecular geneti-
cists and as the molecular interactions were translated
into differential equations by the mathematical modelers.
The parameter values “evolved” along with the model, so
that at no time were the modelers faced with the daunting
task of fitting a 135-parameter model to a 125-component
objective function. In this study, we focus on a new for-
mulation of the Chen-2004 model. This model (a detailed
description can be found in [25]) uses a simpler mathe-
matical framework, requiring fewerODEs (26) and kinetic
parameters (126), while improving on the model’s repre-
sentation of the G1/S transition and exit from mitosis.
The starting set of parameter values for the optimiza-
tion, produced by manual tuning, captured the basic cell
cycle characteristics of wild type cells as well as the phe-
notypes (viable or inviable) of ∼60% (72 out of 119) of
the genetic strains. Our goal was to develop an auto-
matic method for finding parameter values that capture
nearly all the mutant phenotypes when starting from an
educated “initial guess” of parameter values.
We provide descriptions of the 126 model parameters

and 26 model variables (Additional file 1: Tables S1 and
S2) along with the numerical values of these parameters

from the “initial guess” (Additional file 1: Tables S3 and
S4). We also provide a C++ subroutine that implements
the model along with a Matlab script (Additional file 2),
taking as input values the 126 parameters and 26 initial
conditions for the model, and giving as output the phe-
notypes (viable or inviable) of 119 budding yeast strains:
WT growing in glucose + WT growing in galactose +
117 cell-cycle mutants growing in glucose or galactose. All
119 strains are listed in Additional file 1: Table S5 along
with the parameter changes for each strain with respect to
WT conditions. The C code solves the ODEs using Euler’s
method with a fixed step size of 0.05 minutes. While there
are certainly more sophisticated ODE solvers, this solver
was chosen because it easily handles both deterministic
and stochastic cases, and also allows direct comparison
with previous work on this model [25]. The code first sim-
ulates WT cells growing in glucose, using the 26 initial
conditions provided on input (“input-ICs”), for a total of
2000 min. If at any time during this simulation cell size
(mass) exceeds 25 units, the cell is considered inviable.
Otherwise, the program asks: is cell size at the last divi-
sion is within 5% of the cell sizes at the two previous
divisions? If “yes”, then the cell is considered as“viable”.
(Note: sometimes, after a period-doubling bifurcation, the
model generates periodic cell divisions with size at divi-
sion oscillating between two values that differ by more
than 5%. These cases are considered neither viable nor
inviable.) If theWT cell (growing in glucose) is viable, then
we record the initial values of all variables just after the
last division of the WT cell. These values (the “newborn-
ICs”, which bear no relation to the input-ICs) are used for
the simulations of all other 118 strains. Each strain simu-
lation is classified as viable or inviable by the same rules
applied to the WT simulation. To calculate the value of
the objective function for the given set of parameter values
and input-ICs, we then sum up 119 values of an indicator
function that is 1 if the phenotype (viability or inviabil-
ity) of the simulated strain is the same as the observed
phenotype, and is 0 if the phenotypes are different. The
objective function is an integer-valued function that varies
from 0 to 119. (When the WT cell growing on glucose
is inviable, we use default-ICs to simulate the mutant
strains.) Finally, we introduce here the nomenclature of
budding yeast genes and mutant alleles. Proteins, such as
Cln2, Cdc20 and Sic1, are encoded by wild type genes:
CLN2, CDC20 and SIC1. Mutant alleles are indicated by
lower case, italicized names: cln2, cdc20, sic1. The nota-
tion sic1�means the wild type SIC1 gene has been deleted
from the genome, and the notation GAL-SIC1means that
theWT SIC1 gene is being expressed continuously at high
level from a galactose-inducible promoter. The meaning
of other gene notations used later in this paper can be
found in Chen et al. [16] or on our budding yeast web
page [26].
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The parameter estimation algorithm
We start our search of parameter space from a point sup-
plied by the modeler (initial guess). We assume that the
starting point is a reasonable (but not particularly good)
estimate of the parameters. That is, the starting parameter
values are consistent with some but not all experimental
constraints, and we expect that a much better parameter
vector is in the neighborhood. In our case, the initial guess
is consistent with 60% of the mutant phenotypes, and we
plan to search in a hypercube (e.g.±40% or±90%) around
the starting point. First, we explore this domain by Latin
Hypercube (LH) sampling, as described in detail in the
Additional file 3. (LH sampling is commonly used to gen-
erate multidimensional samples from a multidimensional
distribution [17]). To obtain a “population” of prospec-
tive parameter vectors for the next phase of the search,
we select from the LH samples only parameter vectors
that are consistent with viability of WT cells growing on
glucose.
For the second phase of the search, we use differential

evolution (DE) to improve the performance of the LH-
derived population of parameter vectors [8]. The basic
idea behind DE is to allow a population of parameter vec-
tors to evolve over many generations of reproduction and
selection. During the reproduction step, each “parental”
parameter vector generates an “offspring” parameter vec-
tor, which differs from the parent by a process of “diversi-
fication”. Then, the parent and its offspring compete with
each other: the better vector (the one with the higher value
of the objective function) goes on to the next generation,
the less good vector is set aside.
To be precise, let x be a vector of parameter values, with

components xi, i = 1, 2, . . . ,D, where D is the dimension
of the parameter space. (Note that the vector x includes
both the 126 kinetic constants in the model and the 26
ODE initial conditions described above; hence, D = 152.
This is another conservative choice on our part; later we
will show that the 26 input-ICs have little or no bear-
ing on the ultimate success of the model). As described
in the previous section, the objective function O(x) is an
integer-valued function that counts the number of pheno-
types that are correctly captured by the model given the
parameter values in the vector x. (Notice that we some-
times refer to a particular parameter vector as a “set of
parameter values”).
During DE, parameter vectors are propagated from gen-

eration to generation by processes of diversification and
selection. Each generation (indexed by t = 0, 1, . . .) con-
sists of N parameter vectors xj(t), j = 1, . . . ,N . Hence,
the real number xi,j(t) is the value of the ith parameter
in the jth parent in the tth generation. Let uj(t) be the
parameter vector for the single offspring of the jth par-
ent in the tth generation. The components of this vector,

ui,j(t) for i = 1, . . . ,D are constructed in two steps (called
“mutation” and “crossover”). Then, given the two parame-
ter vectors xj(t) and uj(t), a decision is made as to which
one is propagated to generation t + 1.
The specific rules are:

1. Mutation: First, we create a “mutant” vector vj(t) by
perturbing a parental parameter vector xj(t):

vj(t) = xj(t) + F · dj(t).
By analogy to biological evolution, we might let the
components of dj(t) be random perturbations of the
parental parameter values. However, we use the
strategy of DE, letting the perturbation vector be the
difference between the parameter vectors of two
additional parents, j ′ and j ′′, chosen at random from
the t-th generation of parents. (All three parents
must be different). In this case, the “mutant vector” is
defined by

vj(t) = xj(t) + F · (xj′(t) − xj′′(t)),
where 0 < F < 1. (We are conservative in our choice
of F = 0.1). With this definition, perturbations can
be large at first, when the population of parental
parameter vectors is diverse in terms of individual
parameter values, but the size of perturbations will
decrease in later generations as the population
converges on a nearly common set of parameter
values.

2. Crossover: Next we allow for crossover between the
parental parameter vector xj(t) and the mutant
parameter vector vj(t). Component-wise, the
offspring vector uj(t) receives a parameter value
from the mutant vector with probability C (the
“crossover” probability) or from the parent vector
with probability 1 − C:

ui,j(t) =
{
vi,j(t) if rand(0,1) ≤ C

xi,j(t) otherwise

i = 1, 2, . . . ,D and j = 1, 2, . . . ,N ,

where rand (0,1) is a random number chosen
uniformly from the interval [0,1]. We choose C = 0.5
so that neither parental values nor mutant values are
given an advantage during the crossover step.

3. Selection: The objective function determines
whether, xj(t) or uj(t), passes on to the next
generation. There are two possibilities here. The
“greedy” algorithm says that the offspring replaces its
parent if it is superior:

xj(t + 1) =
{ uj(t) if O(uj(t)) > O(xj(t)),

xj(t) otherwise.
With the “non-greedy” version, the selection
condition is O(uj(t)) ≥ O(xj(t)).
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In a few hundred generations, DE produces an elite set
of parameter vectors that reproduce the behavior of nearly
all the experimental constraints despite the suboptimal
performance of the starting point of the optimization.
All computations were performed in the Advanced

Research Computing lab at Virginia Tech. The compu-
tational time was ∼4 minutes for a single generation of
DE (19 parameter vectors and 119 simulations per vector)
and ∼20 minutes for 100 LH samples (12 seconds per
sample). Computation time could be significantly reduced
by parallel computing, e.g., 500 generations of DE, which
took ∼33 hours in our code, could be completed in ∼1
hour by using 33 processors in parallel. Such a reduc-
tion may be important in the future when we impose
additional constraints on the model.
In concluding this section we note that, in addition to

varying the values of C and F, there are other diversifica-
tion and selection strategies that could be implemented in
DE [27]. In this study we are served well by the most basic
mutation and crossover strategies, with conservative val-
ues of C and F. Investigation of the effects of varying C, F,
and mutation and crossover strategies is beyond the scope
of this paper.

Results and discussion
Rapid evolution to high-scoring parameter vectors
We performed LH sampling around the starting point
(initial guess) in a hypercube formed by ±40% pertur-
bations on each parameter value. To create 100 sample
points inside this hypercube, each parameter range is
divided into 100 subintervals (see Additional file 3). Of
the 100 samples, 19 reproduced WT viability in glu-
cose (Figure 2). These 19 parameter vectors were used
as the starting population, xj(0), j = 1, . . . , 19, for the
DE algorithm (Figure 3). We use a greedy selection algo-
rithm at first and see a steady increase in the objective
function (“number of hits”) during the evolution process,
(Figure 4). Here, the starting parameter vector gets 72
hits (out of 119 max, 60% success), and the best score
among the original 19 parameter vectors generated by LH
sampling was 80 hits. During DE, the objective function
increases by ∼50% to 107 hits. An independent DE run
(Figure 4) with the same initial population of parameter
vectors, but a different sequence of random numbers used
in mutation and crossover operations, reached 105 hits.
This variability of success comes, presumably, from the
stochastic nature of DE and the highly nonlinear structure
of our model.

Varying the settings of the optimization procedure
The initial phase of LH sampling can be quite variable in
its outcome. For example, when we resampled the ±40%
hypercube around the initial guess with 50 LH samples,
we found N = 27 parameter vectors consistent with wild
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type viability in glucose. Nonetheless, running DE on this
larger starting population did not make a significant dif-
ference in the final value of the objective function (109
hits for N = 27 versus 107 hits for N = 19), see Figure 5.
Furthermore, when we generated 19 LH samples (±40%)
without regard to WT viability, the DE algorithm reached
a maximum of 105 hits, indicating that the algorithm’s
success is not highly dependent on the initial population’s
ability to capture wild type viability in glucose. However,
we should note that the center of the LH (the initial guess)
is known to be a reasonably good starting point (72 hits).
Hence, we can expect that there are good solutions to the
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Figure 4 Evolution of the objective function during
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optimization problem within the LH even if none of the
initial 19 parameter vectors are particularly good. In fact,
we formed four independent sets of 19 parameter vectors
from the 81 vectors (out of 100 LH samples) that failed to
reproduce wild type viability. For these four starting pop-
ulations, DE converged to 100, 104, 106, and 107 hits in
1000 generations.
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(green lines) and N = 27 (blue lines). Pink line: Model performance for
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We also investigated how the size of the LH affects the
performance of DE, by starting with hypercubes generated
by ±20%, ±40% and ±90% perturbations around the ini-
tial guess. In each case, we started the DE with a popu-
lation of 19 parameter vectors generated by LH sampling
without enforcing the viability of wild type cells in glu-
cose. As illustrated in Figure 6, 40% and 90% perturbations
gave similar results after three DE runs (105–108 hits
and 104–109 hits, respectively). On the other hand, 20%
perturbations gave lower performance (95–103 hits after
1000 generations). In fact, 50 independent DE runs (for
500 generations) with 20% perturbations showed a similar
trend (illustrated in Additional file 1: Table S6), whereas
40% perturbations performed best (convergence curves of
these runs are shown in Additional file 4: Figure S1). These
results indicate that if there is not enough variability in the
LH samples used to initiate DE (e.g., the hypercube is not
big enough), then DE performs suboptimally.
Another variation in the algorithm is the criterion

we use for deciding when a trial parameter vector can
replace a parent. As shown in Figure 7, compared to
the greedy selection criterion we have been using, non-
greedy selection gives faster convergence to good solu-
tions, although the final success of the two strategies is
about the same. Defining convergence as the first genera-
tion in a run when the algorithm reaches 100 hits, we find
that greedy runs converge in ∼150 generations (median
value) whereas non-greedy runs reach 100 hits in ∼70
generations (median value).
We also investigated the effect of the starting point on

the performance of our optimization procedure. Start-
ing from the initial guess, we ran DE for 200 generations
without enforcing any improvement (random walks) and
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Figure 6 Effects of hypercube size used in LH sampling on the
optimization. Increase in the number of mutants captured with initial
populations generated by ±20% (red lines),±40% (green lines) and
±90% (blue lines) perturbations around the starting parameter vector.
Once again, the independent runs for each perturbation setting have
identical initial populations, but different random number sequences
used in the mutation and crossover operations in DE.
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Figure 7 Effects of selection strategy on the optimization.
Performance comparison of greedy and non-greedy selection rules.
Solid lines: non-greedy selection. Dashed lines: greedy selection. All
six runs start with the same initial population but with different
random number sequences in mutation and crossover operations.

randomly picked a parameter vector from the last gener-
ation as a potential starting point. Repeating this process
two more times gave us three new starting points for
optimization with 54, 69 and 57 hits. These new start-
ing points differed from the initial guess by ∼25% across
all parameter values. Starting from these three points, we
used both 40% and 90% LH sampling, followed by DE
with non-greedy selection. The success rates of these runs
(Table 1) indicate that the performance of our optimiza-
tion procedure is not highly dependent on the quality of
the starting point.
A further variation of our parameter estimation study

involved stopping DE at a particular generation, grabbing
the best population member, resampling around it with
the LH approach and continuing DE. Here, we focused
on the ten worst performing runs in Additional file 4:
Figure S1. The average number of hits among these runs
was 101.80, four less than the average of the 50 runs.
When we performed LH sampling around the best per-
forming population member within each run (with 40%
perturbations) at generation 500 and continued DE for
an additional 500 generations, the average number of hits
increased to 107.80. In comparison, continuing DE for the

Table 1 Variations in the starting point of optimization

Initial search point Initial # hits Final # hits Final # hits
indicator (40% LH) (90% LH)

0 72 105–108 104–109
(3 runs, Figure 6) (3 runs, Figure 6)

1 69 107 103

2 57 104 107

3 54 101 106

Optimization results with different initial search points used in LH sampling.

same number of generations without any resampling led
to an average of 103.9. Using the LH resampling approach
after 100 generations (instead of 500) and continuing DE
for 500 generations carried the average number of hits
from 96.30 to 105.90, which is approximately equal to the
average from the 50 runs in Additional file 4: Figure S1. On
the other hand, continuing DE for 500 generations with-
out resampling resulted in an average of 102.3 hits. From
these results, we conclude that this resampling strategy is
useful to improve suboptimal runs.

Robustness of themodel
As an indicator of the model’s robustness with respect
to the phenotype of a particular yeast strain we intro-
duce the “acceptance ratio” for an experimental con-
straint, which is simply the fraction of sample parameter
vectors that are consistent with an observed phenotype
[28,29]. For example, consider the 100 LH samples in
Figure 2. The acceptance ratio of “WT viability in glu-
cose” is 19%. That is, the model is not particularly robust
at accounting for the viability of WT yeast cells if param-
eter values are chosen more-or-less randomly in a hyper-
cube of parameter space, even if this box is known to
contain quite good parameter vectors. Since the accep-
tance ratio for WT viability among a small number of
LH samples is known to be highly variable, we gener-
ated a set of 19,000 LH samples in the ±40% hypercube.
Within this collection, “WT viability in glucose” has a 25%
acceptance ratio.
By comparison, if we optimize overall success rate, then

we find that WT viability is an extremely robust property
of the model. For example, we maximize the total num-
ber of hits on a population of 19 parameter vectors over
1000 generations, without enforcing WT viability in the
LH and DE stages. In the collection of 19,000 samples
(trial parameter vectors, some of which did not replace the
parents), the acceptance ratio for “WT viability in glucose”
was 0.9964.
For these three sample sets (19,000 DE samples, 19,000

LH samples and 100 LH samples) we computed the accep-
tance ratios of all 119 experimental strains and sorted
them in ascending order, as shown in Figure 8. Compar-
ing LH performance to DE, we see the power of DE to find
regions of high overall model performance in parameter
space. The set of 19,000 trial parameter vectors gener-
ated during DE is quite robust in accounting for most
phenotypes (∼110 phenotypes have an acceptance ratio
greater than 0.5). By contrast, for 19,000 LH samples with-
out any selection, only ∼50 strains have an acceptance
ratio greater than 0.5. Despite the inability of LH sam-
pling to find very successful parameter vectors, the LH
sampling step is essential to provide DE with an initially
diverse population that is able to evolve to high scoring
parameter vectors. It is also apparent from Figure 8 that
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Figure 8 Overall acceptance ratios of phenotypes with DE and
LH sampling. The x axis represents the phenotype number after
sorting phenotypes with respect to their acceptance ratios. The DE
curve (red line) comes from the most successful run (111 hits), where
19 parameter vectors were gradually refined over the course of 1000
generations; for the 19,000 trial parameter vectors generated during
this run, the overall acceptance ratio for each phenotype was
computed. LH curves come from independently generated 100 and
19,000 LH samples (green and blue lines).

most of the difficulties encountered by DE are the con-
sequence of eight strains with very low acceptance ratio
(Additional file 1: Table S7). Apparently it is very diffi-
cult to parametrize the model to fit any of these eight
strains without disturbing the fit to many other strains,
suggesting that there may be some missing interactions
in the model, or there may be some mistaken phenotypes
reported in the literature, or both.

Competition between the experimental constraints
Given the high dimensionality of themodel, onemay think
that it is relatively easy to capture the biological behavior
of the majority of the mutants [30]. However, that is not
the case when mutant phenotypes compete against each
other to be correctly simulated by the model, as suggested
by the existence of eight “low acceptance” phenotypes in
Figure 8 (red line). To quantify this competition, we keep
track of the performance of the parameter vectors gen-
erated during the LH and DE phases of the optimization
procedure. With m as the total number of parameter vec-
tors and n as the total number of phenotypes, we define
them × n acceptance matrix:

A =

⎡
⎢⎢⎢⎣

A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n
...

...
. . .

...
Am,1 Am,2 · · · Am,n

⎤
⎥⎥⎥⎦ ,

where Ai,j = 1 if parameter vector i captures phenotype j,
otherwise Ai,j = 0. Then, we compute the n × nmatrix of

correlation coefficients:

Rk,l = Ck,l√
Ck,kCl,l

,

where Ck,l is the covariance of the acceptance values of
phenotypes k and l:

Ck,l = 1
m − 1

m∑
i=1

(Ai,k − Ak)(Ai,l − Al).

Here, Al is the acceptance ratio of phenotype l among m
parameter vectors. Rk,l quantifies the correlation between
the kth and lth phenotypes. For each phenotype, we com-
pute an overall correlation value R̂k = ∑n

l=1,k �=l Rk,l (k =
1, 2, . . .n), that quantifies the strength of the competi-
tion faced by the kth phenotype during the optimization
against the remaining phenotypes.
Next, we identify the strongly anticorrelated mutants

and explain how they influence the search for model
parameters while we maximize the fraction of the phe-
notypes that are captured. Our focus is on the DE run
that resulted in 111 phenotypes being captured (the blue
line in Figure 7, yielding 19,000 parameter vector sam-
ples, 22% of which replaced their parents). In addition, we
analyze the LH run with 100 samples. Additional file 1:
Tables S8 and S9 show the most competitive phenotype
pairs in the LH and DE samples. We see that, in all cases,
an experimentally viable phenotype is paired with an invi-
able one. Among LH samples, the majority of competitive
phenotype pairs have common mutations. However, this
is not the case among DE samples, which suggests that
non–intuitive competitions arise when we maximize the
number of captured phenotypes in the DE phase.
Among the 3415 top-performing parameter vectors in

the DE run with 111 hits, there is a common set of eight
phenotypes that are not captured. Seven of these missed
phenotypes (#46, 48, 55, 66, 67, 74, and 117 listed in
Additional file 1: Table S7) have reasonably high accep-
tance ratios (0.36–0.94) among the 100 LH samples,
but each one is strongly anticorrelated with the remain-
ing phenotypes. To demonstrate this fact, we sorted the
119 R̂ values in ascending order from most competi-
tive (R̂ = −8.32) to least competitive (R̂ = +13.71).
The seven phenotypes under consideration are in the
top 22 most competitive phenotypes in the 100 LH
samples, as listed in Additional file 1: Table S7. Fur-
thermore, based on their R̂ values, these seven pheno-
types are in the top eight most competitive phenotypes
in the 19,000 DE sample set. Despite their reasonably
high overall acceptance ratios in the LH samples, they
experienced a large drop in acceptance ratio during DE
due to their strong competition with other phenotypes
(illustrated in Additional file 1: Table S7).
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The eighth missed phenotype (# 12: cln1� cln2�
bck2�) has very low acceptance ratio in both 19,000 DE
samples (6%) and 100 LH samples (3%). Despite the ability
of DE to increase the acceptance ratios of most pheno-
types (Figure 8), this phenotype’s acceptance stays low as
a result of its competition with the remaining 118 phe-
notypes during DE. The R̂ value of this phenotype is the
6th most competitive in the 19,000 DE samples. On the
other hand, within the 100 LH samples, strain 12 is non-
competitive, as illustrated in Additional file 1: Table S7
(its R̂ was ranked 48th). Additional file 4: Figure S2 shows
a comparison of pairwise correlations (R values) of phe-
notype 12 in 100 LH samples versus 19,000 DE samples.
There are 35 R values above 0.12 in the LH phase, whereas
this number drops to zero in the DE phase as majority
of phenotypes become competitors of phenotype 12. R̂
of phenotype 12 drops from −0.87 to −11.35 as a con-
sequence of this transition. From these observations, we
conclude that phenotype 12 is not captured due to its
extremely low acceptance ratio among LH samples and
also during optimization.
Some of the eight non-captured phenotypes consid-

ered here are also among the “most troublesome” strains
identified by us during trial-and-error parameter estima-
tion. For example, it is difficult to explain the inviability
of strains 66 (CLB1 clb2� cdh1�) and 67 (CLB1 clb2�
pds1�) because the single mutants (cdh1� and pds1�)
are viable and it is unclear why deletion of CLB2 from
either single mutant should make the strains inviable.
We also observed that capturing the viability of very
large cells of strain 12 (cln1� clb2� bck2�) jeopardizes
the simulations of many other mutants, as confirmed in
Additional file 4: Figure S2-b.
Some of the other non-captured phenotypes point out

limitations of our model and/or objective function. Strain
74 (GAL-CDC20) is inviable because excess Cdc20 over-
whelms the mitotic checkpoint mechanism and drives
cells into premature anaphase, but our model does not
capture this effect, probably because we do not over-
express Cdc20 to a sufficiently high level. Strains 46
(CLB5-db� sic1�) and 48 (GAL-CLB5 sic1�) are viable
by our criteria, but they exit mitosis with an excess of
Clb5-dependent kinase activity and cannot relicense DNA
molecules for the next round of DNA synthesis, so they
should be classified as inviable.

Using phenotype competitiveness to accelerate the
evolutionary algorithm
By ignoring non-competitive phenotypes we can reduce
the number of phenotypes that need to be simulated dur-
ing optimization. To illustrate, we identified the 50 least
competitive phenotypes from the R̂ values computed from
a small set of 100 LH samples.We then generated five sub-
sets of phenotypes to be used in the selection process by

eliminating from the full set of 119 phenotypes the 10 least
competitive phenotypes, the 20 least competitive pheno-
types,..., the 50 least competitive phenotypes. Next, for
each subset we performed four independent runs of DE
optimization, using always the same initial population of
19 parameter vectors and varying the random numbers
used in mutation and crossover operations. Lastly, after
500 generations of DE, we used the final 19 parameter vec-
tors to see how many of the full group of 119 phenotypes
are correctly simulated. The results, given in Table 2, show
that by simulating only 89 phenotypes, we find parame-
ter vectors that correctly simulate 102–109 of the full set
of 119 phenotypes. This success rate is comparable to the
results obtained by simulating all 119 phenotypes in every
generation of DE. Hence, by ignoring the least competi-
tive phenotypes we can reduce the computational load of
the DE algorithm by about 25% in each generation, with-
out losing the ability of the optimization procedure to
find sets of parameter values that give the best possible
account of all 119 phenotypes. Apparently, we get these
30 least competitive phenotypes for free during the opti-
mization procedure. They are listed in Additional file 1:
Table S10.
Of five individual non–greedyDE runs (which produced

105–111 hits out of 119), we found that they all captured
95 of the 119 phenotypes. Of the 24 phenotypes that were
missed by at least one of the five DE runs, none were
among the 30 least competitive phenotypes identified by
the 100 LH samples. Furthermore, three phenotypes (# 67,
74, and 117 listed in Additional file 1: Table S7), all among
the four most competitive phenotypes (Additional file 1:
Table S10) as identified by 100 LH samples, were con-
sistently missed by the top performing parameter vectors
in all five DE runs. These results show that, with a small
number of LH samples, we can get an idea of how DE will
perform over thousands of samples before convergence.
Nonetheless, DE is still necessary to approach an optimal
number of hits, since 100 LH samples, in three indepen-
dent runs, can get at most ∼80 hits. Even with 19,000 LH
samples, the maximum number of hits is 92, whereas DE

Table 2 Variations in the total number of phenotypes
simulatedduring optimization

Group # phenotypes in selection # phenotypes captured

0 119 105–111

1 109 106–108

2 99 104–109

3 89 102–109

4 79 66–105

5 69 58–67

Optimization results (Four individual runs with groups 1–5) with reduced sets of
phenotypes.
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reaches thismany hits in∼25 generations (∼500 samples),
indicating that random sampling of parameter space is
outperformed by a combination of random sampling (LH)
with evolutionary search (DE).

Order of events
During DE we have applied only the most basic pheno-
typic constraint on the simulated strains, namely viability
or inviability. In our simulations, viability means that cells
divide periodically and that cell mass at division con-
verges to a specific value (±5%). Inviability means that the
cell mass exceeds 25, which only happens when the cell
becomes arrested in the cell cycle, never dividing but con-
tinuing to grow. (Other behavior, such as double-period
oscillations, was considered neither inviable nor viable).
Additional constraints could be introduced. For exam-

ple, for a cell to be viable, not only must it divide periodi-
cally at a characteristic size, but also it should execute cell
cycle events (origin relicensing, origin activation, spindle
alignment, Esp1 activation and cell division) in the correct
order. And inviable cells should be checked to see that they
have arrested in the observed phase of the cell cycle. In
addition, we could check other commonly measured cell
cycle properties of mutants: for example, cell size at divi-
sion, and duration of the unbudded phase of the cell cycle.
Although we intend to examine these additional con-
straints in later studies, in this study we have checked the
order of events in all 119 strains produced by the optimum
parameter vectors. These parameter vectors reproduced
the five events for all experimentally viable mutants in the
correct order with the following exceptions:

1. In three viable strains that had no copy of PDS1
(pds1�, CLB5-db� pds1�, and clb5� clb6�
cdc20� pds1�), Esp1 was always active ([Esp1] >

0.2), and the model would ideally show that Esp1
degrades cohesins and initiates anaphase separation
of sister chromatids before all replicated
chromosomes are aligned on the mitotic spindle (a
lethal mistake called “mitotic catastrophe”). That
such catastrophes are not observed in cells lacking
Pds1 (the inhibitor of Esp1) indicates that the model
is missing an important control on cohesin
degradation. In this case, it is believed that Polo
kinase must phosphorylate cohesins before they can
be degraded by Esp1, and this effect is not included in
the present version of the model. In these pds1�
mutants, all events other than Esp1 activation took
place in the right order; hence, we are justified in
considering these mutant strains to be viable.

2. In simulations of three other “viable strains” (APC-A
sic1� cdc6�2-49, CLB2-db� multicopy SIC1, and
APC-A cdh1� multicopy SIC1) some events did not
happen in the right order (e.g., multiple

origin-relicensing events in a single cell cycle, no
spindle alignment before cell division). On the other
hand, there are two experimentally inviable
phenotypes (phenotypes 46 and 48: CLB5-db� sic1�
and GAL-CLB5 sic1�) for which our parameter
vectors exhibit “viability” but the events do not
happen in the right order. Hence, these two strains
should be correctly classified as inviable.

As a result, even with the event-order constraints, our
number of hits is only reduced from 111 to 110. Hence,
it appears that by selecting according to our simple defi-
nition of viability/inviability, the model (in the majority of
cases) automatically reproduces the correct sequence of
events in mutant strains. This property of the model is an
indication that it is correctly representing the sequence of
dependencies in themolecular mechanism underlying cell
cycle progression in budding yeast.

Sensitivity analysis of the model
Sensitivity analysis is widely applied to study biological
systems in order to quantify the robustness of biological
behavior to changes in model parameters, to determine
the most sensitive model parameters and experimental
constraints, and to guide further experimental work and
model refinement [12]. Our approach to sensitivity anal-
ysis, described below, is similar to past studies by Bentele
et al. [10].

Fragile and robust phenotypes
Our objective function is the number of phenotypes suc-
cessfully simulated by the model for a particular set
of parameter values. In this section, we identify the
effects of single parameter perturbations on this func-
tion in order to identify those parameters to which the
model is most sensitive. When perturbed, these “critical”
parameters cause the loss of already captured pheno-
types more frequently than non-critical parameters. In
addition, because the objective function encompasses all
experimental constraints, we can look for links between
individual parameters and individual genetic strains. For
large and complex networks, such as the budding yeast cell
cycle, the identification of such input-output relationships
can be challenging and counterintuitive [1]. Nonetheless,
we seek such relationships because they can suggest how
a control system might be perturbed experimentally in
order to achieve particular desired outcomes.
Our approach to sensitivity analysis is to produce a

large sample of perturbations away from the best param-
eter vectors identified by DE. We then ask of this sam-
ple which parameters—when perturbed—cause the most
drastic loss of correctly simulated phenotypes; these are
the critical parameters. The phenotypes most often incor-
rectly simulated are the fragile phenotypes. To generate
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the sample of parameter vector perturbations, we must
first choose a representative collection of parameter vec-
tors that aremost successful in capturing phenotypes. The
most successful DE run (non-greedy Run 1, in Figure 7)
captured 111 of 119 phenotypes. Of the 19,000 parameter
vectors investigated in this run, 3415 defined models
that reproduced 111 phenotypes, and of these successful
sets we chose 15 at random. Next, we introduce pertur-
bations to each parameter in each of these 15 vectors.
In general, each parameter is perturbed ±20%, ±40%,
±60%, ±80% (eight perturbation levels) from its nominal
value and in addition each parameter is set to zero (the
ninth perturbation level).
Recall that each parameter vector consists of 126 kinetic

constants (Additional file 1: Table S1) plus 26 initial con-
ditions (Additional file 1: Table S2). Of the 126 kinetic
constants, two were not perturbed: mass doubling time
(held constant at 100 min) and fraction of daughter
mass acquired from the mother (held constant at 0.4).
In addition, the CLN2 basal expression rate was fixed at
zero, since even tiny values of this parameter consistently
caused cln3� bck2� and cln3� bck2� sic� strains to be
viable, contrary to experimental observations. Also, there
were 224 mutant-parameter combinations where setting
the parameter to zero did not make sense. For example,
forCKI overexpressionwith aGAL promoter, it is not sen-
sible to have a zero setting for the synthesis rate of CKI
protein. Similarly, for each phenotype, setting the initial
cell size to zero is not possible.
Starting from each of the 15 successful parameter vec-

tors chosen from the DE run, we introduced one of
the parameter perturbations to create a “new” parame-
ter vector. We then simulated WT cells in glucose (all
our parameter vectors at this point define models that
reproduce WT viability). Next, we simulated each of the
118 other strains by adjusting the parameter values in
the “new” parameter vector according to the rules that
mimicked these strains. In total, from the 15 initial param-
eter vectors we created 20115 new parameter vectors (15
sets × 9 perturbation levels × 149 varying model param-
eters) and ran 119 simulations per vector. Out of these
2,393,685 simulations, we discarded the ones where set-
ting a parameter to zero was not sensible, leaving us with
2,393,461 to assess model robustness. The total num-
ber of hits among the 20115 parameter vectors generated
after perturbations in individual parameters ranged from
54 to 111. Although some of the eight phenotypes that
were missed by optimization were captured by some of
these perturbations, the overall number of hits never
exceeded 111. These eight phenotypes (# 12, 46, 48, 55,
66, 67, 74, and 117 listed in Additional file 1: Table
S7) were not taken into account in the sensitivity anal-
ysis, since our reference point was the outcome of the
optimization.

We computed the number of times each of the 111
captured phenotypes was lost after a parameter perturba-
tion, and then we ranked the 111 phenotypes according
to their frequency of loss (“fragility”). The 20 most frag-
ile phenotypes (18% of the 111 phenotypes) accounted for
46% of the total number of losses, and each contributed
at least 1.5% to this total. Only four of these phenotypes
are experimentally inviable, which indicates that viability
is more vulnerable to parametric perturbations. On the
other hand, out of the 33 single-mutation phenotypes cap-
tured before perturbations, only four of them are among
the most fragile 20 phenotypes. This prediction aligns
with the increasing fragility observed in biological systems
with increasing number of structural changes (mutations)
[31]. Table 3 shows the 20 most fragile phenotypes. Muta-
tions connected to the Start cyclins (Cln1,2,3) and the
G1-stabilizers (Sic1 and Cdh1) are common features of
these phenotypes.
The 33 most robust phenotypes are all inviable. The

first viable phenotype that is also robust is ranked 34th
on the list, and there are nine other robust viable pheno-
types among the top 45 robust phenotypes (see Table 4).

Table 3 The 20most fragile phenotypes

Strain name Phenotype Percent of total
losses

CLB2-db�multicopy SIC1 Viable 3.38

cln1� cln2� cdh1� Viable 3.19

CLB2-db� clb5� clb6� in galactose Viable 3.16

cdc15� net1-ts cdh1� Viable 2.85

GAL-CLB2 cdh1� Inviable 2.84

cln1� cln2� cdh1�GAL-CLN2 Viable 2.74

CLB2-db� in galactose Inviable 2.70

APC-A Viable 2.40

APC-A sic1� Viable 2.39

CLB5-db� pds1� Viable 2.35

APC-A cdh1� multicopy SIC1 Viable 2.31

cdh1� Viable 2.24

cln1� cln2� cln3� sic� Viable 2.03

bck2� Viable 1.93

GALL-CDC20 sic1� cdh1� Viable 1.84

APC-A cdh1� in galactose Inviable 1.72

clb5� clb6� cdc20� pds1� Viable 1.69

cln3� bck2� sic� Inviable 1.67

cln1� cln2� Viable 1.54

APC-A sic1� cdc6�2-49 Viable 1.53

These are the phenotypes that are most often lost (i.e., incorrectly simulated)
when perturbations are applied to individual model parameters. Fragility
decreases from top to bottom.
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Table 4 The 10most robust viable phenotypes

Rank Strain name Phenotype Percent of total
losses

34 TAB6-1 CLB1 clb2� Viable 0.51

36 GAL-SIC1 Viable 0.53

37 GAL-NET1 GAL-CDC14 Viable 0.53

39 Multicopy CDC15 Viable 0.57

40 GAL-TEM1 Viable 0.60

41 WT in glucose Viable 0.61

42 WT in galactose Viable 0.62

43 ppx� Viable 0.62

44 TAB6-1 Viable 0.62

45 tem1-tsmulticopy CDC15 Viable 0.62

These are the viable phenotypes that are least often lost (i.e., incorrectly
simulated) when perturbations are applied to individual model parameters.
Robustness decreases from top to bottom. TAB6-1 has lowered efficiency of
Cdc14-Net1 complex (RENT) formation compared to WT efficiency.

The wild type phenotype (in both glucose and galactose
growth media) is among the most robust viable pheno-
types as expected, since the high number of hits during
optimization is strongly dependent on the model’s ability
to capture wild type viability. Themost common feature of
robust-viable genetic strains is the presence of mutations
in the EXIT module (NET1, CDC14, CDC15, PPX, TAB6-
1, TEM1), as compared to the relative fragility of strains
with mutations in the START module.

Critical and dispensable parameters
We used the same data set to analyze model robustness
with respect to parameters. For each model parameter,
we counted the number of times a perturbation caused
the loss of a phenotype, and ranked parameters accord-
ing to their ability to affect our objective function (the
total number of captured phenotypes). “Critical” param-
eters are parameters that when perturbed cause frequent
losses of phenotypes. On the other hand, parameters that
can be perturbed with little or no change in our objec-
tive function are clearly “dispensable” parameters to the
optimization process considered here. The 20 most criti-
cal parameters, which account for 44% of the total losses,
are listed in Table 5. The most critical parameter in our
analysis is the total amount of Cdc14, which accords nicely
with the experimental result that, among 30 cell cycle
genes studied by Moriya et al. [32], the cell cycle was least
tolerant to overexpression of CDC14.
Twelve of the 20 most critical parameters are involved

in the EXIT module. Whereas EXIT module parame-
ters are critical in terms of capturing phenotypes, viable
strains with mutations in EXIT module genes are highly
robust to perturbations when the effects are summed over
all parameters in the model. These contrasting results

Table 5 The 20most criticalmodel parameters

Parameter name Percent of losses

Total amount of Cdc14 3.14

SPN synthesis rate 2.81

Total amount of Esp1 2.60

Total amount of Net1 2.57

Degradation rate of Cdc20 2.53

PPX inactivation by Esp1 2.51

Efficiency of Cdc14-Net1 complex (RENT) formation 2.50

Time scale for protein activation 2.41

Net1 phosphorylation by Clb2 2.30

Total amount of Mcm1 2.25

Transcriptional activation of CDC20 by Mcm1 2.17

Transcriptional activation of CLB2 by Mcm1 2.06

Sigmoidicity of protein activation 1.99

Degradation rate of Swi5 1.99

CKI phosphorylation rate 1.96

Cdh1 inactivation rate 1.83

Total amount of SBF 1.79

Clb2 degradation by active Cdc20 1.76

Polo activation by Clb2 1.67

Synthesis rate of Bck2 1.66

Most critical model parameters that had the largest effects on the objective
function upon perturbations. Criticality decreases from top to bottom.

underscore the difference between critical parameters and
robust strains. The evaluation of model parameters and
phenotypes is performed by looking into different sets of
outputs. A robust strain (which is insensitive to changes
in a majority of the parameters) is identified by taking per-
turbations in all parameters into account. On the other
hand, a critical parameter (causing the loss of more phe-
notypes than other parameters once it is perturbed) is
identified by taking all phenotypes into account.
We also identified the 70 least critical model parame-

ters, i.e., those parameters with little or no effect on the
objective function. To determine if some of these parame-
ters are dispensable as far as our optimization problem is
concerned, we constructed a series of “reducedmodels” by
setting more andmore of these least-critical parameters to
zero. The results, presented in Table 6, demonstrate that
we can eliminate the 50 least critical parameters (listed in
Additional file 1: Table S11) without seriously degrading
the ability of the model to capture at least 105 of the 119
strain phenotypes.
In an independent repeat of this sensitivity analysis, 49

of the top 50 least critical parameters were the same, and
in another repeat after an independent DE run that pro-
duced 1803 parameter vectors with 110 hits, 44 of the 50



Oguz et al. BMC Systems Biology 2013, 7:53 Page 14 of 17
http://www.biomedcentral.com/1752-0509/7/53

Table 6 Performances of the reduced order models

Reduced model # # Model parameters # Hits

0 152 (full model) 105–111

1 102 107–107

2 92 93–97

3 82 94–96

Optimization results with the full model and the reduced models (two individual
runs for each reduced model). The least sensitive 50 parameters are set to zero in
Reduced Model 1, whereas the least sensitive 60 and 70 parameters are set to
zero in Reduced Models 2 and 3, respectively.

were the same. It is noteworthy that 25 initial conditions
(all except the initial mass) and 6 BUD related parameters
always formed the least critical 31 parameters. In hind-
sight, this is not surprising, because the initial conditions
are used only to start up the simulation of a WT cell in
glucose. If the WT cell is viable, we replace the “initial”
ICs by the values of all variables in a newborn WT cell for
all further strain simulations. So the “initial” ICs have no
bearing on the calculation of the objective function. Initial
mass plays a different role, because if it is too large or too
small, then the WT cell may not be correctly simulated.
Regarding BUD-related parameters, the BUD variable is
part of the model in order to time the appearance of the
bud in relation to the onset of DNA synthesis (the ORI
variable), but the BUD variable has no effect on further
progress through the cell cycle. Hence, the BUD-related
parameters have no effect on the viability or inviability of
simulated strains. In future versions of the model, where
the timing of budding events will enter into the objec-
tive function, the BUD-related parameters will no longer
be dispensable. Of the remaining 50 least critical param-
eters (Additional file 1: Table S11), many are “basal” rates
of synthesis or degradation and “basal” rates of activation
or inactivation. Most of these basal rate constants can be
set to zero without seriously degrading the success of the
model in capturing viability or inviability of the mutant
strains.

Strongly connected phenotype-parameter pairs
We also computed the number of times a model param-
eter, upon perturbation, caused the loss of a specific
captured phenotype. The ten most strongly connected
mutant-parameter pairs are listed in Table 7. Each of
these parameters has changed the phenotype of the cor-
responding strain for at least 118 of the 135 perturbations
(9 perturbation levels × 15 parameter vectors). All of
these strains carry multiple mutations, a characteristic of
fragile phenotypes. The fragility of these strains is, for
the most part, connected to perturbations in mitotic exit
parameters. The highly affected strains also tend to carry
multiple copies of a wild type gene, suggesting that DE has

Table 7 Strongly connected phenotype-model parameter
pairs

Phenotype Perturbed model Probability of

parameter phenotype loss

cdc15� net1-ts cdh1� Total amount of
Cdc14

1.00

cdc15� net1-ts cdh1� Total amount of Net1 0.99

CLB2-db�multicopy SIC1 Basal SBF dephospho-
rylation

0.93

CLB2-db�multicopy SIC1 SBF-dependent Cln2
synthesis

0.90

cln1,2� cdh1�GAL-CLN2 Total amount of Esp1 0.89

CLB2-db�multicopy SIC1 CKI phosphorylation
rate

0.88

cdc15� net1-ts cdh1� Efficiency of Cdc14-
Net1 complex (RENT)
formation

0.88

cln1,2� cdh1�GAL-CLN2 PPX inactivation by
Esp1

0.87

GALL-CDC20 sic1� cdh1� Degradation rate of
Cdc20

0.87

cdc15-tsmulticopy CDC14 Total amount of Net1 0.87

Upon a perturbation, with at least 0.87 probability, these parameters caused the
loss of the corresponding phenotype (all phenotypes are experimentally viable).

delicately balanced model parameters to reproduce the
viability of these strains.

Novel phenotypes predicted by the elimination of
phosphorylation/dephosphorylation reactions
It is interesting to note that there are only two phos-
phorylation/dephosphorylation rates among the 20 most
critical parameters in Table 5, despite the presence of
severalmore such rates in themodel equations. Thismoti-
vated us to look more carefully into sensitivity analysis
results, specifically the perturbations by which parameter
values were set to zero. We focused on nine phosphory-
lation/dephosphorylation rates (a subset of all such rates)
that cause inviability in otherwise viable genetic strains as
shown in Table 8 (wild type viability was retained when
these rates were set to zero). In other words, sensitiv-
ity analysis gave us novel phenotypes that highlighted
the importance of this class of reactions only under spe-
cific mutant backgrounds. For a similar past experimental
study that identified Sic1 phosphorylation to be lethal only
when one of the Clb-cyclins is deleted, see [33].
The three genetic strains that are most commonly

affected by elimination of these nine specific phospho-
rylation/dephosphorylation reactions are APC-A, bck2�
(or Multicopy BCK2), and cdh1� (Table 8). APC phos-
phorylation (activation) by Clb2 is set to zero in APC-A
and this inhibits the degradation of Clb5 and Clb2. Clb5
phosphorylates Whi5 and CKI, and Clb2 phosphorylates
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Table 8 Synthetic lethality induced by elimination of
phosphorylation/dephosphorylation reactions

Eliminated
reaction

Impacted single mutation strains that are

viable (inviable) before (after) perturbation

Whi5 phosphoryla-
tion
by Bck2

cln3�, Multicopy BCK2, cdh1�, sic1�, swi5�,

CLB5-db�, net1-ts, GAL-CLB2, APC-A

CKI phosphoryla-
tion by
Cln2

bck2�, GAL-SIC1, net1-ts, APC-A

CKI phosphoryla-
tion
by Clb2

GAL-CLN3, cdh1�, GAL-CLB5, CLB1 clb2�

CKI dephosphory-
lation
by Cdc14

bck2�, cdh1�, GAL-CLB2, APC-A

Whi5 phosphoryla-
tion
by Cln3

bck2�, cdh1�, APC-A

SBF phosphoryla-
tion
by Clb2

cdh1�, CLB5-db�, APC-A

Whi5 phosphoryla-
tion
by Cln2

bck2�, APC-A

Whi5 dephospho-
rylation
by Cdc14

APC-A

Net1 dephospho-
rylation
by PPX

Multicopy CDC15

Upon setting phosphorylation/dephosphorylation rate constants to zero (left
column), viability is lost in several single mutation strains (right column).

SBF and CKI. Hence, increased levels of Clb5 and Clb2
in APC-A combined with the elimination of phosphoryla-
tion/dephosphorylation reactions upset the net phospho-
rylation of CKI,Whi5 and SBF that is required for viability.
Likewise, Bck2 inhibits CKI and Whi5, and its deletion or
overexpression combined with these parametric pertur-
bations cause imbalances between phosphorylation and
dephosphorylation rates, leading to inviability. In cdh1�
background, Clb2 is in excess (as in APC-A) since Cdh1
degrades Clb2. Therefore, SBF and CKI phosphorylation
is affected the sameway as described above forAPC-A. On
the other hand, excess Clb2 in cdh1� background leads
to higher levels of phosphorylated (inactive) Net1, thereby
reducing Net1’s ability to trap Cdc14 in Cdc14-Net1 com-
plex resulting in excess free Cdc14 that impacts net Whi5
phosphorylation. We would like to note that only 31
single mutation strain–parameter pairs, 17.2% of all pos-
sible 180 mutant–parameter pairs (20 single mutation
strains× 9 phosphorylation/dephosphorylation rates), are
affected by the nine phosphorylation/dephosphorylation

rates (Table 8). These rare fragilities are identified auto-
matically by the sensitivity analysis, which actually gen-
erates hundreds of novel phenotypes starting from the
119 phenotypes we used in optimizing model parameters.
Identification of these rare parameter–mutant combina-
tions in such a large input–output space is potentially
beneficial to biologists, who are typically faced with the
daunting task of performing genetic screens in complex
biological networks. Our approach provides an experi-
mental design path to follow with a mathematically simple
sampling and optimization framework in the absence of
time–series data, but only a set of qualitative observations
(phenotypes) available to train the model.

Conclusions
The physiological characteristics of a living cell—for
example, how it progresses through the cell division cycle,
or how it responds to external stimuli, or how it devel-
ops within a specialized tissue—depend ultimately on the
dynamical properties of macromolecular regulatory net-
works. The dynamics of these networks can be described
accurately by systems of differential equations (in a deter-
ministic setting) or sets of reaction probabilities (in a
stochastic setting). In principle these systems of equations
can be simulated numerically and the results compared
to the behavior of living cells under a variety of exper-
imental conditions. Unfortunately this vision of a grand
theory of molecular cell biology is subverted by the “curse
of parameter space”. Any realistic model of a functional
cellular control system will contain dozens of interact-
ing genes, proteins and metabolites and many dozens
of rate constants (or reaction probabilities), which are
generally unknown. A major part of the challenge of
model building inmolecular systems biology is to estimate
the system parameters from the available experimental
data and, in the process, to assess how well the data
constrains the model and how well the parameterized
model accounts for the data and makes reliable predic-
tions of future experiments. It is in this context that
systems biologists need practical approaches to param-
eter estimation. Brute force exploration of parameter
space is not an option. For a model with 100 parameters,
even to evaluate parameter vectors at each corner of a
hypercube bounding a feasible region of parameter space
would take approximately 1030 evaluations, a number well
beyond foreseeable computational power. In light of this
fact, any optimization procedure must propose ways to
trade off wider exploration of parameter space for denser
sampling of more promising regions found by previous
sampling.
Furthermore, the optimization problem is itself a mov-

ing target. New experimental observations are contin-
uously being reported, forcing the model to adapt and
change. There is no point in employing a heavy duty
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optimization procedure that provides a single “optimal”
solution (at great expense) for a problem that may be
outdated tomorrow. What modelers need are computa-
tionally light optimization approaches that can help them
make quick and flexible progress. The approach we are
proposing, based on Latin hypercube sampling and dif-
ferential evolution, appears well suited to the task. In
addition, our approach can be of great use to modelers by
highlighting parts of the model where the structure may
be insufficient (or overly complex) to explain the observed
data.
We believe that our approach is a practical and infor-

mative strategy for studying how the assignment of
parameter values affects the ability of a complex reac-
tion network to account for extensive data sets. Of
course, other approaches are possible, and it is difficult
to compare the relative merits and liabilities of various
approaches. The only study directly comparable to ours,
in the sense of estimating a large number of cell cycle
parameters based on mutant phenotype data, is a paper
by Panning et al. [34] on global parameter estimation for
the Chen-2004 model [16] with a data set consisting of
phenotypic characterizations of 115 budding yeast strains.
These authors used a combination of two deterministic
optimization algorithms: DIRECT (Dividing Rectangles)
and MADS (Mesh Adaptive Direct Search). They started
with a very good set of parameter values (the Chen-2004
set, which accounts for 103 of the 115 phenotypes) and
looked for the global optimum. DIRECT alone improved
this result to 107 of 115 phenotypes after 500,000 eval-
uations of the objective function, most of which were to
confirm that the global optimum point did not lie else-
where. MADS improved the result to 108 very quickly (a
few thousand evaluations). At this point, we are not able to
provide a direct comparison of our approachwith Panning
et al., since the two studies used different models and opti-
mized with respect to different phenotypic constraints.
However, we plan to include a direct comparison of these
two optimization approaches in a later publication.
In conclusion, we have presented a parameter estima-

tion approach for high dimensional ODE models with a
large number of experimental constraints. Our approach,
which makes use of established parameter sampling and
optimization tools, is quite successful in locating points
in the parameter space with high model performance,
even when the starting point of the search is quite “sub-
optimal”. Sensitivity analysis of the objective function
provides additional information on “critical” and “dispens-
able” parameters and on fragile and robust phenotypes;
information that suggests directions for model refine-
ment. We also used random sampling to measure “com-
petition” between experimental constraints, information
that is useful to streamline the number of simulations
needed for parameter estimation and to assess trade-offs

in a model’s ability to reproduce a given set of experimen-
tal observations. Finally, we identified rare parameter–
mutant combinations to highlight particular fragilities in
the system to illustrate usefulness of our approach to pre-
dict novel phenotypes and design new experiments. To
conclude, we demonstrated that these methods of param-
eter estimation and analysis can be a powerful tool to
propel systems biology research forward.
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supplementary tables referred to in the main text.
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