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Abstract

Background: The topological features of disease genes within interaction networks are the subject of intense study,
as they shed light on common mechanisms of pathology and are useful for uncovering additional disease genes.
Computational analyses typically try to uncover whether disease genes exhibit distinct network features, as compared
to all genes.

Results: We demonstrate that the functional composition of disease gene sets is an important confounding factor in
these types of analyses. We consider five disease sets and show that while they indeed have distinct topological
features, they are also enriched in functions that a priori exhibit distinct network properties. To address this, we
develop a computational framework to assess the network properties of disease genes based on a sampling
algorithm that generates control gene sets that are functionally similar to the disease set. Using our
function-constrained sampling approach, we demonstrate that for most of the topological properties studied, disease
genes are more similar to sets of genes with similar functional make-up than they are to randomly selected genes; this
suggests that these observed differences in topological properties reflect not only the distinguishing network features
of disease genes but also their functional composition. Nevertheless, we also highlight many cases where disease
genes have distinct topological properties even when accounting for function.

Conclusions: Our approach is an important first step in extracting the residual topological differences in disease
genes when accounting for function, and leads to new insights into the network properties of disease genes.
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Background
Network biology provides a holistic framework for under-
standing pathological processes at a system-wide level. By
enabling human disorders to be cast within the context of
large-scale interactomes, network-based approaches shed
light on the roles of genes both within the context of spe-
cific diseases as well as across multiple disorders [1]. Fur-
ther, the network properties of disease genes hold promise
for improving candidate gene prioritization in a time and
cost effective way, and for helping to identify novel can-
didates for target-based therapies (for a review, see [2]).
The rapid growth of data associating genes to diseases
(e.g., mutations catalogued from the Cancer Genome
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Project [3] or from exome studies of individuals afflicted
with a disease of interest), along with the availability of
large-scale human interaction data [4-6], provides fur-
ther impetus for developing and applying network-based
approaches for analyzing disease genes.
Computational analysis of genes, both disease and non-

disease, within interactomes has demonstrated that the
topological network features of their corresponding pro-
teins reveal important aspects of their underlying func-
tioning (reviews, [7,8]). Groups of interacting proteins
work together in modules to achieve specific biologi-
cal functions [9-14]. Simple topological measures can
reflect important cellular properties; for example, proteins
with high degree centrality, or a large number of inter-
actions, are more likely to be evolutionarily conserved
and essential to the survival of the cell than other pro-
teins [15-17]. In the context of human diseases, genes
associated with specific disorders tend to cluster in phys-
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ical interaction networks [1,18], suggesting that these
diseases result from the malfunctioning of specific func-
tional modules. Cancer mutated genes have been found
to be enriched in their number of physical interactions
[19,20], whereas genes with mutations responsible for
inherited disorders have a less clearly defined position
in the network. More specifically, an early study showed
that inherited disease genes are characterized by larger
than expected degree [21], but it has been since argued
that this observation is due to the correlation between
essentiality and degree, and that once the small frac-
tion of disease genes that are also essential are removed
from consideration, inherited disease genes do not tend
to have a higher number of interactions [1]. In a more
recent study, genes involved in inherited and complex dis-
eases have been found to have higher global centrality, as
measured by betweenness centrality, and to occur in less
dense portions of the network, as measured by cluster-
ing coefficient, than non-disease genes; it has been pro-
posed that these disease genes play an important role in
bridging otherwise disconnected parts of the interactome
[22].
While these numerous studies have found that vari-

ous disease gene sets have distinct topological network
features, and have argued that these features reflect
important aspects of pathology, here we aim to uncover
whether network features reflect functional composi-
tion, and if so, to develop and apply a computational
approach that controls for this. As a first step, we per-
form a comprehensive analysis of the topological network
properties of five different disease sets, including genes
implicated in monogenic or polygenic Mendelian disor-
ders, or mutated, over-expressed or under-expressed in
cancer. We begin with the observation that these five dis-
ease sets are enriched in specific functional categories.
Further, we demonstrate that genes associated with spe-
cific functional categories themselves tend to have distinct
topological properties a priori. Together, these two find-
ings raise the possibility that a significant portion of the
observed topological differences between disease genes
and other genes may in fact be due to differences in
their functional compositions. If this is the case, then the
topological properties of disease genes may contribute
only a limited amount of new information beyond what
is already implied by their functional make-up, thereby
lessening their impact in furthering our understand-
ing of disease pathology or in uncovering new disease
genes.
We propose that in order to assess whether a set of

disease genes is topologically distinct from other genes,
it is critically important to explicitly consider biologi-
cal function. Towards this end, we develop a sampling
strategy to generate control sets of genes functionally sim-
ilar to a reference set. We apply our sampling approach

to compare each of the disease sets to control sets of
genes with similar functional compositions. In contrast
to previous studies that consider and compare just the
medians or means of topological properties, we com-
pare the distributions of these properties between dis-
ease and non-disease gene sets over their interquartile
ranges. We find that in most cases considered, the topo-
logical properties of disease genes appear less distinct
when compared to functionally similar groups of genes
than when considering randomly selected genes; that is,
at least some of the observed differences in the topo-
logical properties of disease genes, as compared to all
genes, is in fact explained by their specific functional
compositions. For example, inherited disease genes have
previously been found to have a significantly lower clus-
tering coefficient than randomly selected genes [22], but
we find more typical or even higher values when con-
sidering groups of functionally similar genes. Statistically
significant differences do emerge, however, in some of
the topological properties of disease sets, even when con-
sidering function, and different disease sets can exhibit
opposing trends. For example, genes over-expressed in
cancer tend to have, on average, higher interaction degree,
higher clustering coefficient, and higher betweenness cen-
trality than functionally similar sets of genes, but these
trends are reversed for cancer under-expressed genes.
Overall, using our sampling approach, we show that the
functional composition of a disease set is an impor-
tant factor in its observed topological properties, but
that the broad disease group (e.g., Mendelian disorders
vs. cancer) and the type of involvement (e.g., mutation
vs. altered expression in cancer) play significant roles as
well.

Results
Preliminaries
We analyze the functional enrichment and network fea-
tures of five sets of disease genes: (1) genes impli-
cated in Mendelian disorders, as reported in the
OMIM catalogue [23] (full OMIM); (2) the subset of
OMIM genes involved in monogenic disorders, derived
from Cai et al. [22] (monogenic); (3) genes with
mutations reported in more than one cancer type,
derived from the IntOGen database [24] (cancerMut);
(4) genes significantly over-expressed in cancers (from
IntOGen) (cancerOverExpr) and (5) genes signif-
icantly under-expressed in cancers (from IntOGen)
(cancerUnderExpr).
In the main body of the paper, we focus on a single

network and set of functional terms, but also consider
other networks and functional terms in the Supplement.
Specifically, our primary analysis uses a subset of Gene
Ontology (GO) biological process terms that correspond
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to broad functional classes (“Informative Terms” [25],
see Materials and Methods for more details). Further,
we perform our primary network analysis on a com-
prehensive human protein-protein interaction network
[26], and limit our analysis to proteins annotated by at
least one informative term. We consider three widely
studied network properties: degree centrality, between-
ness centrality and clustering coefficient. A protein’s
degree centrality is the number of binding partners it
has, whereas its betweenness centrality is defined as
the sum over each pair of proteins of the fraction of
the shortest paths between them that pass through it
[27]; these are, respectively, local and global measures
of the topological prominence of a protein. The clus-
tering coefficient of a protein measures the tendency of
its binding partners to also bind to each other [27]; it
is a local measure of the network density of a protein’s
neighborhood.

Disease gene sets are topologically distinct from each
other and from the set of all genes
We begin by observing that the five different disease sets
exhibit starkly different topological properties (Figure 1).
Their median degrees range from 4 for cancer under-
expressed genes to 9 for cancer mutated genes. Cancer
mutated genes have a median degree 1.8 times larger
than that of OMIM genes and the monogenic subset
(p < 2.2e − 16, Wilcoxon’s rank sum test), and more
than twice that of the cancer under-expressed genes
(p < 2.2e − 16). The median clustering coefficient ranges
from 0.048 for genes involved in monogenic disorders
to 0.077 for cancer over-expressed genes and 0.087 for
cancer mutated genes. Both cancer over-expressed and
cancer mutated genes are significantly more clustered
than the genes in all the other disease sets (all p-values
< 0.005). Cancer mutated genes have a median between-
ness centrality value that is over three times the medians
of all the other disease sets (all p-values < 1e − 9), and is
ten times that of cancer under-expressed genes. Overall,
the observed variation in topological properties between
various disease sets is consistent with the apparent lack of

agreement in previous studies that each focused only on
specific groups of disorders [1,18-20,22].

Disease gene sets show characteristic functional
compositions
Having highlighted the significant topological differences
in the five disease sets, we next investigate their func-
tional compositions. For each of the disease sets, we
calculate the GO functional enrichment as compared
to the full human interactome, using the hypergeomet-
ric test (Figure 2). As expected, all disease sets contain
significantly over- or under-enriched functional terms
(Bonferroni corrected p-values < 0.05), and therefore
none of them represents a functionally unbiased sample
of the human interactome. This simple GO enrichment
analysis broadly recapitulates crucial aspects of the var-
ious types of diseases. For example, Mendelian disorder
genes (both monogenic and full OMIM sets) are found to
be enriched in developmental and metabolic terms (e.g.,
organ development, anatomical structure
morphogenesis, organic acid metabolic
process, lipid metabolic process), as one
would expect for diseases that are largely congeni-
tal or early-onset. In contrast, genes involved in can-
cer show different patterns of enrichment, depending
upon whether they are somatically mutated, over-
expressed or under-expressed: cancer mutated genes
show a significant involvement in signaling and apopto-
sis (e.g., intracellular signal transduction
and regulation of apoptosis), while genes sig-
nificantly over-expressed in cancers are enriched in
cell cycle terms. Finally, the set of genes signifi-
cantly under-expressed in cancer are depleted of the bio-
logical processes that are most critical to rapidly dividing
cells (e.g. RNA metabolic process, cell cycle).
A comprehensive enrichment analysis subdivided by
anatomical region for cancer over-expressed and under-
expressed genes is provided in Additional file 1: Figures
S7 and S8, and shows that distinct functional enrichments
are also apparent in more fine-grained definitions of
disease sets.

Figure 1 Disease sets are topologically distinct from each other. The 25th-75th percentile of degree (left), clustering coefficient (middle) and
betweenness centrality (right) values for each of the five disease sets (see text) and the set of all annotated genes. Medians are indicated by the
vertical bar, with the 2nd and 3rd interquartile ranges shown via the boxes to the left and the right of the median.
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a) b)

Figure 2 Function, network topology and disease are interrelated. (a) In each disease set, significantly enriched and under-enriched functions
are shown in red and green, respectively (p < 0.05, Bonferroni-corrected hypergeometric test). The fold enrichment or depletion for each disease
set and term is plotted using a red-green gradient and calculated as the ratio of the fraction of genes in the disease set that are annotated by that
term to the fraction of all annotated genes that include that term. (b) For each of the three topological properties and each term, we compared the
distributions of the topological property restricted to genes annotated with that term versus all annotated genes. Red (green) depicts a significant
difference as determined via Wilcoxon’s rank sum test (Bonferroni-corrected p-value < 0.05); that is, genes having this functional term differ in this
topological property from the set of all annotated genes. We use a red-green gradient to plot the ratio of the average of the property in the genes
annotated with the term to the average of the property in all annotated genes; however, in order not to overweigh the contribution of genes with
multiple annotations, when computing the average of the property across genes annotated with a particular term, we weigh the contribution of
each gene inversely to the number of terms with which it is annotated.
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The functions enriched in the disease sets are associated
with distinct topological properties a priori
Given the characteristic functional compositions exhib-
ited by the disease sets, we next address the follow-
ing question: are genes annotated with these functions
topologically distinct from the rest of the interactome
a priori? To address this, for each informative term we
calculate the average degree, clustering coefficient and
betweenness centrality of the genes annotated with the
term over the average of all annotated genes (Figure 2b).
Several terms annotate genes whose topological proper-
ties deviate significantly from the background (Bonferroni
corrected p < 0.05, Wilcoxon’s rank sum test). A subset
of these terms are also significantly enriched (or under-
enriched) in disease sets (Figure 2a).

A novel sampling approach allows a functionally
constrained comparison of disease and control sets
The results presented above show that disease genes tend
to be enriched in or depleted of specific functions, in a
disease set dependent manner, and that many of these
functions are also associated with topological properties
that deviate significantly from their values in the full inter-
actome. This suggests that the functional make-up of dis-
ease genes represents a confounding factor when studying
their topological properties. Do the previously observed
topological differences in disease genes simply reflect their
functional composition? If this is the case, then disease
genes are topologically indistinguishable from the rest of
the genes in their functional modules.
In order to address this question, we develop a proce-

dure to minimize the influence of functional composition
in gene sets. The idea behind the approach (described in
more details in Materials and Methods) is to randomly
sample a set of “control” genes from a background set of
genes lacking the property that defines “disease genes,”
such as mutation or altered expression in cancer. The
set of sampled genes has the same size as the disease
set and our goal is that it should also have a similar
functional composition. We note that this is a challeng-
ing computational task because genes can have multiple
annotations. We call the samples generated by our proce-
dure “function-constrained” and we refer to the samples
simply drawn from the control pool without regard for
their functional composition as “unconstrained” samples.
To test our sampling procedure, for each target dis-

ease set we generate 1000 function-constrained samples
and 1000 unconstrained samples. We compare the dis-
tribution of informative terms in the samples against
the distribution observed in the disease sets. We find
that our sampling procedure effectively reduces the dif-
ferences between the functional composition of the dis-
ease set and that of the function-constrained samples
(Figure 3a); in contrast, we observe a substantial deviation

a)

b)

Figure 3 Function-constrained samples closely match the
functional composition and number of terms per protein of
disease sets. (a) Boxplots show the Euclidean norm between the
distribution of informative term functional annotations in the disease
set versus those found in the samples; this corresponds to the square
root of the functional distance defined in the Methods.
Function-constrained samples are shown in the left columns and the
unconstrained samples are shown in the right columns. The
functional distribution of the function-constrained samples are close
to the target distribution in all samples. (b) Distribution of the
average number of terms per protein in the function-constrained
samples (left columns) and unconstrained samples (right columns,
blue). The average number of terms in each disease set is shown as a
horizontal green line. Function-constrained samples have similar
average number of terms per protein as the disease sets, whereas the
unconstrained samples differ substantially.
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of the per-term distribution in the unconstrained samples
as compared to the target distribution arising from the
disease set.
We also consider the average number of terms per gene

in the function-constrained and unconstrained samples,
and compare it with the average number of terms per
gene in the disease sets.We find that function-constrained
samples closely match the average number of terms per
gene observed in disease sets (Figure 3b), whereas uncon-
strained samples show very different values. Comparing
the results across the five disease sets, cancer mutated
and Mendelian disorders genes have on average a higher
number of terms per gene than randomly selected sets
of genes, whereas cancer under-expressed genes have on
average a lower number of terms. This issue of “multifunc-
tionality” is important because of its direct relationship
with degree. In agreement with the observation of Gillis
and Pavlidis [28], we find that multiply annotated (“multi-
functional”) genes tend to bemore central. For example, in
our network, the median number of informative terms per
gene is 3, and whereas the median degree of genes anno-
tated withmore than 3 terms is 9, it is only 4 for genes with
less than 3 terms (p < 2.2e−16,Wilcoxon’s rank sum test).
To ensure that our sampling approach yields sufficiently

variable samples, we also quantify the overlap between
samples by computing the fraction of genes shared by an
increasing number of samples, using the “monogenic” set
as an example. While the unconstrained samples exhibit
higher variability than the function-constrained samples
(as expected), for both approaches, the fraction of genes
shared between all samples approaches 0 as the number of
samples is increased (Additional file 1: Figure S1). Thus,
our approach successfully reduces the functional biases
present in samples as compared to the disease set while at
the same time yielding diverse samples.

The functional composition of disease sets partially
accounts for their topological properties
Having determined that the functional composition of the
disease sets can potentially play a role in the differences
that set them apart from non-disease genes, we next test
whether this is indeed the case by comparing disease sets
with function-constrained samples generated as described
above. We also consider functionally unconstrained sam-
ples as a baseline. The distributions of degree, clustering
coefficient and betweenness centrality in the samples
are compared against those of the disease sets in the
25th - 75th percentile range, using Q-Q plots (Figure 4);
that is, for this range, we plot the quantile of the disease
set against the quantile of the samples. The comparison
reveals the noticeable effect of functionally constraining
the samples, as for most disease set and topological fea-
ture pairings, the function-constrained samples are more
similar to the disease sets than the unconstrained samples

are. This is visually evident in Figure 4 with the Q-Q
plots for the function-constrained samples closer to the
diagonal (left columns), and their average difference from
the disease sets closer to zero (right column). To quan-
tify this, for each topological property and disease set,
we measure the “area under the difference curve” as the
sum across the interquartile range of the absolute value
of the difference between the average value of the topo-
logical property in the samples and that in the disease set
(Additional file 1: Table S2). We find that in 12 of the
15 cases, this area is smaller for function-constrained
samples than for unconstrained samples. That is, with
the exception of betweenness centrality for the OMIM
and monogenic disease sets and degree for the OMIM
disease set, all the other cases show smaller differences
between samples and disease sets when function is taken
into account.
The effect of comparing disease sets to functionally

similar control sets can be striking. A particularly
interesting example is provided by the clustering coef-
ficient of Mendelian disorders genes. The distribu-
tion of clustering coefficient for the “monogenic” and
“full OMIM” datasets would appear to be substan-
tially lower than expected when looking at the uncon-
strained samples (all p-values < 0.05, see Additional
file 1: Table S3), as observed by Cai et al. [22]. In
contrast, by accounting for functional composition, the
clustering coefficient does not significantly deviate from
the values observed in the function-constrained samples
at the 75th percentile (empirically determined p-values
of 0.357 and 0.333 for the monogenic and OMIM dis-
ease sets, respectively) or has a median value larger than
expected (p<0.05 for the monogenic set and p < 0.001 for
the OMIM set). This suggests that a large part of the dif-
ferences for clustering coefficient in these two disease sets
derive from their functional make-up.
In several cases, differences observed between disease

sets and unconstrained samples aremaintained once func-
tion is also considered. For example, a significant dif-
ference in degree exists between cancer over-expressed
and under-expressed genes, even when accounting for
their functional composition. Cancer over-expressed
genes have larger than expected values at the 50th
and 75th percentiles (p-values < 0.01), whereas cancer
under-expressed genes have lower than expected values
(p-values < 0.05). A similar trend was observed earlier,
with the smaller set of genes differentially expressed in
lung cancer [29].
In the case of betweenness centrality, Mendelian dis-

orders genes, cancer mutated and cancer over-expressed
genes show higher values than expected (even when
accounting for their functional composition) across the
whole interquartile range (all p-values < 0.05), with can-
cer mutated genes exhibiting substantially larger values
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a) b) c)

Figure 4 Disease genes show distinct topological features even when considering function. Q-Q plots (left-most columns) and difference
plots (right-most columns) for degree (a), clustering coefficient (b) and betweenness centrality (c). The Q-Q plots are obtained by plotting the
quantile of the samples against the quantile of the disease sets, in the 25th - 75th percentile range. Function-constrained samples are shown in red,
unconstrained samples in blue. Note that the samples are compared to the disease sets to make the Q-Q plots. The x-coordinate of a point in the
Q-Q plot is the value of the given topological property in the disease set at a given percentile, whereas its y-coordinate is the average value of the
topological property in the samples at the same percentile. Difference plots show the difference between the topological property of a disease set
at a given quantile and the topological property of the samples at the same quantile. 1000 function-constrained and 1000 unconstrained samples
have been generated for each disease set. The shaded areas encompass the interval between the bottom 5% and the top 95% of the values at a
given quantile. See Additional file 1: Table S3 for empirical p-values assessing differences between topological features in disease and sample sets at
the 25th, 50th and 75th percentiles.
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(p < 0.001). In contrast, consistent with the results for
degree, cancer under-expressed genes appear to be less
central at the global level as well (p < 0.05), although
the differences are smaller when functional composition
is taken into account.
We note that the results are robust with respect to the

set of terms chosen, as sampling with a much larger set of
169 terms does not greatly affect the results (Additional
file 1: Figure S3). We also repeat our analysis on three
other networks, including a high-throughput network,
derived from two sources [30,31]. Though there are some
differences, the results obtained with these three networks
are largely consistent with the results we report above
(Additional file 1: Figures S4, S5 and S6 and Additional
file 1: Tables S4-S14).

Discussion
The function of a protein is to a large extent embedded
in its interactions with other biomolecules. This suggests
that the topological properties of a protein and its func-
tional roles may be deeply intertwined. Our analysis of
the human interactome shows that proteins belonging to
different functional classes do indeed occupy topologi-
cally distinct regions of the network. This observation,
which directly connects function to topology, has impor-
tant repercussions for analyzing the topological properties
of disease sets. In particular, disease genes are not an unbi-
ased sample of the interactome, but are characterized by
specific functional signatures that recapitulate the biology
of the disorders.
We develop and apply a function-constrained sampling

approach in order to compare disease sets with sample
sets with a similar functional composition. A previous
study of genes mutated in cancer [20] showed that they
have a higher number of interactions, independent of their
molecular functions; in that case, each gene was mapped
to a single curated function and stratified sampling was
applied to generate samples with the same functional
properties. In contrast, our approach is fully automated
and handles multiple functional annotations per gene.
Further, an added benefit of our approach is that it auto-
matically corrects for multifunctionality, an important
confounding factor in network analysis [28].
By applying our function-constrained sampling

approach, we find that the functional composition of
the disease sets significantly affects the observed differ-
ences in the topological features of disease genes. The
majority of cases show a smaller difference between
disease and function-constrained samples, compared to
unconstrained samples. In a few cases (e.g., the clus-
tering coefficient for Mendelian disorders genes), the
differences even lose statistical significance. At least two
factors can be invoked to explain the observed effect of
function constraining on the topological properties of

disease genes. First, disease gene sets may be enriched
or under-enriched in functional modules that have been
studied more extensively than others, and therefore tend
to have a larger number of known interactions. Control-
ling for function can therefore mitigate the effect of this
particular type of study bias. A second factor directly
involves the biology of protein interactions. For example,
interactions tend to be more dense and clustered in pro-
tein complexes and more sparse in areas of the network
implicated in primary metabolism. As observed by Goh
et al. [1], Mendelian genes are under-enriched in essential
genes, which tend to be clustered in protein complexes
[17]. This could explain why Mendelian disorders genes
do not appear less clustered than expected when factoring
in their functional composition. Obviously, a combina-
tion of both factors can be at play. On the other hand,
some disease sets still show differences that remain even
when accounting for function. The high betweenness
centrality in the case of cancer mutated genes, across the
entire interquartile range, provides a particularly striking
example (Figure 4c and Additional file 1: Figures S3-S6).
A caveat of most network analyses is that a larger

fraction of interactions involving well-studied proteins
and biological processes are likely to be known. Using
only high-throughput interactions is one possible way to
address the issue of study bias; however, it introduces
other problems, such as a potentially higher amount of
spurious interactions and an under-enrichment of interac-
tions involving membrane proteins [32]. While obtaining
complete and unbiased interactomes may very well lie
beyond what can be achieved by purely computational
means, our sampling strategy effectively deals with some
of these bias-related problems at the level of functional
modules.
The fact that certain topological properties are still dis-

tinct when factoring out function highlights the added
value of topological information, especially in the poten-
tial context of identifying or prioritizing disease gene can-
didates. While approaches for identifying disease genes
based on topological properties have been shown to be
effective [21,33,34], incorporating the effects of function
may lead to further performance improvements, as this
better highlights the purely topological features that make
disease genes distinct from other genes. Further, this type
of combined functional-topological information may be
especially useful in the context of integrative approaches
for uncovering disease genes (e.g., [35,36]).

Conclusions
As the number and types of disease gene sets continue
to grow, network-based analysis of disease genes will
continue to play a prominent role in attempts to charac-
terize the complex interplay between network structure
and pathological processes. In this paper, we study one



Ghersi and Singh BMC Systems Biology 2013, 7:5 Page 9 of 12
http://www.biomedcentral.com/1752-0509/7/5

of the most basic types of network analyses of disease
genes—that of characterizing their topological properties.
We show that in order to determine whether a set of dis-
ease genes is topologically distinct from other genes, it
is necessary to explicitly consider biological function. We
develop a computational framework for analyzing disease
genes based upon a sampling strategy to generate control
sets of genes functionally similar to a reference set. We
apply this approach to study five disease gene sets, and
demonstrate that in many cases topological features are
distinct, in a disease set dependent manner, even when
functional composition is considered.

Methods
Protein interaction data
For our primary analysis, we use a network derived from
BioGrid v3.1.90 [26]. We extract all reported physical
interactions, and remove all self-interactions along with
all proteins with degree > 500. The resulting BioGRID
physical interaction network comprises nearly half of the
human proteome, with 10042 proteins and 51756 inter-
actions. To assess robustness, we also repeat the anal-
ysis on networks derived from two other sources and
report the results in the Additional file 1. In particu-
lar, we also use the Bossi network [30], a comprehen-
sive protein-protein interaction network compiled from
several protein interaction databases (e.g., BIND [37],
BioGRID [26] and HPRD [38]). Further, we use a high-
throughput (HT) network derived from the HitPredict
database [31]. In this database, interactions are called
high-throughput if they are found in experiments deter-
mining more than 100 interactions. For the HT net-
work, we only utilize high-throughput interactions that
are also labelled as high confidence. We also consider
a version of the HitPredict network that consists of
all high-confidence interactions, whether they are high-
throughput or not. As with the BioGrid network, we
also remove self-edges and proteins with degree > 500
from the Bossi and HitPredict networks (See Additional
file 1: Table S1 for the sizes of all networks used in our
analysis).

Disease genes
We consider five disease sets in three broad categories
of genes involved in human disorders. Unless otherwise
specified, our analysis is restricted to annotated genes, as
we are considering the effects of functional composition.

(1) Genes with inherited mutations. We extract
the genes reported in the “morbid map” of the Online
Mendelian Inheritance in Man (OMIM) catalogue
[23], and map them onto the human protein
interaction network. On the BioGRID network, this
results in 1813 disease genes, 1580 of which have a

functional annotation (“full OMIM” dataset). We also
consider a subset of genes involved in monogenic
disorders, obtained from Cai et al. [22]; this consists
of 694 disease genes, 641 of which have a functional
annotation (“monogenic disorders” dataset).
(2) Genes with somatically acquired mutations in
cancer. We use the IntOGen repository (release 02)
[24], which contains data extracted from the
Catalogue of Somatic Mutations in Cancer
(COSMIC) [39]. The COSMIC catalogue contains
both data curated from the literature and the output
from large-scale resequencing projects such as the
Cancer Genome Project and The Cancer Genome
Atlas project [40]. A total of 812 genes with at least
one reported mutation in more than one cancer type
can be mapped to the human protein interaction
network, and 647 of these have a functional
annotation (“cancer mutated” dataset).
(3) Genes with significantly altered expression in
cancer. We extract the genes reported as
significantly (p < 0.001) over- or under-expressed in
the IntOGen repository and map them to the human
protein interaction network, obtaining a total of 6147
genes. Since 2389 genes are found to be both over-
and under-expressed in different cancer types, we
remove from the set of over-expressed genes those
that are also found to be under-expressed in some
cancer types and correspondingly for the
under-expressed set, obtaining 1989 exclusively
over-expressed genes (1359 with a functional
annotation, “cancer over-expressed” set) and 1769
exclusively under-expressed genes (1169 with a
functional annotation, “cancer under-expressed”
set).

Topological properties
We consider three widely studied topological properties
of networks: degree, clustering coefficient, and between-
ness centrality. The degree of a node in a network is simply
defined as the number of edges incident upon that node.
The clustering coefficient of a node is defined as the ratio
of the number of triangles containing that node to the
number of triples centered on it [41]; i.e., for a protein,
this measures the number of interactions among its inter-
actors, normalized by the maximum number of possible
interactions. Betweenness centrality is defined as the sum
over all other pairs of nodes u and v of the fraction of the
shortest paths between u and v that pass through the node.
These three topological properties are computed with the
R package igraph [42].

Functional annotation
Gene Ontology (GO) terms [43] in the “biological pro-
cess” (BP) namespace are used throughout this work. We
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exclude electronic annotations and annotations inferred
from physical interactions (evidence codes IEA and IPI,
respectively). We use two sets of GO functional terms
in our analysis. First, we consider the set of all GO
BP terms that annotate more than 50 genes in human
(169 terms). Next, we consider another set consisting of
broader functional classes corresponding to “Informative
Terms,” which are computed according to the method
presented in Huang et al. [25]. The algorithm to extract
informative terms selects terms that annotate ≥ n of
genes, and retains only those terms whose children anno-
tate < n genes. A reasonably large n is chosen to select
sufficiently broad terms, while terms that annotate many
genes simply because of their children terms are automat-
ically discarded. With n = 500, we obtain a set of 46
informative terms.
For the primary results reported in the paper, we use the

set of 46 informative functional terms, with analysis per-
formed on themore comprehensive sets of terms reported
in the Additional file 1. The 46 informative terms are used
for visualization in Figure 2, and for generating samples
(see Section “Function-constrained sampling algorithm”).
GO enrichment analysis on sets of genes is performed
using the hypergeometric test, with multiple hypothesis
testing corrections via the Bonferroni correction. Enrich-
ment analysis is always performed on the full set of GO
terms annotating the genes and all of their ancestors in the
GO graph (i.e., not just informative terms).

Function-constrained sampling algorithm
We develop and apply an iterative sampling scheme to
generate non-disease samples with a functional composi-
tion similar to that of the disease sets. More precisely, we
aim to minimize the distance between the per-term fre-
quency distribution in a disease set and the distribution
in a random sample of non-disease genes. We note that a
simple approach that selects (for each informative term) a
number of genes equal to the term frequency in the dis-
ease set is not effective in minimizing functional biases,
because genes are often annotated with multiple terms.
That is, such a stratified sampling approach is not appli-
cable and would result in a set of genes with a different
functional composition than the original disease set. In
contrast, our iterative sampling approach takes this fact
into account. The algorithm directly compares the term
frequency in the disease set against the term frequency in
the samples, and attempts to minimize the difference.
Let T = {t1, t2, . . . , tN } be the set of GO terms we are

considering. The per-term frequency distribution F in a
set G of genes is defined as:

FG = 〈f G1 , f G2 , . . . , f GN 〉 (1)

where fi is the number of genes in G that have annotation
ti. For two sets of genes X and Y, we define the “functional

distance” between the per-term frequency distributions
as:

dist(FX , FY ) =
N∑

i=1
(f Xi − f Yi )2 (2)

Then, letting D denote the reference set of disease
genes, B the background (or control) set of non-disease
genes, and S the sample to extract from B, our function-
constrained sampling scheme can be summarized by the
following steps:

1. Initialize the sample set S by randomly drawing from
the non-disease set B a number of genes equal to that
of the disease set D

2. Repeat

a) randomly pick a gene gi from S and a gene gj
from B − S (i.e., from the pool of non-disease
genes not in the current sample)

b) Snew ← S − {gi} + {gj}
c) if dist(FD, FSnew) < dist(FD, FS) then

S ← Snew
until dist(FD, FS) = 0 or a chosen maximum
number of steps has been reached.

Our implementation of the sampling algorithm (see
http://compbio.cs.princeton.edu/fcsampling for source
code available under a GNU public license) also includes a
variant that uses a Metropolis criterion to accept or reject
moves. Instead of rejecting a move that increases the dis-
tance from the target distribution, the algorithm accepts
it with an exponentially decaying probability p:

p = min(exp(−c[ dist(FD, FSnew) − dist(FD, FS)] ), 1)

As c > 0 is increased, the probability of accepting a
“bad” move becomes smaller. We tested the Metropo-
lis variant for increasing values of c, and compared it
against the initial greedy algorithm by measuring the vari-
ability between samples, the value of dist(FD, FS), and
convergence times. In preliminary testing, we found no
advantage in using the Metropolis criterion (Additional
file 1: Figure S2), and thus the reported results use the
initially described greedy approach.

Generating non-disease sets that are functionally similar to
the disease sets
We use the sampling scheme outlined above, with a maxi-
mum of 105 steps.We note that this threshold is robust, as
in practice the procedure converges within amuch smaller
number of steps (∼ 104 steps). We generate 1000 sets of
non-disease genes functionally similar to the correspond-
ing five disease sets. The pool of non-disease genes for the
“monogenic disorders”, “full OMIM” and “cancermutated”
sets is obtained by subtracting from the annotated genes

http://compbio.cs.princeton.edu/fcsampling


Ghersi and Singh BMC Systems Biology 2013, 7:5 Page 11 of 12
http://www.biomedcentral.com/1752-0509/7/5

in the human network all genes with a reported muta-
tion in any of the three disease sets. For the “cancer
over-expressed” and “cancer under-expressed” genes, we
use the annotated genes not reported as significantly
(p < 0.001) over-expressed and under-expressed by
IntOGen, respectively.

Comparing distributions
To compare and visualize the distribution of the topolog-
ical properties of the samples against those of the disease
sets, we use Q-Q plots. Q-Q plots are obtained by plotting
the quantile of one distribution against the same quantile
of the other, for a given range of quantiles.We consider the
interquartile range—i.e., the interval encompassing the
25th percentile and the 75th percentile of each property in
the gene sets. If the distribution of values in the samples is
similar to that in the disease sets, the points will lie along
the diagonal. In contrast, if the disease sets have higher
(respectively, lower) values compared to the samples, the
points will lie below (respectively, above) the diagonal.
Since our analysis comprises 1000 constrained and 1000
unconstrained samples, we compute average values at
each quantile and show confidence intervals as shaded
areas around the average. The boundaries of the shaded
areas are given by the 5th and 95th percentiles of the val-
ues in the samples. Further, to facilitate the comparison,
we plot the difference between the values in the disease
sets and the values in the samples over the interquar-
tile range. We empirically estimate p-values at the 25th,
50th and 75th percentiles by counting the fraction of sam-
ples with a more extreme value than that observed in the
disease set at the same percentile.

Additional file

Additional file 1: Supplementary Figures and Tables. Additional figures
and tables containing additional information on the method and results
obtained with a larger set of informative terms and on other networks.
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