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Abstract

Background: More attention has been being paid to combinatorial effects of drugs to treat complex diseases or
to avoid adverse combinations of drug cocktail. Although drug interaction information has been increasingly
accumulated, a novel approach like network-based method is needed to analyse that information systematically
and intuitively

Results: Beyond focussing on drug-drug interactions, we examined interactions between functional drug groups.
In this work, functional drug groups were defined based on the Anatomical Therapeutic Chemical (ATC)
Classification System. We defined criteria whether two functional drug groups are related. Then we constructed the
interaction network of drug groups. The resulting network provides intuitive interpretations. We further constructed
another network based on interaction sharing ratio of the first network. Subsequent analysis of the networks
showed that some features of drugs can be well described by this kind of interaction even for the case of
structurally dissimilar drugs.

Conclusion: Our networks in this work provide intuitive insights into interactions among drug groups rather than
those among single drugs. In addition, information on these interactions can be used as a useful source to
describe mechanisms and features of drugs.

Background
Recently, various drug-related properties including ther-
apeutic target, off-target, activity, toxicity, pharmacoki-
netic properties and side effect have been successfully
described by some elegant methods such as analysis of
chemical structures [1], docking simulation [2-4], chemi-
cal-genetic profile [5-7], connectivity map [8], target-
sharing information, and side-effect similarity [9]. To go
further and to treat complex disease like cancer, these
recent advances in drug discovery make people pay
more attention to a novel approach named polyphama-
cology [10] than to the design of a particular drug
which could target disease-causing genes, because most

of complex diseases result from vast range of biological
abnormalities. This attention to polypharmacology also
involves increasing attention to detect rational combina-
tion of older drugs to treat novel diseases. In this para-
digm, significant attention to drug-drug interaction
(DDI) is necessarily critical to detect ideal drug combi-
nations to have synergistic clinical effects [11].
Another field, where DDI information would be signif-

icant, is combinatorial drug toxicology [12]. In some
cases, DDIs exhibit adverse drug reactions (ADRs) [13]
or critical threat to patients with multiple medications
[14-16]. For example, about 4% of causes of death of
cancer patients were originated from DDIs [17]. The
risk of toxicity caused by unwanted polypharmacology is
emerging threat to public health [18]. Thus, it is quite
important to detect and predict DDIs in both drug dis-
covery and drug toxicology.
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It is essential to use system-based approach, or net-
work-based in order to detect beneficial and harmful
drug combination, because DDI necessarily involves the
complexity. Many recent approaches regarding DDI
have utilized information from networks among human
diseases, biology, and chemistry [19,20] such methods as
prediction of DDIs through protein-protein interaction
(PPI) network [21], prediction of ADRs by integrating
PPI network and drug structures [22] and a method
using drug-target interaction network [23]. There have
been also some researches on DDI using network analy-
sis. Hu et al. constructed DDI network of 966 drugs and
simply reported some properties of their DDI networks
[24]. More advanced work by Xu et al. (drug cocktail
network) developed drug combination predictor based
on DDI network [25]. However, analysis of systematic
DDI relationship in terms of functional context has not
been made so far.
In this study, we perform systematic analysis of DDIs

based on functional group of drugs and construct the
network which consists of interactions among the drug
groups (DGs). The classification we used are based on
the anatomical therapeutic chemical (ATC) classification
system [26]. The resulting DG-DG interaction network
provides more contextual and intuitive view on DDI. In
addition, the secondary network, whose edge represents
that two DGs share a number of DG-DG interactions, is
also constructed to detect a set of DGs showing similar
DG-DG interaction patterns. We show that the DGs
that have similar interactions share many similar drug
features, suggesting that DDIs contain the information
about drug mechanisms. Moreover, we question whether
DDI information can be used to infer drug mechanisms
by investigating common drug features for interacting
drug pairs. The results show that some drug features
such as metabolizing enzyme, drug function, and target
pathway are well-described by DDI even for the case
that chemical structure similarity is low.

Results and discussion
Statistically significant DG-DG interactions
For a pair of functional DGs where there are signifi-
cantly large numbers of drug interactions, it is reason-
able that the DGs are functionally related and the drugs
composing those two are highly likely to have drug
interactions even for the drug pairs whose interaction
was not assigned or not identified (see Methods). For
example, N06AB (Selective serotonin reuptake inhibi-
tors; six members in DrugBank) and N02CC (Selective
serotonin (5-HT1) agonists; seven members in Drug-
Bank) have forty assigned drug interactions in Drug-
Bank, except two pairs out of forty-two possible drug
pairs (Figure 1). The two drug-groups commonly refer
serotonin-involved groups and most interaction types

are the same, “increased risk of CNS adverse effects”,
except for the interactions of Zolmitriptan. Therefore,
we expected that the not annotated two pairs also
would have similar drug interactions (dotted line in
Figure 1), and fortunately, those interactions were anno-
tated in drugs.com with the “major interaction” class,
representing high clinical significance.
Like this example, our analysis on drug-group interac-

tions can provide the information about not only the
meaningful drug-group interactions but also missing
drug-drug interactions.

Systematic interaction map among functional DGs
To investigate systematic interaction map among func-
tional drug-groups, we constructed DG-DG interaction
network which consists of statistically significant DG-
DG interactions (Figure 2). We first expected that analy-
sis based on DG-DG interaction could provide systema-
tic, contextual and intuitive knowledge about DDI better
than analysis based on only DDI.
The topological analysis of the DG-DG network

showed that it had little modular property that the
neighbours tended to be disconnected (low clustering
coefficient). This kind of network architecture seems to
be reasonable in DDI network because the drugs that
have a common function usually are not taken together
in clinical use. In addition, although most of DGs had a
few links in the network, a small number of DGs had a
large number of links (hub DGs) and might have their
own specific DDI mechanisms (Figure 2 and Table 1).
For example, the most highly-linked DG was non-selec-
tive monoamine reuptake inhibitors (N06AA), and the
drugs in the group had various descriptions on DDI,
which were serotonin syndrome in concomitant therapy
with other serotonin modulators (N06AB, N02CC,
N06AX), increase in the toxicity (J01AA, J05AE), antag-
onistic effect (N06DA, N02CX), additive QTc prolonga-
tion(N05AE, L02BA, P01BE), and so on.
On the other hand, the drugs in N03AB group which

had the second largest degree were mostly related to
many different cytochrome P450 mechanism (substrate,
inhibitor, or inducer of CYP2C8, CYP2C19, CYP3A4,
CYP2B6, CYP1A2, CYP2D6, and CYP2C9), which seems
to be a potential common DDI mechanisms of DG
N03AB. In addition, the drugs in J01MA such as fluoro-
quinolone (quinolone antibacterials) had DDIs with cal-
cium, magnesium, zinc, and aluminium by formation of
non-absorbable complexes.
The drug groups acting on nervous system such as

N06AA, N03AB, N05CA, N06DA, N03AA and N07AA
tended to have many DG-DG interactions including as
many as thirteen anatomical main groups (A:alimentary
tract and metabolism, B:blood and blood forming
organs, C:cardiovascular system, D:dermatologicals,
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G:genito-urinary system and sex hormones, H:systemic
hormonal preparations, excluding sex hormones and
insulin, J:anti-infectives for systemic use, L:antineoplastic
and immune-modulating agents, M:musculo-skeletal
system, N:nervous system, P:antiparasitic products,
insecticides and repellents, R:respiratory system, S:sen-
sory organs). In addition, group P interacted with C, N,
and P; group H with C, N, and B. Lastly, the DGs that
had the similar DDI patterns tended to have similar
therapeutic effects (same colour in Figure 2), suggesting
that DDIs contain the information about drug mechan-
isms. In addition, other properties of the network are
shown in Table 2, and degree distribution of the DG-
DG interaction network is shown in Additional file 1.

Secondary network of DGs sharing similar DG-DG
interaction patterns
In the DG-DG interaction network, we found that some
DGs were sharing the set of DG-DG interaction part-
ners, which led to the construction of secondary DG-

DG network based on DG-DG interaction partner shar-
ing ratio. The procedure assumed that the DGs which
had common DG-DG interaction partners could have
similar drug mechanisms. To collect this kinds of DGs,
we calculated the ratio measuring how many DGs are
common partner of particular two DGs (Figure 3a), and
applied these ratios to construct the secondary DG net-
work (Figure 3b). After applying two statistical condi-
tions: 1) fraction of common DG-DG interaction
partners > 75%, and 2) hyper geometric p-value < 0.01.
The resulting DG network is shown in Figure 4. In con-
trast to the previous network (Figure 2), it exhibited a
highly modular topology where the DGs in the modules
were densely connected to each other.

Network modules that consist of DGs sharing drug-
interactions
The MCODE method [27] was applied for detecting
highly-linked modules, which resulted in seven network
modules (Table 3). Because the drug-groups in the same

Figure 1 Example of DG interactions, and prediction of new DDI.
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module would have similar drug-interaction patterns,
they likely share the common mechanisms for the drug-
interactions and/or therapeutic effects.
The first module in Figure 4 (Cluster 1 in Table 3)

contained the largest number of DGs, and, expectedly,
most of them had the same therapeutic class which is
corticosteroids. Although the majority of the module is
composed of D07xx (xx denotes ambiguous ATC sub-
class), the other ATC classes L02AA (estrogens), A01AC
(corticosteroids for local oral treatment), and S03BA (cor-
ticosteroids and anti-infectives in combination) also
belonged to the similar therapeutic classes. The second
module contained seven DGs. Most of them are sym-
pathomimetics drugs that mimic the effects of transmitter
substances of the sympathetic nervous system. Similar to

the first module, the major DGs are R03xx (drugs for
obstructive airway diseases) and the other DGs such as
G02CA (sympathomimetics, labour repressants), S01EA
(Sympathomimetics in glaucoma therapy), and N02CX
(antimigraine preparations) also had the similar drug
effects. In addition, their drug-interactions are mainly
described by antagonism which can be an evidence of the
similar molecular mechanisms of the DGs in this module.
The module which consists of A12AA (calcium), A12CC
(magnesium), B05XA (electrolyte solution), and G04BA
(acidifier) showed the common drug-interaction forming
non-absorbable complex, which might be due to the
common ionization property.
Among the triangularly-linked modules, N05CA (bar-

biturates, antiepileptics), N07AA (anticholinesterases),

Figure 2 Systematic DG-DG interaction network.
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and N03AA (barbiturates and derivatives, psycholeptics)
commonly had an effect on nervous system but had dif-
ferent therapeutic subclasses. The other triangular
groups, J01GB (other aminoglycoside antibacterials),
D06AX (Other antibiotics for topical use), and S01AA
(antibiotics, ophthalmologicals) were also commonly the
antibiotics in spite of the different target organisms.
Interestingly, two betalactam antibacterial drug-groups
(J01DD and J01DC) were connected to muscle relaxants
(M03AC). By literature search, we found that these two
drug groups had the unexpected cross-reactivity.
In summary, the results suggested that information on

DG-DG interaction partner sharing can be one useful
feature to infer the mechanisms of DDI and therapeutic

effects, and also, to reposition the existing drugs for
another use.

DDI contains information on various drug features
From the analysis of the DG-DG network, we hypothe-
sized that the drugs sharing common Drug-DG interac-
tion partners might have similar drug mechanisms. To
test this hypothesis, the Drug-DG partner sharing ratio
was calculated for every drug pair to investigate com-
mon drug features between them. This sharing ratio was
calculated by the same way as constructing Figure 4.
Instead of using Drug-Drug interaction, considering

Drug-DG interactions in the calculation of the sharing
ratio between drugs could have a beneficial effect for
the reason that holistic method can compensate the
noise caused by almost identical drugs.
For the drug-pairs having the high ratio, we checked

whether the pair of drugs had the same features and the
results are shown in Figure 5, Additional file 2 (drug’s
feature), and Additional file 3 (target’s feature). The
results showed that the drug-pairs sharing Drug-DG
interaction partners have the common target-related fea-
tures such as ‘target cellular location’, ‘target pathway’,
and ‘target domain function’, and common drug-related
features such as’ general drug function and phage 1
metabolizing enzyme’.
In addition, features of each drug (e.g. prediction of

drug target) were predicted by those of interaction-shar-
ing drug (ISD) based on our hypothesis that an enriched
common feature of ISDs is also likely to be a feature of
the query drug. After collecting all ISDs, the features of
the collected drugs were scored by frequency.
Simply, when the most frequent common feature for

each drug was assigned to the feature of query drug,
those of 80% were correctly predicted.

Drug interaction-sharing but dissimilar drugs
More interesting study on Drug-DG interaction would
be whether it contained unique information compared
to the typical structural similarity. Do the structurally
dissimilar but ISDs have any common drug features?
If there are these features, what kinds of drug features
are uniquely represented by our interaction information?
To answer the questions, we investigated various types
of drug features and structural similarity among chemi-
cal structures of drugs (Figure 6).
The relationship between chemical structure similarity

and the feature-matching ratio for the interaction-shar-
ing drugs was analysed with nine different drug features
in Figure 5. Figures for all drug features were shown in
Additional file 1 and Additional file 2. In Figure 6, fea-
ture-matching ratios (vertical axis) were plotted along
the threshold of structural similarity (horizontal axis).
For example, 0.5 in X-axis means that only the drug

Table 1 Highly-linked drug groups

ATC Summary Number of
links

N06AA Non-selective monoamine reuptake
inhibitors

32

N03AB Hydantoin derivatives 28

J01MA Fluoroquinolones 27

N05CA Barbiturates, plain 24

B01AA Vitamin K antagonists 24

N06DA Anticholinesterases 21

N03AA Barbiturates and derivatives 19

J05AE Protease inhibitors 17

N07AA Anticholinesterases 15

N06AF Monoamine oxidase inhibitors, non-selective 15

C07AA Beta blocking agents, non-selective 15

C07AB Beta blocking agents, selective 14

C07A BETA BLOCKING AGENTS 14

J01AA Tetracyclines 13

J02AC Triazole derivatives 12

S01AX Other antiinfectives 10

N01AF Barbiturates, plain 10

D06AA Tetracycline and derivatives 9

N02CA Ergot alkaloids 9

N06AB Selective serotonin reuptake inhibitors 8

Table 2 Characteristics of DG-DG networks

DG-DG
Network
(Figure 2)

Secondary
Network
(Figure 4)

Clustering coefficient 0.057 0.688

Connected components 10 10

Network diameter 12 3

Network radius 1 1

Network centralization 0.117 0.231

Shortest paths 43910 (85%) 406 (17%)

Characteristic path length 4.303 1.517

Average number of
neighbours

3.700 4.583
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Figure 3 Schematic diagram representing the construction of secondary network based on interaction sharing ratio.

Figure 4 Secondary DG-DG network based on interaction sharing ratio.
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Table 3 Functional modules in drug-interaction sharing network

Cluster Score
(Density × Number of Nodes)

Number of nodes Number of edges Members

1 4.5 10 45 D10AA, R01AD, D07XA, D07XB, A01AC, L02AA,
D07AB, D07AC, D07AA, S03BA

2 3 7 21 R03AA, N02CX, G02CA, S01EA, R03CB, R03AC, R03AB

3 2 5 10 S02BA, C05AA, S01CB, S01BA, H02AB

4 1.25 4 5 G04BA, A12AA, A12CC, B05XA

5 1 3 3 J01DC, J01DD, M03AC

6 1 3 3 D06AX, J01GB, S01AA

7 1 3 3 N03AA, N07AA, N05CA

Figure 5 Marginal feature-matching ratio for the interaction sharing drugs.
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pairs whose structural similarity is less than 0.5 are only
considered to calculate feature-matching ratios. 0.5 in
Y-axis means that 50% of pairs share the same value of
corresponding feature. It has to be noted that only the
drugs which had the same type of annotations were
considered for calculating the matching-ratio. The
results showed that feature-matching ratio for most
drug features were decreased as structurally dissimilar
drugs were considered. Obviously ‘phage1 metabolizing
enzymes’ seemed to be an important common factor for
sharing drug-interactions regardless of structure similar-
ity. However, interestingly, some drug features (e.g. ‘gen-
eral drug function’, ‘target reaction’, and ‘target
pathway’) maintained high matching ratio higher than
60% even when the structure similarity was around 0.4,
which suggested that sharing drug-interactions contain
not only information of pharmacodynamics such as ‘tar-
get pathway’ and ‘target domain function’, but also phar-
macokinetic information such as metabolizing enzyme
and transporter. In particular, ‘target pathway’ informa-
tion showed greater than 80% matching ratio when the
structure similarity was even ambiguous (0.4~0.5) while
‘drug target’ identity was very low.
On the other hand, the ‘target essentiality’ showed

almost 100% matching ratio independent on structural

similarity. Taken all together, we can conclude that the
information on drug-drug interaction could be another
unique source to describe various drug mechanisms
with other chemical similarity measures.

Are DG-DG networks more useful than drug-drug
interaction network?
In this work, we have showed that a DG-DG interac-
tion network, its supplemental network and neighbour
sharing information are intuitive and useful. This may
misleads people thinking DG-DG interaction network
gives more accurate information than DDI network
does. Grouping drugs is a kind of abstraction, and the
main purpose of our work is to show the concept of
DG and to provide intuitive information. Thus, we
expect complementary use of both DG-DG and drug-
drug interactions will show more accurate and sensitive
inference.
We used one ATC classification to bundle drugs, but

this classification is not a unique method to categorize
drugs. Our main concept can be applied with any kinds
of drug classification (e.g. chemical type). More sophisti-
cated way to define Drug Group will be able to improve
DG-DG network and to provide novel kinds of informa-
tion. We suggest that constructing DG-DG networks

Figure 6 Drug feature-matching ratio according to the different structural similarity cut-offs.
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with different definitions of DG is new way to view
novel dimension of drug interaction. Further studies are
welcomed to validate.

Conclusion
In this study, we carried out systematic analysis on func-
tional DG-DG interactions which provide more contex-
tual and intuitive view about DDI. From the interaction
map, we also constructed the secondary network which
consists of DGs sharing drug interactions. The detected
modules of the network represent the similar functional
DGs in spite of different annotation of therapeutic class,
suggesting that drug interactions contain the informa-
tion about mechanisms of drugs. In addition the useful-
ness of our work in drug repositioning was shown with
the example of betalactam antibacterial drugs and mus-
cle relaxants. Moreover, we questioned whether DG-DG
interaction information can be used to infer drug’s
mechanisms. The results show that some drug features
such as metabolizing enzyme, drug function, and target
pathway are well described by interactions even for the
case that two drugs have low structural similarity. Thus,
we expect that information on DG-DG interaction can
be utilized as a novel useful source to describe drug’s
mechanisms.

Methods
Collection of drug-drug interaction and drug features
Descriptions on drug-drug interaction were retrieved
from ‘Drug_Interactions’ records in DrugBank database
[28]. To define DDI pairs from the information, various
drug names were unified by mapping synonyms, brand
names generic name of each drug to a unique DrugBank
ID. The descriptions that could not be mapped by Drug-
Bank ID were discarded. As a result, 10,759 DDIs of
1,075 drugs were detected. In addition, various features
of drugs and drug targets such as phage1 metabolizing
enzyme, transporter, specific/general drug functions,
drug category, ATC codes, drug reaction, affected
organism; target information: drug target, pathway, cel-
lular location, locus, domain function, and essentiality
were also collected with the drugs.

Functional grouping of drugs by ATC code
Functional grouping of drugs was performed by map-
ping ATC codes into drugs. Anatomical Therapeutic
Chemical (ATC) Classification System divides drugs
into 5 different levels according to the organ or sys-
tem on which they act and/or their therapeutic and
chemical characteristics. One drug can have more
than one code. Based on the drug classification system
and its hierarchical structure, functional drug groups
were defined, thus, each DG corresponds to each ATC
code.

Statistical significance of DG-DG interactions
To calculate the statistical significance of the number of
drug interactions between two ATC groups, ten thou-
sands of random pairs of drug groups were generated
for each unique combination of DG pairs and we
counted how many drug interactions exists in the each
random pair. Then p-value was calculated based on
these distributions.

Interaction network between functional DGs of various
levels
Significant DG-DG interactions (p-value < 0.0001) were
considered to construct DG-DG interaction network.
Note that ATC codes in different levels could be defined
as a significant interaction because we tested all ATC
codes regardless of the hierarchical structure. In addi-
tion, due to this hierarchical structure, some group
interactions seemed to be redundant. For example, even
though C01AA group was linked to both of C03BA and
C03B, the interaction between C01AA and C03B just
stemmed from more specific interaction between
C01AA and C03BA. All of the redundant interactions
were removed in constructing DG interaction map.

Interaction partner sharing ratio between DGs and
between drugs
The interaction partner sharing ratio, how much inter-
action profile is similar, was measured between drug-
groups or drugs. Specifically, drug groups (or drugs)
were represented by the set of their interactive ATC
groups (i.e. bit string). Based on the representation, all
possible DG pairs (or drug pairs) were compared for
measuring how much they are sharing the interactive
ATC groups. The similarity measures used in this pro-
cedure were hyper geometric p-value measuring over-
lapping significance (p-value < 0.01) and Tanimoto
coefficient (ration of common bits to union bits > 0.75).
The DG pairs or drug pairs satisfying the two criteria
were used to construct the secondary DG network
based on the tendency sharing drug-interaction profiles.

Network module detection
Molecular Complex Detection (MCODE) was applied to
identify densely connected modules in the secondary
DG-DG network based on partner-sharing ratio. The
method uses graph-theoretic clustering based on vertex
weighting by local neighbourhood density and outward
traversal from a locally dense seed node. Module score
of each cluster was defined by the ratio of the number
of edges to the number of nodes in each cluster.

Calculation of chemical structure similarity
Chemical structure similarity between drugs was based
on 881-bit PubChem [29] fingerprints calculated by
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PaDEL software [30]. Specifically, the fingerprint was
calculated for each drug, and Tanimoto coefficient (ratio
of intersection-bits to union-bits) was used as a ‘chemi-
cal structural similarity’ in this study.

Additional material

Additional file 1: Degree distribution of drug-group interaction
network

Additional file 2: Drug-related feature-matching ratio

Additional file 3: Target-related feature-matching ratio
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