
RESEARCH Open Access

Identification of novel microRNA regulatory
pathways associated with heterogeneous
prostate cancer
Yifei Tang1†, Wenying Yan1†, Jiajia Chen1, Cheng Luo1,2, Antti Kaipia3, Bairong Shen1*

From Asia Pacific Bioinformatics Network (APBioNet) Twelfth International Conference on Bioinformatics
(InCoB2013)
Taicang China. 20-22 September 2013

Abstract

Background: MicroRNAs (miRNAs) are potential regulators that contribute to the pathogenesis of cancer.
Microarray technologies have been widely used to characterize aberrant miRNA expression patterns in cancer.
Nevertheless, the miRNAs expression signatures identified for a same cancer differs among laboratories due to the
cancer heterogeneity. In addition, how the deregulated miRNAs coordinately contribute to the tumourigenic
process of prostate cancer remains elusive.

Results: We evaluated five outlier detection algorithms that take into account the heterogeneity of cancer
samples. ORT was selected as the best method and applied to four prostate cancer associated microRNA
expression datasets. After microRNA target prediction and pathway enrichment mapping, 38 Gene Ontology terms,
16 KEGG pathways and 99 GeneGO pathways are found putative prostate cancer associated. Comparison with our
previous studies, we identified two putative novel pathways important in prostate cancer. The two novel pathways
are 1) ligand-independent activation of ESR1 and ESR2 and 2) membrane-bound ESR1: interaction with growth
factors signalling.

Conclusions: We proved that expression signatures of at the pathway level well address the cancer heterogeneity
and are more consistent than at the miRNA/gene levels. Based on this observation, we identified putative novel
microRNA regulatory pathways which will help us to elucidate the cooperative function of different microRNAs in
prostate cancer.

Background
MicroRNAs (miRNAs) are small non-coding RNAs of
approximately 22-nucleotides. They play important roles
in gene regulation at post-transcriptional level. They are
able to repress the activity of complementary mRNAs
by targeting the 3’-untranslated regions [1]. Release 19
of the miRBase database contains more than 2200
mature miRNA sequences for human [2]. Aberrant
miRNA expression was shown related to the generation
of cancer stem cells and the tumour genesis [3-5].

Microarray-based technologies have routinely been used
for profiling molecular expression in cancer. Microarray
allows simultaneous expression profiling of tens of thou-
sands of genes in normal versus malignant cells. The
growing number of microarray expression datasets has
necessitated the integrative analysis approaches to iden-
tify significant molecular patterns across multiple
datasets.
Many efforts have been made in search of common

molecular signatures, however without obvious success.
This is partly due to the highly heterogeneous nature of
cancer. Tumour samples often comprise of subpopula-
tions with different genomic alterations. However, the
most popular outlier detection algorithm, t-test or its
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analogues, simply removes heterogeneity between sub-
types, and fail to identify the subgroup-specific gene
alterations [6-8]. Recently novel statistical methods were
developed to identify patterns only existed in the sub-
groups of the studied samples [9-13].
In this study, we applied these outlier detection meth-

ods to analyze our collection of four miRNA expression
microarray datasets to identify differentially expressed
miRNAs (DE-miRNAs). The DE-miRNAs were then
compared among the four data sets at both gene and
gene set (i.e., the functional gene set or pathway) levels
for comparison. By considering the cancer heterogeneity,
we applied different statistical methods to identify the
consistent prostate cancer (PCa) associated pathways
that are coordinately targeted by miRNAs.

Results
Comparison of heterogeneous feature detection
algorithms
Most of the previous expression data studies used fold-
change, t-test and other statistics alike to detect cancer-
related genes. Recently, it has been recognized that
many oncogenes show altered expression in only a small
proportion of cancer samples [11]. Such features will be
removed when using t-test or t-test like methods
because they average gene expression levels in all the
studied samples. Tomlins et al. concluded that t-tests
were not adequate for detecting heterogeneous patterns
of oncogenes [14].
To address this complexity, a series of new heteroge-

neous detection algorithms have been proposed in
recent years. Among these methods are Least Sum of
Ordered Subset Squared (LSOSS) [10], Cancer Outlier
Profile Analysis (COPA) [9], Maximum Ordered Subset
T-statistics (MOST) [11], Outlier Robust T-statistics
(ORT) [13], and Outlier Sum (OS) [12].
The performance of the above algorithms and the

traditional t-test were compared on the detection of
the outliers in our collection of prostate cancer (PCa)
associated microRNA expression data. The outliers
here refer to the deferentially expressed microRNAs
(DE-miRNAs). For all these methods applied to the dif-
ferent data sets with different numbers of samples, we
set the quantile of outliers to 0.05 (5%). Those DE-
miRNAs detected by at least three methods were con-
sidered to be putative PCa associated outliers, and then
the percentages of the putative outliers in the original
result of each method were calculated to determine the
method’s accuracy (see Figure 1). In most of the cases,
these heterogeneity feature detection algorithms per-
formed better than the traditional t-test. In most of
this comparison, ORT performed better than the other
methods. For these four studied datasets, ORT had the
biggest median observation and smallest standard

deviation. Therefore, we take the result by ORT for the
downstream analyses.

The outlier miRNA targets in prostate cancer
As miRNAs play a role in post-transcriptional regulation
by targeting complementary mRNAs, we collection their
putative targets and subsequently mapped these target
genes to pathways or gene sets for enrichment analysis.
Target genes were retrieved from both TargetScan data-
base and our integrative prediction (see methods section
for detail). Additional file 1 shows the target genes of
the PCa associated DE-miRNAs. At last, 1236, 3566,
1520 and 4749 target genes of the DE-miRNAs of four
different datasets were obtained respectively.

The identification of the microRNA regulatory pathways
in prostate cancer
The collection of the four different datasets are from
different platforms, the overlapping of miRNA probes
between these data are about 40~60% while the detected
differently expressed miRNA profiles only have 3% over-
lapping [15]. We aim to identify the consistent pattern
at high level. First, the target genes of DE-miRNAs
found by at least 3 datasets were extracted, then mapped
to function and pathway databases, e.g. GO [16], KEGG
[17,18] and GeneGO (GeneGo, Inc), to identify PCa-
associated functions and pathways. In this process, we
identified 1221 target genes of the PCa associated DE-
miRNAs, among which 253 were shared by all the four
target gene datasets, and 968 overlapped in three of the
four datasets. As shown in Figure 2, the ligand-indepen-
dent activation of ESR1 and ESR2 is the most significant
GeneGO pathway (See Additional file 2 for the notation
of the symbols in this figure). In Figure 2, insulin-like
growth factor-1 (IGF-1) encodes the protein involved in
mediating growth and development. In this pathway,
IGF-1 binds to IGF-1 receptor on the membrane and
activates signal transduction through Shc, SOS, Mek1,
and ERK2, finally mediating the production of ESR1 and
ESR2. Genes involved in the signal transduction above
are all target genes of highly expressed miRNAs in pros-
tate cancer samples; therefore, the expression of ESR1
and ESR2 will be down-regulated which is in accordance
with the previous report by Gamba and his co-authors
[19].
Figure 3 illustrates various biological themes enriched

in the gene list. The left side of the figure is a bar plot
of enriched GO terms, KEGG pathways, and GeneGO
pathways against -log10 (p value); the top five terms of
each biological theme were shown in the right. The
details are also available in Additional files 3, 4, and 5.
In these files, the pathway or GO terms were sorted by
p value. Overall, we identified 38 GO terms (FDR <
0.001), 16 KEGG pathways (p < 0.001), and 99 GeneGO
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pathways (FDR < 0.001) that are enriched with target
genes of the PCa associated DE-miRNAs.

Analysis and validation of the putative microRNA
regulatory pathways in prostate cancer
Among the 99 enriched GeneGO pathways, 67 (67.7%)
pathways were also significantly enriched in our pre-
vious study in which we processed 10 mRNA microarray
datasets [20]. In the set of top 15 GeneGO pathways in
our previous work, 11 (73.3%) were also detected in the
99 pathways in this study (see Additional file 5).
To identify potential microRNA regulatory pathways

in prostate cancer, the 15 most significantly enriched (i.
e., with the lowest p value) pathways were chosen for
the analysis. Of those, four had previously been reported
to be related to prostate cancer in PubMed citations.
We verified the other 11 pathways indirectly by analysis
of the component genes in PubMed citations although
the wet-lab experiments can direct validate them (Table
1). Among the top 15 pathways reported by both the
previously and the present studies, 3 pathways are the
same in both studies, 2 of the 3 pathways are novel
ones i.e., 1) ligand-independent activation of ESR1 and
ESR2, this is the most significant pathway we mentioned
in the last section, and 2) membrane-bound ESR1: inter-
action with growth factors signalling.

PubMed citation counts of corresponding genes in
each potential pathway can be found in Additional file
6. According to PubMed citation results, the percentages
of reported PCa related genes in each pathway range
from 25.0% to 71.4%. These percentages will be changed
with the PubMed update, since more researches were
performed to investigate the caner hallmarks related
pathways, some pathways may be overrepresented in the
PubMed database while others may have less citations.
The results of PubMed citations indirectly verified the
link between the pathways and the prostate cancer,
although experimental validation is needed for further
confirmation.

Discussion
In this study, we collected four prostate cancer miRNA
microarray datasets. These datasets were processed with
outlier detection statistical methods considering cancer
heterogeneity. This is the first work to compare the per-
formance of heterogeneity feature detection statistical
methods with real miRNA datasets. The analysis indi-
cates these novel algorithms generally perform better
than the t-test. All the methods are important and they
may show different performance for different data sets,
we could select the best methods based on the consen-
sus analysis.

Figure 1 Overlapping percentages of putative outliers (see text for definition). Outliers detected by at least three methods were
considered to be putative ones.
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Figure 3 illustrates the GO terms or pathways (both
from KEGG and GeneGO) that are enriched with the
overlapped target genes from the PCa DE-miRNAs of
the four datasets. The top 5 enriched GO terms are all
related to transcription and its regulation, which are in
accordance with the observation of the abnormal gene
expression in prostate tumours. Most of the identified
significant KEGG or GeneGO pathways are important
for cancer developing and usually involved in the gene
expression or tumour metastasis. Neurotrophins exert
their functions by engaging Trk tyrosine kinase recep-
tors or p75 neurotrophin receptor (p75 NTR), a metas-
tasis and tumour suppressor in prostate cancer [21,22].
ESR1 inhibits cell migration and the repression of ESR1
expression enhances cell migration and accelerates

tumour formation and metastasis. All the evidence above
corroborates our findings in the present study.
The comparison of the previous study [20] with the

present one indicates the high consistency between the
integrative analysis of the microRNA and the mRNA
microarray expression datasets. We here identified 11
novel PCa associated pathways (see Table 1). Two novel
pathways among the top 15 in both studies are identi-
fied. These overlapping pathways can be potential key
pathways contributing to prostate carcinogenesis.
Among the key genes in these two novel pathways, his-
tone deacetylaces (HDACs) was reported abnormally
expressed in prostate cancer [23]. Additionally, the IGF
family is involved in the regulation of prostate growth
and bone metastasis [24]. In prostate cancer cells, the

Figure 2 The most significant GeneGO pathway map. Development: Ligand-independent activation of ESR1 and ESR2. Additional file 2 shows
the legend for this map. The target genes of the putative DE-miRNA are denoted by red bars. The light red hexagon labelled “D” denotes an
association with prostate cancer.
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IGF-1 receptor, a tyrosine kinase receptor related to
tumour progression and metastasis, is highly expressed
with MT1-MMP, a metalloproteinase involved in pros-
tate cancer metastasis [25]. Abnormal HIF expression
mediates vital processes such as cell survival, prolifera-
tion, and angiogenesis [26,27]. Activin A inhibits pro-
static branching and growth [28] and enhances prostate
cancer cell migration [29]. Additionally, IL15 activates
neutrophils and dendritic cells and generates cytotoxic
T lymphocytes against cancer cells [30], so the blocking
of the IL15 signalling pathway weakens the immune sys-
tem’s ability to resist cancers. Additional file 6 shows
the PubMed citation counts of corresponding genes of
each potential pathway in prostate cancer. More wet-lab
experiments are suggested to verify the functions of
these pathways in prostate cancer.

Conclusions
In this study, heterogeneity feature detection methods
were evaluated and applied to the identification of the
novel microRNA regulatory pathways in prostate cancer
and 11 novel PCa associated pathways were identified.
Comparing the present study on PCa microRNA expres-
sion data with our previous work on PCa gene expres-
sion data, we identified two important novel pathways
among the top 15 of the two studies.

Methods
Data collection
We retrieved four miRNA expression datasets from
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/), which is a public functional genomics
data repository supporting MIAME-compliant data

Figure 3 Illustration of biological theme enrichment. DE-miRNAs shared by at least three datasets were extracted to identify target genes;
these genes were then mapped to databases to identify enriched GO terms (FDR < 0.001), KEGG pathways (p < 0.001), and GeneGO pathways
(FDR < 0.001). Top GO terms, KEGG, and GeneGO pathways are shown. Terms shown in the box to the right of each bar plot are the most
significant ones. Details are available in Additional files 3, 4, 5.
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submissions. The datasets were downloaded in single-
matrix file format, and named according to the name of
the first authors of the references (Table 2). The
miRNA probes of these datasets were designed by using
Sanger miRBase release 16.0. Because of the diverse
platforms of the datasets, a local Blast search [31] was
performed by mapping probe sequences to the miRNA
precursors of miRBase (release 16.0 [2]) to identify the
concordant miRNA names. Figure 4 displays the pipe-
line of the whole procedure used in this study.

Comparison of detection algorithms and detect the
differentially expressed miRNAs
In this study, outliers of microRNA expression in PCa
microarray datasets were detected by using six statistical
methods: LSOSS, COPA, MOST, ORT, OS and t-test.
All these methods were implemented in R packages
written by Wang [10] and Lian [11]. The quantile of

outlier extraction for all the methods was set to 0.05
(5%) by default.
We compared the performance of the six methods in

obtaining the PCa associated DE-miRNAs. We consid-
ered the DE-miRNAs detected by at least three methods
to be putative outliers. The percentage of these putative
outliers in the original result of each method was calcu-
lated to measure the method’s accuracy. We selected
ORT to be the best method for these PCa microRNA
expression datasets considering the consensus analysis
results.

Reliable prediction of targets for PCa DE-miRNAs
Targets of DE-miRNAs were retrieved from TargetScan
database by a series of in-house Perl scripts. For those
miRNAs unavailable in the TargetScan database, the
putative targets were manually predicted by performing a
genome-wide, sequence-based bioinformatics procedure

Table 1 Top 15 enriched GeneGO pathways.

Category Term PubMed citation
count*

Development Ligand-independent activation of ESR1 and ESR2§

Development Role of HDAC and calcium / calmodulin-dependent kinase (CaMK) in control of skeletal
myogenesis

Development Neurotrophin family signalling

Development Membrane-bound ESR1: interaction with growth factors signalling§

Translation Regulation of EIF2 activity

Translation Insulin regulation of translation 1

Development IGF-1 receptor signalling 3

Transcription Receptor-mediated HIF regulation

Immune response IL-15 signalling

Development PIP3 signalling in cardiac myocytes

Signal transduction Activin A signalling regulation

Apoptosis and survival BAD phosphorylation § 10

Neurophysiological
process

NMDA-dependent postsynaptic long-term potentiation in CA1 hippocampal neurons

G-protein signalling Proinsulin C-peptide signalling 1

Development Thrombopoietin-regulated cell processes

*The citation count was calculated by searching the pathway names in title and abstract fields of PubMed.
§Pathways with this mark are also in the top15 pathways of our previous study [20].

The following two pathways are novel pathways identified by both the present and the previous studies. 1) Ligand-independent activation of ESR1 and ESR2; 2)
Membrane-bound ESR1: interaction with growth factors signalling.

Table 2 Prostate tissue datasets used in this study.

Dataset GEO accession
NO.

Platforms Human miRNA
probes

Number of samples Statistics Ref.

Prostate normal
tissue

Prostate cancer
tissue

Ambs GSE8126 OSU-CCC hsa-miRNA-chip
version 3

474 16 60 T-test [35]

Schaefer GSE14857 Agilent-016436 407 12 12 T-test [36]

Taylor GSE21036 Agilent-019118 373 28 113 Mixture
model

[37]

Wach GSE23022 Affymetrix miRNA Array 847 20 20 ANOVA [38]
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with three of the most popular tools, i.e., miRanda [32],
RNAhybrid [33], and TargetSpy [34]. Only the overlapped
targets of the prediction were kept as reliable result.

PubMed Search and the citation counts
PubMed citation count was calculated by searching
PubMed in the fields of title and abstract, such as for
the “ligand-independent activation of ESR1” pathway,
we use “ligand-independent activation of ESR1 [tiab]
AND prostate cancer [tiab]” as the search term, and the
search term “SP1 [tiab] AND prostate cancer [tiab]” was
applied to the search of the link between SP1 gene and
prostate cancer. This citation counts may change with
the update of PubMed.

GO and pathway enrichment analysis
To study the function of the PCa DE-miRNAs, we
mapped their target genes to GO, KEGG and GeneGO

databases. To decrease the number of the false positives
pathways, we first identified target genes shared by at
least three PCa DE-miRNAs datasets, which were then
mapped to GO, KEGG pathway database by DAVID,
and GeneGO pathway database by MetaCore (Gene,
Inc.). Both DAVID and MetaCore use hypergeometric
distribution to calculate the significance level (i.e. the p
value) for each pathway and adjust it using the FDR
value as the threshold. In MetaCore databases, p value
means the probability of a random intersection of two
gene sets, with low p values indicating a high potential
of non-randomness of the finding.

Additional material

Additional file 1: Entrez IDs and Official Symbols of targeting genes
for DE-miRNAs of each datasets.

Additional file 2: The notations of all the symbols in Figure 2.

Figure 4 The pipeline of the whole procedure used in this study.
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Additional file 3: Enriched GO terms with P-value and FDR. Gene list
was generated by extraction of target genes from at least 3 datasets.
(FDR < 0.001)

Additional file 4: Enriched KEGG pathways with P-value. Gene list
was generated by extraction of targeting genes from at least 3 datasets.
(P-value < 0.001)

Additional file 5: Enriched GeneGO pathways with P-value. Gene list
was generated by extraction of targeting genes from at least 3 datasets.
(FDR<0.001)

Additional file 6: Citation counts of corresponding genes of each
potential GeneGO pathway. Citation count was calculated by searching
PubMed in the fields of title and abstract, this may change with the
update of PubMed.
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