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Abstract

Background: Study of biological networks is an essential first step to understand the complex functions they
govern in different organisms. The topology of interactions that define how biological networks operate is often
determined through high-throughput experiments. Noisy nature of high-throughput experiments, however, can
result in multiple alternative network topologies that explain this data equally well. One key step to resolve the
differences is to identify the subnetworks which appear significantly more frequently in a biological network data
set than expected.

Method: We present a method named SiS (Significant Subnetworks) to find subnetworks with the largest
probability to appear in a collection of biological networks. We define these subnetworks as the most probable
subnetworks. SiS summarizes the interactions in the given collection of networks in a special template network. It
uses the template network to guide the search for most probable subnetworks. It computes the lower and upper
bound scores on how good the potential solutions are (i.e., the number of input networks that contain the
subnetwork). As the search continues, it tightens the bound dynamically and prunes a massive number of
unpromising solutions in that process.

Results and conclusions: Experiments on comprehensive data sets depict that the most probable subnetworks
found by SiS in a large collection of networks are also very frequent as well. In metabolic network data set, we
found that subnetworks in eukaryote are more conserved than those of prokaryote. SiS also scales well to large
data sets and subnetworks and runs orders of magnitude faster than an existing method, MULE. Depending on
the size of the subnetwork in the same data set, the running time of SiS ranges from a few seconds to minutes;
MULE, on the other hand, runs either for hours or does not even finish in days. In human transcription
regulatory network data set, SiS finds a large backbone subnetwork that appears frequently regardless of diverse
cell types.

Introduction
Biological processes are administered by the complex
interactions between different molecules. Such topology
of interactions are regarded as biological networks. Systems
biology aims to comprehend the biological processes that
drive different functions in various organisms [1] through
the study of biological networks. However, there are fun-
damental challenges in studying biological networks.

Among those, two major challenges arise from (i) the
noisy nature of the high-throughput experiments and (ii)
the mathematical models used to infer the interactions
from the experimental data. Measurement noise is inherent
in high-throughput experiments. If we perform numerous
high-throughput experiments even on the same cell line,
each experiment can give rise to different measurements.
This can potentially generate different sets of inferred
interactions among these molecules. Several mathematical
models are often used to reverse engineer the biological
networks from the experimental data [2,3]. Given measure-
ment data, mathematical model can infer different sets of
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interactions of the same quality resulting in alternative
network topologies [4]. One can identify a reliable back-
bone structure among these alternative network topologies
by selecting the interactions that appear in significantly
many of these networks.
Graph is a mathematically robust representation that

is often used to model biological networks. Given a
graph G = (V, E), V is the set of nodes (with nodes cor-
responding to genes, proteins, enzymes etc.) and E is
the set of directed edges (i.e., interactions between the
nodes). Depending on the type of interaction, a graph
can be directed or undirected. A number of interaction
networks such as protein-protein interaction network
are often modeled as undirected networks, whereas
others such as transcription regulatory networks are
often modeled as directed networks with the direction
of edge denoting the regulatory relationship between the
nodes. Undirected network is a special case of directed
network model where each undirected edge is considered
as a combination of two directed edges pointing opposite
directions. Thus, the method described in this paper
can be easily applied to undirected case as well. We
defer formal definition of basic terminology to Section 3.
Next, we briefly state the goal of the problem considered
in this paper.
Goal of this paper Consider two user supplied positive

integers n and k. Also assume that we are provided with
m alternative biological network topologies such that all
the networks in this data set contain the same set of
molecules. Let us denote the networks in this collection
by graphs Gi = (V, Ei), for each value of i = 1, 2, ... m.
Our goal is to find the n connected subgraphs of k edges
that appear frequently in the given collection of networks.
The problem tackled in this paper is similar to frequent

subgraph discovery [5,6] and network motif identification
[7,8] problems. These are computationally hard as these
have deep connections with solving subgraph isomorphism
(NP-Complete [9]) or graph isomorphism (GI-Complete
[10]) problems, respectively. The complexity of the fre-
quent subgraph discovery algorithm grows exponentially
with increasing size of the subgraphs and input graphs.
Several heuristic methods have been proposed to bound
these solutions to practical execution time. These solutions
have various limitations that reduce their use for many
practical applications. Briefly, some of them find subgraphs
only in a single network [11]. Among the methods that
extend to multiple networks as input, some work only with
smaller networks and subnetworks [12]. Some methods
concentrate on the topology of the networks [13] and
discount the content of the node altogether. We defer a
discussion of the related literature to Section 2.
Contributions In this paper, we present SiS (Signifi-

cant Subnetworks), an efficient method that finds fre-
quent subnetworks in a given collection of biological

networks. Assume that the user supplies two integers n
and k and alternative biological network topologies. SiS
starts by summarizing all the interactions in this collection
in a hypothetical network called the template network.
Template network is an edge-weighted network. The
weight of each edge in this network equals to the minus
logarithm of the fraction of the networks in the input data
set which contain that edge. We assume that each network
in the data set can be chosen with the same probability.
SiS finds n connected subnetworks of k interactions with
the highest probability to appear in a randomly drawn net-
work (i.e., each of these subnetworks has smaller total
edge weights than others in the template network). SiS
exploits the use of template network in two ways: (i) it
limits the search to the template network rather than
every network in the data set and (ii) it prunes a massive
number of unpromising solutions by using lower and
upper bound values to the sum of the weights of all the
edges in the tentative solution subnetworks. SiS also
updates the upper bound values dynamically as it searches
through the template network. Technical description of
the method is presented in Section 3.
Using real metabolic network data sets and semi-

synthetic network data sets, we evaluated the accuracy
and the performance of our method. In our experiments,
we observed that the frequent subnetworks of metabolic
networks in eukaryote are more conserved than those of
prokaryote. We also observed that subnetworks with
large frequency in eukaryote also have large frequency in
prokaryote. On the other hand, a substantial number of
subnetworks with large frequency in prokaryote have
very small frequency in eukaryote. We demonstrated
experimentally that SiS is robust by simulating a broad
spectrum of parameters determining the network topolo-
gies and result characteristics by testing it on the semi-
synthetic data set. SiS was able to identify the true result
accurately in our experiments. We also observed that SiS
scales to large data sets easily. To find the maximal
frequent subnetwork in global metabolic networks of
eukaryote, SiS ran for less than five minutes; whereas,
MULE [14], an existing method, finished in 7 hours and
thirty minutes. SiS also discovers a large, core backbone
network of interactions among human transcription reg-
ulatory networks of diverse cell types. Preliminary results
of this work are published here [15].
We organize this paper as follows. We present the related

works in literature in Section 2. We formally define the
necessary terminology and describe the proposed solution
SiS in Section 3 followed by the performance evaluation of
SiS in Section 4. We conclude this paper in Section 5.

Related work
One way to view the literature on the problem of discover-
ing frequent subnetworks originates from two orthogonal
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perspectives. The first perspective focuses on the number
of input networks (i.e., one or more); while the second one
focuses on the labeling of the nodes and edges (i.e., labeled
or unlabeled) of the input networks. From the first
perspective, the problem has two variations:
(i) (Single input network) Here, the aim is to find sub-

networks that appear the most number of times in a
given large network [11,12].
(ii) (Multiple input networks) Here, the aim is to find

subnetworks with each appearing at least once in a large
number of networks in a given network data set. If a sub-
network exists in a network of the data set, its frequency
increases by only one for each such network regardless of
the number of copies in that network [5,6,14,16-19].
Many of the methods mentioned above disregard the

possible labeling of the entities in the input network(s)
and discover only the topology of interactions among
the entities. This inevitably leads to the costly subgraph
isomorphism problem. These methods differ from one
another in the way that they consider nodes/edges of
the input network(s). More importantly, they only focus
on common topological features and ignore the contents
(i.e., labels) of nodes and edges. As a result, these common
topological features may lead to subnetworks that have
same topology but are not coherent in terms of the interac-
tions or the interacting molecules.
A number of algorithms discover frequent subnetworks

by considering the labels of the interacting molecules.
These algorithms bypass the subgraph isomorphism pro-
blem as the unique node labels make it trivial to find out if
a given subnetwork is a part of a given large network. The
challenge here is to decide which subnetworks should be
explored as potential frequent subnetworks.
Among the above mentioned methods, MULE [14]

discovers frequent subnetworks of enzyme interactions in
a collection of metabolic networks. It models input net-
works as relational networks and represents each enzyme
by a unique node label. CODENSE [18] seeks coherent
dense subnetworks. It also models biological networks as

relational networks. NEMO [20] reconstructs transcrip-
tion regulatory modules in a systematic and efficient
manner. Similar to CODENSE, MFC [21] searches for
maximal frequent dense subnetworks in protein-protein
interaction (PPI) networks.
In this paper, we consider multiple input networks

where each network has uniquely labeled nodes. In the
next section, we formally define the problem and our
proposed solution.

Proposed method
This section consists of the definition of common termi-
nology (Section 3.1) followed by the description of the
proposed method (Section 3.2).

Preliminaries
In this section, we define a few terms and concepts that
are used throughout this paper. A graph is a collection of
nodes V connected by a set of edges E. We denote such a
graph with G = (V, E). Given such a graph, G = (V, E), we
call a graph G’ = (V’, E’) to be a subgraph of G if V’ is a
subset of V and E’ is a subset of E connecting the nodes
in V’. We will use the terms graph and subgraph to
denote network and subnetwork, respectively throughout
this paper. In Figure 1 (a), we have a sample graph of six
nodes and nine edges. Figure 1 (b) shows a subgraph of
three nodes and three edges that appears in this sample
graph.
An ordered sequence of nodes in a graph constitute a

path in that graph, if all the consecutive node pairs are
connected by an edge in this ordered sequence of nodes.
For instance, In Figure 1 (a), nodes {A, D, E, F, C} make
up a path as these nodes are incident to the edges {(A, D),
(D, E), (E, F), (F, C)} in that order. We next define the con-
cept of connectedness in a graph.
Definition 1 (Connected Node Pairs). Given a graph

G = (V, E), we say that nodes u and v (u, v Î V) are
connected if G contains a path that visits both nodes u
and v.

Figure 1 A toy example. (a) a graph G = (V, E) of six nodes and nine edges. Here, V denotes the set of nodes, {A, B, C, D, E, F} and E denotes
the set of edges, {(A, B), (A, D), (B, C), (B, E), (D, E), (E, A), (E, C), (E, F), (F, C)} (b) a subgraph of three nodes.
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For instance, in Figure 1 (a), nodes A and C are con-
nected as they both lie on path described above. We say
that a G = (V, E) is a connected graph if all pairs of
nodes (u, v), u, v Î V, form connected node pairs.
This paper considers connected subgraphs only. This is

mainly because in order the collections of genes to work
together on a conserved function, such as regulating the
transcription of certain sets of genes, they have to
be connected in the underlying transcription regulatory
network. We however emphasize that it is it is possible to
formulate a disconnected subgraph as a set of connected
subgraphs. That way, it is possible to extend the method
developed in the rest of this paper to disconnected graphs
as well.
In this paper, we denote a connected subgraph of k

edges as a size-k subgraph. Thus, the number of nodes
of a size-k subgraph is upper bounded by k + 1, which
is observed when the subgraph has a tree-like topology.
Consider the set of m graphs D = {G1,G2, . . . ,Gm}.

We first define the concept of frequency in D.
Definition 2 (Frequency). Assume that we are pro-

vided with a graph G’ and a collection of graphs D. We
define the frequency of G’ over D(and denote it with
f (G′,D)) as the number of graphs Gi ∈ Dwhere G’ is a
subgraph of Gi.
In Definition 2, we describe the concept of frequency

for the general case with any collection of graphs. In
this paper, however, we assume that all the graphs in D
are built on the same collection of nodes, V, where each
node in V has a unique label. Each graph Gi ∈ D can
thus be denoted with Gi = (V, Ei) such that ∀i, Ei ⊆
(V × V). Notice that, this assumption does not restrict
the generality of Definition 2. To see that, consider a
collection of m graphs D in which different graphs may
have different sets of nodes. In other words Gi = (Vi, Ei)
and ∃Gi, Gj ∈ D such that i ≠ j and Vi ≠ Vj. In that
case, we can replace Gi and Gj with two new graphs G′

i

and G′
j both containing the set of all nodes in Gi and Gj.

In other words, G′
i = (Vi ∪ Vj,Ei) and G′

j = (Vi ∪ Vj,Ej).
This operation, will make the two new graphs have
identical node sets without altering their edge sets. By
applying this operation repeatedly for all pairs of such
graphs, we can create a data set with graphs, all contain-
ing the same set of nodes. Let us denote the resulting
collection of graphs with D′. Notice that all the new
nodes in G′

i (i.e., nodes in the set Vj − Vi) are discon-
nected from the original nodes in G’ (i.e., nodes in the
set Vi). Thus, those new nodes will never participate in
any connected subgraph in G′

i. This indicates that any
subgraph with two or more nodes found in D′ can also
be found in D. Thus, as we explain later in this paper
expanding D to D′ has no effect in the outcome of our
method.

Having defined the concept of frequency of a sub-
graph, we now formally define the concept of the most
frequent subgraph in D.
Definition 3 (Most Frequent Size-k Subgraph). A size-

k subgraph G in Dis the most frequent size-k subgraph if
f (G,D) ≥ f (G′,D)for any size-k subgraph G’ in D.
It is possible to extend Definition 3 to multiple results.

Following defines that extension.
Definition 4 (Top-n Most Frequent Size-k Subgraphs).

The top-n most frequent size-k subgraphs in Dis the set of
n subgraphs Tnwith the largest frequency in D. Formally,
� ∃G′ = (V ′,E′) /∈ Tn, such that

(i) |E’| = k and
(ii) ∃G ∈ Tnfor which f (G′,D) > f (G,D).

SiS: Significant Subnetworks
We describe the proposed method SiS (Significant Sub-
networks) in this section. We define the terminology
specific to SiS and introduce a data structure needed to
build it. We elaborate on different steps of SiS at the
end of this section.
We start by considering the frequency of any edge e in

D. This is a special instance of Definition 2 with the
subgraph G’ limited to only one edge e. The frequency
of an edge is bounded by the size of the input data set
D. Following definition eliminates this dependency.
Definition 5 (Relative Frequency of an Edge). Relative

frequency of an edge e in D(denoted by fr(e, D)) is the fre-
quency of that edge normalized by the number of networks
in D. Formally, we compute the relative frequency as

fr (e,D) =
f (e,D)

|D|
Now, consider the following generative process.

Assume that we randomly select a graph G = (V, E)
from a given collection of graphs D. We then randomly
choose an edge e from E. Assume that we repeat this
process N times. As N approaches to ∞ the fraction of
the generative iteration at which we observe e is equal
to the relative frequency of e in D. Similarly, consider
the set of k edges S = {e1, e2, ..., ek} such that all edges
in S belong to at least one graph in D. Now, consider
the following generative process to choose k edges from
D. At each iteration we first choose a graph G = (V, E)
from D. We then randomly choose an edge from G.
Next, we remove e from all the graphs in D and repeat
this selection process until we choose a set of k edges.
Let us denote the N sets of k edges obtained after apply-
ing this generative process N times with S1, S2, ..., SN. As
N approaches to ∞, the fraction of sets Si which are

equal to S is equal to is
∏

ei∈ S

fr(ei,D). The more frequent
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the edges in S are, the higher the probability that they
are selected by a randomized selection process.
To simplify the computation of the frequency, we use

the following score function which is an equivalent
representation to the frequency in our implementation:

score(G′,D) = − log(
∏

e∈E′ fr(e,D)) = −
∑

e ∈ E′
log(fr(e,D))

Consider the top n most frequent size-k subgraphs
Ḡ1, Ḡ2, . . . , Ḡn, in D. Following from Definition 4, we
know that it consists of frequent edges. In other words,
all the edges e Î E’ have large fr(e,D) values. On the
other hand, frequent edges in D do not always jointly
form frequent subgraph. With these observations in
mind, consider the following generative process that
randomly selects a size-k subgraph from D. We first
randomly select a graph G = (V,E) ∈ D with replacement.
Next, we randomly select a size-k subgraph of G, denoted
with G1. At this point we have a randomly selected sub-
graph G1. Assume that, for a large number N, we repeat
this generative process N times to select N subgraphs G1,
G2, ..., GN independently. We conjecture that for a ran-
domly selected pair of indices i, j (i Î [1 ... n] and j Î [1 ...
N]) the frequency of Ḡi is at least as much as that of
Gj with a high probability. Inversely, we say that a size-k
subgraph G in D is the most probable size-k subgraph if
score(G) ≤ score(G’) for any size-k subgraph G’ in D.
In this paper, we develop a method that finds the most

probable subgraphs efficiently. Recall that each Gi ∈ D has
the same set of molecules; hence, can be represented as Gi

= (V, Ei). We summarize all the graphs in D using an edge
weighted graph. We name this graph the template graph.
Formally, the template graph of D (denoted by T = (V, ET,
j())) is an edge weighted graph where ET is the set of all
edges in D, φ() : ET → R and φ(e) = − log(fr(e,D)), ∀e
Î ET. Figure 2 shows an example with a sample collection
of graphs and clarify the idea presented above.
We design SiS to find most probable size-k subgraph in

D. SiS performs this task in several steps. Figure 3 shows
a flowchart of SiS. By definition, the score value of the
most probable subgraph is less than or equal to that of
all the subgraphs in D with the same number of edges.
SiS calculates a lower and upper bound to this score by
greedy technique. SiS then explores the search space and
generates potential solution if its score is satisfied by the
bound set in the previous step. As the search progresses,
SiS narrows down the search space by pruning unpromis-
ing solutions. SiS also updates the upper bound value as
better solution is found. The idea is to reduce the gap
between the lower and upper bound and use this margin
as a guide to find the optimal result. SiS continues to
prune most of the search space using the heuristic men-
tioned above until the whole search space is explored.
Next, we elaborate on each step of SiS.
Pre-processing In this step, we calculate lower bound

and upper bound value of score (G′,D) for most prob-
able size-k’ subgraph G’ for each value of k’ = 1, 2, ..., k.
We explain these processes below.
Lower bound calculation A greedy technique is

employed to calculate a lower bound to the value of

Figure 2 A sample collection of input graphs and the resulting template graph. (a) A collection D of m = 4 graphs. Each graph has the
same node set V = {A, B, C, D} but different edge set Ei. (b) An edge-weighted graph summarized from D. Weight for an edge e is fr(e,D).
For example, the edge (A, C) appears in two graphs in D, so, fr((A,C),D) = 2/4 = 0.5. (c) The template graph for D. Weight for an edge

e is φ(e) = − log(fr(e,D)). For example, φ((A,C)) = − log(fr((A,C),D)) = - log(0.5) = 0.69.
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score(G’, D) for any potential most probable size-k’ sub-
graph G’ for each value of k’ = 1, 2, ..., k. It is impracti-
cal to generate all size-k’ subgraphs and compute the
minimum of their score values. Instead, the following
scheme quickly obtains the desired score value: let us
sort the edges in the template graph (i.e., e Î ET) in
non-decreasing order based on j(e) values. Assume that

the first k’ edges in this sorted list form a connected
subgraph G″ = (V″, E″). This relaxation allows a simple
way to compute the lower bound values as score
(G′′,D) =

∑
e∈E′′ φ(e) is guaranteed to be at least as

small as score (G′,D) of any size-k’ subgraph in T. The
following lemma formally presents the correctness of
this idea.

Figure 3 A flowchart describing different steps of SiS.
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Lemma 1 (LOWER BOUND). The score of a size-k
subgraph computed as in the above pre-processing step is
a lower bound to the score of an optimal size-k
subgraph.
Proof. Let G be the size-k subgraph generated by the

pre-processing step and G* be an optimal size-k sub-
graph. Let the k edges of G and G* in non-decreasing
order of j() values be represented by {e1, e2, ..., ek} and
{eG∗

1 , eG∗
2 , . . . , eG∗

k }, respectively. Assume that the score
(G) is not a lower bound to the score of an optimal size-k
subgraph (i.e., score(G) > score(G*)). It implies that there is
at least one edge in G* with lower j() value with respect
to the corresponding edge in G. Let ei be the first of such
edges so that φ(ei) > φ(eG∗

i ). However, there can be no
such ei as the pre-processing step selects k edges with the
smallest j() values in the template graph, T. Therefore,
the lower bound obtained in the pre-processing step is
indeed a lower bound to the score of optimal subgraph. □
Upper bound calculation A greedy technique is

employed to calculate the upper bound to score (G′,D)
for any potential most probable size-k’ subgraph G’ for
each value of k’ = 1, 2, ..., k. Our rationale is to generate
upper bound values close to the optimal ones. We gen-
erate a size-k’ subgraph by augmenting an edge to a size-
(k’ − 1) subgraph. Assume that we initialize G’ to an
arbitrary edge e Î ET to generate a size-1 subgraph. We
get a size-2 subgraph by augmenting an edge e’ to it such
that e’ is incident to a node in G’ and j(e’) is minimum
among all such edges. In this manner, we can generate a
size-k’ subgraph starting from a size-1 subgraph. If we fix
the starting edge e, we can easily determine the edges that
will be selected subsequently. Therefore, the score of any
size-k’ subgraph completely depends on the choice of the
initial edge, e. Our goal is to generate upper bound value
that is not too far from the optimal one. We iterate over
every edge e Î ET, generate desired size-k’ subgraph and
select the minimum score of such subgraphs as the upper
bound value. The following lemma delineates the correct-
ness of the obtained upper bound to the optimal score in
the pre-processing step.
Lemma 2 (UPPER BOUND). The score of a size-k sub-

graph computed as in the above pre-processing step is an
upper bound to the score of an optimal size-k subgraph.
Proof. Let G be the size-k subgraph generated by the

pre-processing step and G* be an optimal size-k subgraph.
We prove by contradiction that score(G) ≥ score(G*), i.e.,
score(G) is an upper bound to score(G*). By definition,
score(G*) is the smallest among the scores of all possible
size-k subgraphs. Therefore, score(G) is either equal to
optimal value (i.e., score(G) = score(G*)) or greater than
the optimal value (i.e., score(G) > score(G*)). Therefore,
the upper bound obtained in the pre-processing step is
indeed an upper bound to the score of optimal subgraph. □

We will see how we use these bounds in later stages
of the algorithm to filter large part of the search space.
Explore the search space In the pre-processing step,

we calculate the lower and upper bound values for most
probable size-k’ subgraph for each value of k’ = 1, 2, ...,
k. We store these score values of lower and upper
bound in L[1 ... k] and U[1 ... k] arrays, respectively.
Here, L[i] and U[i] entries store the lower bound and
upper bound of score values of the size-i subgraph,
respectively. Next, We describe how SiS incorporates
the bounds calculated in the pre-processing step to
accelerate the search process.
SiS enumerates the subgraphs of the template graph

incrementally, i.e., by extending smaller subgraphs to
larger subgraphs. Suppose that G’ = (V’, E’) was initia-
lized as a size-1 subgraph where E’ = {ei} (ei is an arbi-
trary edge Î ET) and V’ consists of the nodes incident
to ei. Assume that SiS extends this to a size-k’ subgraph
G’ now. One can further augment G’ to a size-(k’ + 1)
subgraph G″ by adding a new edge ej to E’. This can be
done if the following constraints are satisfied:

(i) ej is incident to a node v Î V’.
(ii) The index of the starting edge is smaller than
that of the new edge (i.e., i < j).
(iii) score (G′′,D) + L[k − k′ − 1] ≤ U[k].

Now, let us elaborate on the roles of these constraints.
The first one above guarantees that the generated sub-
graph remains connected as we add one of the incident
edges of the smaller subgraph. The second one is not
necessary for correctness of the algorithm; it rather keeps
the execution time of SiS practical. It ensures that SiS
never generates and evaluates the same subgraph twice.
The last constraint is used to filter a massive set of unpro-
mising subgraphs from the search space. If this fails, SiS
discards the current solution as it will not lead to the opti-
mal result. In other words, unsuccessful evaluation of this
constraint denotes that SiS already generated a better solu-
tion and its score is stored in the corresponding entry of
the upper bound array U . Note that the subgraph genera-
tion strategy described above depends on the initial choice
of ei. SiS repeats this search process by iterating over every
e Î ET one by one.
Recall that by definition, the most probable size-k’

subgraph has the smallest score value among all the
size-k’ subgraphs. So, the score of any size-k’ subgraph
is actually an upper bound to the optimal score value.
Thus, during the search process, if SiS generates a size-
k’ subgraph G’ whose score(G’) < U[k’], we set U[k’] to
score(G’). Thus, U[k’] always stores the score of the best
size-k’ subgraph generated so far. Dynamically updating
the upper bound values while exploring the search
space contributes instantly to the performance of the
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search process. It leads to further pruning of more unpro-
mising solutions. As showed in later experiments, this
empowers SiS scale to very large graphs and subgraphs.
The method described above searches for the most

probable size-k’ subgraph for each value of k’ = 1, 2, ...,
k. It is worth mentioning that extending it to find the n
most probable subgraphs is trivial. We store the upper
and lower bounds to the top-n size-k’ subgraphs for
each value of k’ = 1, 2, ..., k. We should also extend this
idea accordingly for constraint (iii) mentioned above. In
Section 4.2, we report the performance of SiS for different
values of n and k.
Post-processing and extensions SiS computes the

frequency of the n most probable subgraphs found in
the previous step. Recall that the input graphs are
labeled where label of a node can denote the name of
the gene, enzyme or protein, for instance. It is computa-
tionally inexpensive to check the existence of a subgraph
when both graph and subgraph are labeled. To compute
the frequency of a subgraph, we need to iterate over all
the input graphs. So, we repeat this process for each of
the n most probable subgraphs.
We can easily augment SiS to find maximal frequent

subgraphs in D. A maximal frequent subgraph is a fre-
quent subgraph that is not a subgraph of any frequent
subgraph. We employ SiS to find maximal frequent sub-
graph in the following manner. First, SiS generates n
most probable size-k subgraphs. It uses moderately large
values of n and k. As most probable subgraphs have
large frequency values (elaborated in Section 4), they
serve as good seeds for the greedy technique. For each
of the most probable subgraph, we augment an edge to
it at a time if the new subgraph is both connected and
frequent. This is a simple greedy extension technique to
generate larger subgraphs with frequency values greater
than a given threshold. In Sections 4.4 and 4.5, we
describe the performance of SiS as a tool to find maximal
frequent subgraph.

Experiments
This section evaluates the performance of SiS experi-
mentally. We used a comprehensive set of both real and
semi-synthetic data sets. Using real data set, we employed
SiS to find out how frequent the metabolic networks in
eukaryote and prokaryote are. We generated the maximal
frequent subgraph in human transcription regulatory net-
works. Using semi-synthetic data set, we evaluated the
robustness of SiS simulating many different experimental
conditions. We also compared SiS with a maximal fre-
quent subgraph finding algorithm, MULE using real data
set. We describe the data sets below.
Real data set We used two types of biological net-

work data sets, namely (i) metabolic networks and (ii)
human transcription factor regulatory networks. Let us

elaborate on these data sets first. We downloaded all the
metabolic networks from KEGG database [22]. We created
two separate data sets for eukaryote and prokaryote in all
cases. Let u and v be two enzymes in a metabolic network
and u catalyzes a reaction r1 and v catalyzes a reaction r2.
Assume that r2 consumes a product produced by r1. We
denote this relationship by a directed edge (u, v). We
represent an enzyme by a single node in this model even if
it catalyzes multiple reactions in a pathway. Each organism
may employ a marginally different set of enzymes to per-
form the same function (e.g., carbohydrate, lipid, energy
metabolism etc.). To ensure that each organism in a data
set is built on the same set of enzymes, we set it to the
union of all enzymes in the data set. We created the global
network data set from global metabolic pathways (i.e.,
Eukaryote-G and prokaryote-G). As an example of nucleo-
tide metabolism, we created a small data set from pyrimi-
dine metabolism (i.e., Eukaryote-P and prokaryote-P).
Similarly, for amino acid metabolism, we created a small
data set from alanine, aspartate and glutamate metabolism
(i.e., Eukaryote-AAG and prokaryote-AAG). To measure
the potency of SiS, we also used human transcription reg-
ulatory networks data among 41 diverse cell and tissue
types (for example, pulmonary artery fibroblast (HPAF),
astrocyte (NHA), fetal heart (fHeart) etc.) [23]. Table 1
presents details on the real data sets.
Semi-synthetic data set We downloaded five different

signaling networks (VEGF, Apoptosis, WNT, ERB and
MAPK) of human (Homo sapiens) from KEGG database.
By augmenting these networks, we generated one com-
posite network of 236 nodes and 348 interactions. We
then generated a collection D of m = 100 graphs from
this single composite network. We used degree-preser-
ving mutation [24] with a given mutation rate (µ) to
generate each of these input graphs Gi ∈ D. In order to
verify how well our algorithm performs under several
conditions, we purposefully implanted subgraphs of a

Table 1 An overview of the real data sets used in the
experiments.

Data set Number of
Networks

Entire Data set Template
Graph

Nodes Edges Nodes Edges

Eukaryote-G 145 45,315 78,499 1,413 1,541

Prokaryote-G 1,486 393,681 616,546 1,413 1,676

Eukaryote-AAG 145 2,048 2,951 43 54

Prokaryote-
AAG

1,442 20,692 27,334 43 79

Eukaryote-P 145 2,942 5,757 63 103

Prokaryote-P 1,486 31,130 60,802 63 114

HTRN 41 21,377 574,122 538 47,945

Suffixes G, AAG and P stand for Global, Alanine, Aspartate and Glutamate and
Pyrimidine, respectively. HTRN denotes Human Transcription Regulatory
Networks [15].
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given size (k) and frequency (f )% in D as follows. We
first randomly selected a size-k subgraph from the com-
posite graph. We then ensured that this subgraph
remained unaltered in at least f % of the input graphs
Gi ∈ D by marking the edges of this subgraph in f % of
the Gis. In this way, we simulated different experimental
conditions by creating data sets with varying size (k) of
the implanted subgraph, mutation rate (µ) and fre-
quency (f ).
Implementation and environment We implemented

SiS in C++ and tests are performed on a computer
equipped with Intel Core i7 2.67 GHz CPU, 4 GBs of
main memory running Windows 7 operating system.

Subgraphs in metabolic network data set
In these experiments, we investigate how conserved the
metabolic networks are and how the frequent subgraphs
in eukaryote and prokaryote relate to each other. In
experiments described in this section, we first employed
SiS to find 50 most probable size-k subgraphs for different
values of k. Then we calculated the actual frequency of
these subgraphs.
How conserved the enzyme subnetworks in eukaryote

and prokaryote are In this experiment, we employed SiS
to find most probable size-k subgraphs for each value of
k = 6, 7, ... 20 in both Eukaryote-G and Prokaryote-G
data sets. This generated 750 (i.e., 50 × (20 - 5)) sub-
graphs in total for each of these data sets. Figure 4 plots
the frequency of the generated most probable subgraphs
for both these data sets. High frequency value of the

subgraphs exhibits the presence of large and highly con-
served subgraphs in eukaryote and prokaryote. These
highly conserved subgraphs denote that both eukaryote
and prokaryote generally use the same set of interac-
tions to perform their functions. Figure 4 also shows
that the frequency of the most probable subgraphs in
eukaryote are higher than those of prokaryote even for
small subgraphs. This is well established as eukaryote
displays functional conservation at both protein as well
as network level [25]. We also observe a gradual drop in
frequency for subgraphs in both clades as the size of the
subgraph increases. This implies that there are addi-
tional interactions (apart from those in the subgraph)
that appear in many organisms. Otherwise, increase in
subgraph size will result in exponential decrease in the
frequency of that subgraph.
Conserved enzyme subnetworks in pyrimidine and

alanine, aspartate, glutamate networks In this experi-
ment, we used smaller metabolic network data sets (i.e.,
Eukaryote-AAG, Prokaryote-AAG, Eukaryote-P and Pro-
karyote-P). We employed SiS to find most probable size-
k subgraphs for each value of k = 6, 7, ... 15. Figures 5
and 6 plot the frequency of these subgraphs in eukaryote
(using Eukaryote-AAG and Eukaryote-P data sets) and
prokaryote (using Prokaryote-AAG and Prokaryote-P
data sets), respectively. In both eukaryote and prokaryote,
pyrimidine network is found to be significantly more
conserved than alanine, aspartate and glutamate network.
The most probable subgraphs found by SiS in pyrimidine
network are present over 50% of the organisms in both

Figure 4 Normalized frequency of the top 50 most probable size-k subgraphs for each value of k = 6, 7, ..., 20 in Eukaryote-G and
Prokaryote-G data sets [15].
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eukaryote and prokaryote even for size-15 subgraphs. We
also observe that the frequency starts to drop as the size
of the subgraph increases. This drop is gradual in pyrimi-
dine network. However, in alanine, aspartate and gluta-
mate network, the frquency of the most probable
subgraphs of size-k are small for large k values (e.g., in
Prokaryote-AAG data set, most probable size-k subgraphs
are very infrequent for k ≥ 11).

Correlation of frequent enzyme subnetworks in
eukaryote and prokaryote In this experiment, we eval-
uate the correlation between frequent subgraphs in
eukaryote and prokaryote using global network data set.
We employed SiS to find most probable size-k subgraphs
for each value of k = 6, 7, ..., 20 in both eukaryote and
prokaryote. For each of these subgraphs, we calculated
their frequency in both data sets. We denote the data set

Figure 5 Normalized frequency of the top 50 most probable size-k subgraphs for each value of k = 6, 7, ..., 15 in Eukaryote-P and
Eukaryote-AAG data sets [15].

Figure 6 Normalized frequency of the top 50 most probable size-k subgraphs for each value of k = 6, 7, ..., 15 in Prokaryote-P and
Prokaryote-AAG data sets.
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where SiS identified these subgraphs as primary clade;
the other one is denoted by secondary clade. Thus, we
computed two frequency values for each resulting sub-
graph. It shows how frequent one subgraph found in pri-
mary clade is in secondary clade. Figure 7 plots the
frequency values of these subgraphs. It shows that the
most probable subgraphs found in eukaryote are also fre-
quent in prokaryote. However, plots in the lower right of
the figure demonstrates that there are some frequent
subgraphs in prokaryote that are very infrequent in
eukaryote. This observation is not unexpected as almost
all metabolic pathways in eukaryote are also present in
prokaryote [26]. However, some prokaryote, especially
bacteria and archaea living in extreme environments, are
known to have indigenous pathways. For instance, pro-
karyote manage anaerobic respiration [27] and produce
methane through metanogenesis [28] using pathways
that are either absent or deviate from eukaryote. Figure 8
shows a subgraph that is frequent in prokaryote but very
infrequent in eukaryote. Figure 9, on the other hand,
shows a subgraph that is frequent in both eukaryote and
prokaryote. These two size-20 subgraphs contain 17 and
13 enzymes, respectively. Interestingly, these two sub-
graphs have 10 enzymes and 10 interactions that are com-
mon. The remaining enzymes and interactions play a vital
role in the striking difference in frequency. For instance,
prokaryote use UMP kinase (EC number: 2.7.4.22) for
synthesis of pyrimidines, whereas eukaryote use UMP/
CMP kinase (EC number: 2.7.4.14) for the same purpose.

Subgraphs in semi-synthetic data sets
In this section, we test the robustness of SiS under differ-
ent experimental conditions. In this respect, we generated
different semi-synthetic data sets by varying a number of
parameters to simulate different conditions. We implanted
a subgraph of certain size (k) and frequency (f )%; then
generated a number of data sets by mutation (µ) of the
interactions. We employed our method to discover the
implanted subgraph from this data set. We experimented
with different size (k) of the implanted frequent subgraph,
mutation rate (µ) and frequency (f )%. We tested SiS on
these data sets to verify that the discovered subgraphs had
frequency values at least as much as of the implanted sub-
graph. We repeated each experiment 10 times for SiS and
report the average results.
Impact of mutation rate In the first set of experiments,

we examined the influence of mutation rate (µ) on D for
SiS. We implanted a size-15 subgraph with 70% frequency
and changed the mutation rate, µ to 5%, 10%, 20%, 30%
and 40% to generate D. Recall that large values of µ implies
more deviation in the topologies of the input graphs.
Table 2 summarizes the average frequency of the most
probable size-15 subgraph discovered by SiS in D with
respect to above-mentioned mutation rates. In these
experiments, we found that in data sets with µ ≥ 20%, the
only subgraph with more than 70% frequency was the sub-
graph that we implanted. It shows that SiS is capable of
finding frequent subgraphs even in data sets with high
mutation rate. This supports our earlier conjecture that

Figure 7 Normalized frequency of the top 50 most probable size-k subgraphs for each value of k = 6, 7, ..., 20 in primary (eukaryote/
prokaryote) and corresponding secondary clade (prokaryote/ eukaryote) using Eukaryote-G and Prokaryote-G data sets [15].
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most probable subgraphs and most frequent subgraphs
often are the same or comparable in terms of their
frequency.
Impact of frequency value Next, we experimented by

varying the frequency value (f ) of the implanted subgraph.
For these experiments, we implanted a size-15 subgraph
with frequency value, f set to 50%, 60%, 70%, 80%, 90%
and 95%. In these data sets, we fixed the mutation rate, µ
at 10%. Table 3 presents the average frequency value of
the most probable subgraph discovered by SiS in D and
that of implanted subgraph. We observe that the fre-
quency of the most probable subgraph we found was at
least as good as that of the implanted one on the average
for all parameter settings. The larger observed frequency

values imply that there were additional subgraphs aside
from the implanted ones that contained the same sub-
graph and SiS was able to locate them. In our experiments,
SiS failed to find the implanted subgraph in only a few of
the 60 data sets (i.e., 10 data sets per implanted frequency
value). This happened only when frequency values of the
implanted subgraphs were 70% or more. In these few data
sets, the gap between the frequency reported by SiS and
that of the implanted one was about 2% or less. In these
cases, the most probable subgraphs differ from the most
frequent ones, but their frequency values are still very
much comparable.
Impact of the size of implanted subgraph We also

experimented with implanted subgraphs of varying sizes (k).

Figure 8 A size-20 subgraph which is highly frequent (69%) in prokaryote, but infrequent (7%) in eukaryote. Node label refers to
Enzyme Commission (EC) number [15].

Figure 9 A size-20 subgraph which is frequent in both eukaryote (86%) and prokaryote (66%). Node label refers to Enzyme Commission
(EC) number [15].
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In these experiments, we implanted a subgraph of size 5,
10, 15, and 20, respectively with frequency, f = 70% and
mutation rate, µ = 10%. The result is shown in Table 4
for the most frequent subgraph. We observe that the
frequency of the most probable subgraph found was at
least as good as that of the implanted one on the aver-
age for all parameter settings. The larger observed fre-
quency values for smaller implanted subgraphs (k ≤ 10)
imply that there were additional subgraphs aside from
the implanted ones that contained the same subgraph
and SiS was able to locate them. For relatively larger
subgraphs (k ≥ 15), frequency of the most probable sub-
graph was just above the frequency of the implanted
ones. It implies that when the size of the implanted sub-
graph grows, with the current parameter settings, the
subgraphs discoverd are the implanted ones. This
experiment demonstrates that SiS can discover frequent
subgrahs succesfully even for very large sized subgraphs.
In summary, our experiments in this section demon-

strate that SiS can identify most frequent subgraph for a
broad set of parameter values.

Running time performance
A frequent subgraph discovery method is practical only
if it scales to the size of the network and subnetwork. In
this section, we evaluate the running time of SiS and
compare it with exhaustive search. For a fair comparison
with SiS, we ran our exhaustive search implementation
on the template graph (rather than on every input graph
in D and finding the corresponding frequency over D).
We compare the running time of SiS and exhaustive
search for various size of subgraph (k). To generate the
semi-synthetic data sets for this set of experiments, we
implanted a subgraph of size-k with frequency, f = 70%
and fixed the mutation rate, µ = 10%. We used a fre-
quency threshold of 5% (i.e., in D of m = 100 networks,
we searched for subgraph that existed at least in 5 of
them). The running times of SiS and exhaustive search
are given in Table 5. It shows that SiS finds frequent
subgraphs containing up to 20 interactions very fast.

The results clearly demonstrate that our method scales
to large subgraph sizes when exhaustive search quickly
becomes infeasible. We elaborate on the running time
more in the next subsection where we compare SiS with
an existing method on very large real data sets.

Maximal frequent subgraph in global metabolic network
In this section, we employ SiS to find maximal frequent
subgraph and compare its performance with MULE
[14]. Given, a frequency threshold and a collection of
graphs, a maximal frequent subgraph finding algorithm
finds the maximal subgraphs over the given threshold.
MULE is one such tool. we obtained its executable from
the authors. SiS finds the frequent subgraphs of a given
size but it is easy to extend it to find maximal frequent
subgraphs using the simple technique described at the
end of Section 3.2. In this experiment, we used the global
network data set and measured the running time of SiS
and MULE
A maximal frequent subgraph finding algorithm is

practical only if it scales with lower frequency threshold
and large size of the data set. We conducted experiments
with different frequency threshold values and different
size of the input data sets (e.g., Eukaryote-G data set (145
organisms) and Prokaryote-G data set (1,486 organisms)).
Results on the Eukaryote-G data set In Eukaryote-G

data set, we ran MULE and SiS with different frequency
threshold values and measured the running time. First,
we set the frequency threshold to 83%. MULE ran for
20 minutes to find 925 frequent subgraphs and the largest
one had 25 edges. We then reduced the threshold to 80%.
MULE ran for seven hours and 27 minutes and found
three maximal frequent subgraphs of 31 edges. Note that
the running time of MULE increases dramatically with a
minor three percent drop in the frequency threshold
value. This observation continues to hold as we further
reduced the threshold to 70%. MULE failed to complete
execution in two days. The increase of running time with

Table 2 Frequency of the most probable size-15
subgraph found by SiS for various mutation rates.

Mutation rate (%) 5 10 20 30 40

Frequency reported by SiS (%) 84.9 73.5 71.9 71.2 71.1

The frequency of the implanted subgraph was 70% for all mutation rates.

Table 3 Frequency of the most probable size-15
subgraph found by SiS for various frequency values.

Frequency of the planted subgraph
(%)

50 60 70 80 90 95

Frequency reported by SiS (%) 58.0 66.3 73.1 82.6 92.5 96.5

Mutation rate was fixed at 10% for all the frequency values.

Table 4 Frequency of the most probable size-k subgraph
found by SiS for different sizes of the implanted
subgraph.

Size of implanted subgraph (k) 5 10 15 20

Frequency reported by SiS (%) 88.1 78.6 71.7 70.4

The frequency of the implanted subgraph was 70% for all subgraph sizes.

Table 5 Running time of SiS and exhaustive search for
semi-synthetic data set.

Subgraph size (k) 6 7 8 9 15 20

SiS 0.02 0.02 0.02 0.2 1.78 33.24

Exhaustive 43.33 421.20 7535.10 - - -

The time measurements are in seconds. “-” means that the experiment did
not finish to completion in over two days.
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lowered frequency threshold value is expected as the
method must evaluate more subgraphs as they satisfy the
frequency requirement. The above set of experiments
demonstrate that MULE does not scale well with lower
frequency threshold values in Eukaryote-G data set.
For frequency threshold of 83% and 80%, we employed

SiS to find 50 most probable size-15 and size-20 sub-
graphs, respectively. We used these subgraphs as seeds
and extended them in the greedy manner described
before. SiS ran for only 4.25 seconds to generate the same
size-25 subgraph found by MULE (Figure 10). SiS ran for
four minutes and 18 seconds to generate the same size-31
subgraph found by MULE when threshold was set to 80%.
This experiment shows that SiS scales well with the
decreasing values of the frequency threshold.
Results on the Prokaryote-G data set Next, we com-

pare the performance of SiS and MULE with a larger
data set (Prokaryote-G). MULE failed to run on this
data set, possibly due to higher memory requirements.
SiS ran for 5.38 seconds to generate the maximal fre-
quent subgraph from 50 most probable size-15 sub-
graphs. It took less than five minutes for SiS to generate
the maximal frequent subgraph from most probable
size-20 subgraphs. This experiment shows that SiS
scales well with the increasing size of the data set.
These results demonstrate that SiS finds the maximal

frequent subgraph orders of magnitude faster than
MULE and scales to large data sets where MULE fails.

Maximal frequent subgraph in human transcription factor
regulatory networks
Interactions between transcription factors comprise a
complex regulatory network that defines cellular identity

and functions [23]. Sequence-specific transcription fac-
tors play a vital role in gene control in eukaryote. For
this experiment, we used the human transcription regu-
latory network data set. On average, each of these net-
works contains 521 genes and 14,003 interactions.
These networks are highly dense. In total, there are 538
unique genes that are interacting with 47,945 unique
interactions. This statistics show us that there are some
interactions that are unique to specific cell/ tissue types.
In addition to this, these networks also have a core reg-
ulatory backbone network that are common to all these
different networks irrespective of cell/ tissue types. We
employed SiS to find maximal frequent subgraph in this
data set that is present in at least 70% of these networks.
SiS found the maximal frequent subgraph consists of
371 genes and 2382 interactions that satisfies the mini-
mum support over the data set. This massive subgraph
hints at the stunning fact that despite diverse cell types,
there is a core backbone network among these tran-
scription regulatory networks. Figure 11 shows the max-
imal frequent subgraph found in this experiment. See
Additional file 1 for the interactions in this subgraph.

Conclusion
We present a method named SiS (Significant Subnet-
works) that finds the most probable subgraphs in a large
biological network data set. SiS initializes a weighted
graph named the template graph that summarizes the
input graphs. SiS takes advantage of the template graph
while finding the most probable subgraphs of a user-given
size, k. In other words, SiS finds the subgraphs of k inter-
actions with the largest probability to appear in a network
selected randomly from the input data set (i.e., size-k

Figure 10 Maximal frequent size-25 subgraph in Eukaryote-G data set. Both SiS and MULE identified this subgraph [15].
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subgraphs with smallest total edge weights in the tem-
plate graph). Our experiments comprehensively demon-
strate that most probable subgraphs often have very
large frequency values as well. Using SiS on metabolic
network data set, we found that subgraphs in eukaryote
are more frequent than those of prokaryote. We also
observed an interesting relationship between the fre-
quency of the subgraphs found by SiS in eukaryote and
prokaryote. We performed tests on very large data sets
where SiS showed excellent superiority over existing
method, MULE. For instance, depending on the size of
the subgraph, SiS finishes in a few minutes, whereas run-
ning time of MULE ranges from several hours to days on
the same data set.

Additional material

Additional file 1: Maximal frequent subgraph in human
transcription regulatory networks. This file lists the interactions found
in the maximal frequent subgraph in human transcription regulatory
network data set.
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