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Abstract

Background: Multicolour Fluorescence In-Situ Hybridization (M-FISH) images are employed for detecting
chromosomal abnormalities such as chromosomal translocations, deletions, duplication and inversions. This
technique uses mixed colours of fluorochromes to paint the whole chromosomes for rapid detection of
chromosome rearrangements. The M-FISH data sets used in our research are obtained from microscopic scanning
of a metaphase cell labelled with five different fluorochromes and a DAPI staining. The reliability of the technique
lies in accurate classification of chromosomes (24 classes for male and 23 classes for female) from M-FISH images.
However, due to imaging noise, mis-alignment between multiple channels and many other imaging problems,
there is always a classification error, leading to wrong detection of chromosomal abnormalities. Therefore, how to
accurately classify different types of chromosomes from M-FISH images becomes a challenging problem.

Methods: This paper presents a novel sparse representation model considering structural information for the
classification of M-FISH images. In our previous work a sparse representation based classification model was
proposed. This model employed only individual pixel information for the classification. With the structural
information of neighbouring pixels as well as the information of themselves simultaneously, the novel approach
extended the previous one to the regional case. Based on Orthogonal Matching Pursuit (OMP), we developed
simultaneous OMP algorithm (SOMP) to derive an efficient solution of the improved sparse representation model
by incorporating the structural information.

Results: The p-value of two models shows that the newly proposed model incorporating the structural
information is significantly superior to our previous one. In addition, we evaluated the effect of several parameters,
such as sparsity level, neighbourhood size, and training sample size, on the of the classification accuracy.
Conclusions: The comparison with our previously used sparse model demonstrates that the improved sparse

representation model is more effective than the previous one on the classification of the chromosome
abnormalities.
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Background

Chromosomal abnormalities (e.g., changes in number
and translocations of structures) could all cause genetic
diseases and cancers. To detect these deathful diseases,
multicolour Fluorescence In-Situ Hybridization (M-
FISH) technique use different colours to paint human
chromosomes. Therefore, this technique can be
employed to analyze these abnormalities simultaneously
[1,2]. This cytogenetic approach uses N fluorochromes
to label a metaphase cell; there are 2"-1 different combi-
nations that can differentiate different types of chromo-
somes. It is obviously that 5 different fluorochromes are
enough to differentiate 24 types of different human
chromosomes. Therefore, the S Gold (F), S Green (G), S
Aqua (A), Red (R) and S Red (Y) are used to paint the
chromosomes. The painted chromosomes are illumi-
nated by specific wavelength light. The fluorochromes
on the chromosomes emit florescent light with distinct
wavelength which can be detected by the microscopy.
To acquire images of different fluorescence colours, 5
different emission filters were employed to avoid the
disturbance of the other fluorescence colours and keep
the valid emission light. Figure 1 illustrates M-FISH
image set which is collected by microscopy with CCD
camera. In addition, the last image in Figure 1 is the
DAPI channel which shows the whole chromosomes in
a cell. For each fluorescence channel, one image is
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generated and the chromosomes are detected by the
pixels with high intensity. Ideally, a chromosome can
be dyed with at least two fluorochromes, for example,
S Green (G) and DAPI. Hence, the chromosome
should be visible only in G and DAPI channels, but
sometimes it might be observed in other channels
because of spectral mixing, inhomogeneous back-
ground [3]. Therefore, it is extremely challenging to
identify the chromosomes accurately based on M-FISH
image set in practice.

For detecting the chromosomal abnormalities asso-
ciated with genetic diseases or cancers by M-FISH tech-
nique, it is important to improve the accuracy of the
classification of the chromosomes. Before classification,
some preprocessing methods [3-7] are necessary to
increase the accuracy by reducing the noise of the origi-
nal images. In classification, there are two major types
of classifiers: the pixel by pixel classifier [8-10] and the
region-based classifier [6,7]. For the classification, we
have proposed Bayesian classifier [11] and sparse repre-
sentation based classification (SRC)[12]. For the segmen-
tation purpose, we have developed Adaptive Fuzzy C-
Means (AFCM) segmentation method [6]. To bring the
imaging technique into clinical use, further effort is
needed to improve the classification accuracy.

Sparse representation methods including compressive
sensing have been widely studied recently in applied

Figure 1 An example of the M-FISH image set. This figure shows the M-FISH images of a metaphase cell. There are six different channels in
one set of M-FISH images. The first five channels come from different colours of florescence probing. Only some parts of the chromosomes are
visible in each of these images. The last one is the DAPI channel, where all chromosomes can be observed in the cell.
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mathematics and signal/image processing for their
advantages in processing high dimensional data [13,14].
There are many algorithms ( e.g., greedy algorithms
(Matching Pursuit (MP [15]), OMP [16] and Homotopy
[17]) to solve the sparse models. Recently Multiple
Measurement Vectors (MMV) based models have
also been proposed to recover a set of vectors that
share a common support. Such models can find wide
applications in many research fields (e.g., multiple sig-
nal classification(MUSIC)[18], blind multiband signal
reconstruction[19] and compressive diffuse optical
tomography[20]), where MMV problem is commonly
applied. Motivated by these efforts on the MMV pro-
blem, we proposed a novel sparse representation model
by incorporating the structural information into the
classification of M-FISH image set, which was reported
in our preliminary study [21]. This improved model
considers the correlations of neighbouring pixels,
which often share the same features and belong to the
same class. By utilizing multiple information both from
the neighbourhood of a pixel as well as from different
spectral channels, the classification results of the pro-
posed sparse model are better than that of sparse
model we used before [12].

The paper is organized as follows. First, we introduce
the SRC model without structural information and then
propose an improved sparse model as well as the corre-
sponding algorithm (i.e., SOMP) for estimating the solu-
tion. Next, we apply the improved model to M-FISH
classification and compare it with a conventional sparse
model which was employed in our previous model [12].
Finally, the paper is concluded with a short summary
and discussion of the proposed model.

Methods

The SRC model has been successfully used in many
fields (e.g., hyperspectral imaging classification [22] and
M-FISH chromosome classification [12]). Before intro-
ducing the improved sparse model, we first review the
sparse model and show how to apply it on M-FISH
image data analysis. Then, we present the improved
sparse model with the structural information for M-
FISH chromosome classification by utilizing correlated
information of the neighbouring pixels within a region.
Finally, we describe the numerical algorithm, SOMP, for
solving this improved model.

SRC algorithm for M-FISH data

A general type of sparse model is shown in Eq. (1), where y
is a vector with different observations; A is a matrix con-
sisting of features from different classes; and « is a vector
of coefficients corresponding to the observation vector y. If
the observations y belongs to a particular class, the
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Figure 2 The schematic diagram of a sparse model used for
classification. This figure shows a sparse model. A represents the
feature matrix, and y is a vector to be classified. In matrix A, three
different colours represent three different classes. X is a sparse
vector, and has many zero entries (white colour) but a few non-zero
entries (red colour) corresponding to a particular class to which y
belongs.

corresponding coefficients in x will have a few non-zero
entries concentrated around a particular region, whereas
the rest will be zeros; i.e., the vector x is a sparse vector
with many zero entries. Figure 2 shows the schematic dia-
gram of the sparse model. In Figure 2, matrix A consists of
features from three different classes which are represented
by different colours: yellow, red and green respectively. x is
a sparse vector with non-zero entries in red region and
zero entries in white regions. Given an observation vector
y, the sparse vector & can be solved with the optimization
model shown in Eq. (2). Assuming we have m (i.e., m = 24
in our case) classes and each pixel corresponds to a n (n =
5) dimensional feature vector a;j = 1, 2, ..., Nj, we can have
a feature matrix A represented by A = [Ay, ..., A;, ..., Ap),
where each sub-matrix is A; (i.e., Ai = [llllazl--.,aNi D), and
A; € RN (N; > n). Here N; is the number of training
pixels from the i-th class. In matrix A, the number of

pixels is N = Zml N;. Based on the sparse model in Eq.
i=

(1), a testing sample y can be approximated by a sparse
solution % with non-zero coefficients corresponding to a
particular class using Eq. (2).

y=Ax 1

X = argmin ”Ax - y”2 subject to |lx|l, < Ko ©2)
X

where y € R" is the test pixels to be classified; [Ixll,,
p €[0,1] is the L-p norm of x and is usually used to
shrink the solution 3z ¢ RN to have small percentage of
nonzero coefficients, which results in the sparse of the
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solution; by specifying the values of Ky,we can obtain
the solution with different sparse levels. For the sake of
simplicity, we take the case of p = 0, and ||x[|, is the cor-
responding Lo norm of x, which means the number of
the non-zero coefficients in x.

After estimating the solution of Esq. (1)-(2), we will
classify a test sample y as follows:

Class(y) = argmin |y — Ai&i| ,,i=1,2,...,m 3)

where m represents the number of different classes;
and x; is the sparse solution corresponding to class i .
The class that y belongs to is determined by assigning it
to the one that the distance between the y and esti-
mated solution A;x; is minimum.

Improved sparse model with structural information for M-
FISH data analysis

In the Eq. (1), y is a feature vector consisting of 5-
channel spectral information at only one pixel. However,
in practice a pixel usually shares the same feature with
its neighbouring pixels, which is the case with M-FISH
image set. The neighbouring pixels with similar intensity
values are the nearest neighbourhood of ys which is a
central pixel, as illustrated in Figure 3.

The classification accuracy of a pixel by pixel classifier
and its robustness to noise can be improved by consid-
ering structural information of the pixel within a neigh-
bour region. Therefore, we exploit a new sparse model
with structural information by utilizing the information

Figure 3 The schematic diagram of neighbouring region. Each
square represents a pixel in an M-FISH image, corresponding to five
channel spectral information. The ys is a central pixel surrounded by
its eight neighbouring pixels y;,y,.y3.YaYeY7Ys and yo. The size of
the neighbouring pixels can vary.
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of neighbouring pixels simultaneously instead of a single
pixel as shown in Eq. (4):

Y1 = Ax1 =a1X1,1 +A2X1,2 + ... + ANX1 N

Yo = AJCQ =da1X9,1 +A2X92 + ... + ANX9 N (4)

= [y1--Y5--¥o] = Alx1..%5..00] = Y = AX

where y;,...,y0are the test samples within a neighbour-
hood that form the matrix ¥ and ys is the central pixel.
x5,...X0are the vectors of corresponding weights. Eq. (4)
shows that y;,...,y9 share the same features in matrix A
but different weights. Figure 4 shows the schematic dia-
gram of the improved sparse model with structural
information based on the Eq. (4).

Since matrix X is a row-wise sparse matrix, as shown
in Figure 4, the improved model is an extension of our
previous sparse model (1) by considering multiple pixels
simultaneously. With this improved sparse model, we
propose to use the following optimization for the solu-
tion:

X = arg_min [|AX — Y|z subject to [Xlo; <Ko  (5)
XeRNxs

where Y = |y, ..y} ...ys] is a test matrix instead of the
vector in SRC model[12]. The text matrix contains s test
pixels within a neighbouring region. Assuming that
there is spatially correlated among the s pixels. The

row-sparse solution X =[xy, ...xj, ...x;] corresponds to the

input matrix Y. The entries in {xj} , share the same

j=1,..

i ¥
T XElE
H B

L)

Figure 4 The schematic diagram of the improved sparse
model. In matrix A, columns are features from different classes.
Different colours represent different classes. Instead of using the
Vector x, a row-wise sparse matrix X is used, where only a few rows
of X are non-zeros (the colour regions of matrix X). Each column of
matrix Y is a linear combination of matrix A and the corresponding
column in matrix X.
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non-zero supports. They are obtained by Eq. (5) with
the following regularization term:

log: IXllog=1 (Hxl Hq > 0) (6)

where [IX|lo,4 indicates the number of non-zero rows of

X, and 4 indicates the i-th row of X. I (Hx’ Hq > 0) is

an indicator function that has the value 1 if Hx’ Hq >0

and 0 otherwise. In this work, we set ¢ = 2. The solution

vectors {xj}j=1
non-zero entries in the same row), which indicates the
high correlation of the neighbouring pixels.

The rule of the decision used in the Eq.(3) and in the
improved model is similar. After we get X, we will
employ Eq. (7) to determine to which class the test sam-

ples surrounding a central vector y.belongs to,

, have the row-wise sparsity (i.e., the

,,,,,

Class(y.) = argmin H Y - AX;

i=1,2,..,m ?)
F

where y, is the central pixel of a neighbourhood and
[y - ax;
consisting of neighbouring pixels around y.and the pro-
duct of the solution Xi and the corresponding sub-matrix

A;. The minimum value of the residual determines the
class which the central pixel belongs to.

is the residual between an input matrix Y
F

Algorithms for the solution of the improved sparse model
There have been many approximate algorithms for sol-
ving the optimization problems (i.e., Eq.(2) and (5)).
When p equals 0 [15,16], e.g., Ly norm, the greedy algo-
rithms (e.g., MP, OMP) will be employed to solve the
problem of Eq. (2). In [23], simultaneous OMP (SOMP)
algorithm for Eq. (5) was employed instead of OMP
algorithm for solve Eq. (2) and the detail of SOMP is
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described in Table 1. At each iteration, the algorithm
will pick up one column ai from the training matrix
Abased on the criterion that the maximum q-norm
value of the projection on the current residual matrix
could be obtained only by selecting the column 4.
Once the column is selected, it will be included for re-
estimating the signal X; and thus the new reduced resi-
dual. The algorithm will continue until the solution
reaches the pre-specified sparsity level.

Results and analysis

M-FISH database

We have collaborated with Advanced Digital Imaging
Research (ADIR; League City, Texas, USA) to establish
the M-FISH image database, which is a valuable source
for chromosome imaging studies [18]. The database is
publicly available from [24]. A set of images from five
different fluorescence channels and a DAPI channel
were acquired by microscopy and an example is shown
in Figure 1. In addition, to evaluate the classification
accuracy, an experienced cytogeneticist provided a
ground truth image which is shown in Figure 5(a) in the
form of pseudo colours, where different colours indicate
different types of chromosomes. There are totally 24 dif-
ferent classes including male and female chromosomes.
In the ground truth images, the background pixels were
labelled with 0. The pixels in the region of overlap were
labelled with 255. Others were labelled by numbers
from 1 to 24 which was used to discriminate different
types of chromosomes. The ground truth will be
employed to verify the accuracy of classification algo-
rithms for M-FISH image set.

Segmentation of chromosome regions

In M-FISH images, background usually contains most
pixels, but the chromosomal regions are of most inter-
ests. Therefore, to separate the chromosomal region

Table 1 Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm

Algorithm 1: SOMP

(1): Input: training sample matrix A, testing sample matrix Y

(2): Output: Row-wise sparse solution f(

(3): Initialization: residual Ry = Y, f(o = (O, hon-zerorows (2 = (4, i=0

(4): While stopping criterion false do

. . . . T
1). Find a new atom from matrix A to best approximate the current residual based on g-norm: W = arg max HakRi—l ”q

2). Update the non-zero row support = Q U {w}.

ke

3). Update the signal estimation }A(i = (A£A9)+Agy' where Aq denotes the sub-matrix of A consisting of the atoms from matrix A, and the

residual: R; = Y — AgX;
4i=1i+1.

(5): End while

(6): Return: X = Xi
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Figure 5 The classification results of using two different
models. The first figure (a) is the ground truth used to verify the
classification results. The second one (b) is the classification result
using the improved sparse model with structural information. The
third one (c) is the classification result using our previous model
[12]. The classification results (i.e., types of chromosomes) are
visualized in the form of pseudo colours.
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from the background and improve the efficiency of the
classification, a mask was generated by the DAPI chan-
nel which can show all chromosomes in a cell. The
AFCM method we proposed in [5] was employed for
this purpose. This mask was then applied on the other
five channels, so that the chromosome regions could be
extracted based on the mask while the pixels out of the
mask were removed. In Figure 6, an image of a DAPI
channel is demonstrated as well as how the mask is gen-
erated by the segmentation.

M-FISH training and testing data

The improved sparse model with structural information
was applied on the classification of M-FISH image data.
20 cells (i.e., 10 male, 10 female) were chosen from our
database [24]. The features of different types of chromo-
some were constructed by randomly sampling pixels
from M-FISH images to form the training matrix A,
which satisfy the sparsity concentration index (SCI) pro-
posed by[25]. SCI is used to measure the sparsity con-
centration of the feature vectors. Matrix A is an nxN
matrix, in which # represents the spectral dimension of
pixels and N represents the number of training features.
In the case of M-FISH image data, n equals 5. After
completing the matrix training, the rest of the pixels
were taken as testing data to validate our proposed clas-
sification method.

The analysis of the classification results with different
models

Both the sparse model incorporating the structural
information and our previously used sparse model [12]
were tested and compared on our M-FISH data set. Fig-
ure 5(b) and 5(c) show the classification results of two
different models on the same cell, with and without the
use of structural information respectively. It can be seen
that there are more isolated spots in the chromosomal
regions of Figure 5 (c) than those of Figure 5 (b). These
isolated spots are mostly misclassifications, which can
be effectively corrected by using the improved sparse
model with structural information. The ratio of correct
classification (RCC) as follow:

RCC = the ratio of the number of correctly classified pixels

the number of all pixels in a chromosomal region (8)

Table 2 shows RCC of different types of chromosomes
for one M-FISH image set. The RCC of the improved
sparse model with structural information is generally
greater than that of our previously used sparse model.
Figure 7 compares the classification results of both
models on each cell in terms of RCC. It can be seen
that the accuracy of the classification of the improved
sparse model with structural information (in red) is
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classification is only carried out in this mask region.
A\

Figure 6 An example of a DAPI channel and the segmented mask. Figure (a) is the DAPI channel of an M-FISH image set. Figure (b) is the
result of the segmentation by AFCM method. This segmentation result was used as the mask for other five channels and the chromosome

greater than that of the previously used sparse model
[12] (in blue). Therefore, with the structural information
of neighbouring region, the improved sparse model can
increase the accuracy of the classification for the M-
FISH image set.

Significance analysis of the new sparse model with
structural information

Statistical analysis by using a paired-sample t-test was
performed to demonstrate the significant level between
the two different models. The null hypothesis is that
there are no differences between both models. Figure 8
shows the results of the statistical analysis based on the
results in Figure 7. The improved sparse model with
structural information has the greater mean value while
less standard deviation, 76.72 + 9.3 (i.e., the left box plot
in Figure 8), than those of the previous sparse model,
72.94 + 9.82 (i.e., the right box plot in Figure 8). The
significant level (i.e. p-value) of this statistical analysis is
less than le-6. Therefore, the improved sparse model
with the structural information significantly outperforms
our previous sparse model, by incorporating the

structural information available in the neighbour of each
pixel.

Effects of parameters used

There are three important parameters, neighbour size
(s), sparsity level (Ky), and training sample size (N;),
which are involved in the improved sparse model. The
accuracy of the classification results can be affected by
these three parameters and hence it is worthwhile to
study their effects. Figure 9 shows how the RCC is
affected by different values of K, and s. When K is
fixed, the RCC will raise with the increase of the neigh-
bourhood size s until a certain threshold (e.g., s = 121).
This indicates that the use of correlated information
within a window can generally increase the classification
accuracy, however, if the window size is too large, there
is high probability that more irrelevant or other chro-
mosomal pixels will be included, which tends to increase
the classification error. An appropriate window size is
therefore needed. A neighbourhood size (s = 9) is
recommended based on our experiments. When the
neighbourhood size s is fixed, from Figure 9, the smaller

Table 2 The correct classification ratio of each class in an M-FISH image

Class number New sparse model General sparse model

Class number New sparse model General sparse model

1 0.951282 0.894359
2 0.988194 0.961629
3 0.930451 0.929825
4 0.972441 0.919948
5 0.983595 0.905136
6 0.975627 0.965181
7 0.967769 0.953719
8 0.959322 0.881356
9 0.997059 0.978431
10 1 0991313
11 0.958773 0.967402
12 0.997038 0.99309

13 0.903226 0.895439
14 0.832192 0.785388
15 0.969388 0.926304
16 1 0.993921
17 1 0.998273
18 0.929553 0917526
19 1 0977175
20 0.930556 0.882937
21 0.832817 0.758514
22 0.997361 0.960422
23 0.981279 0.976599
24 1 0.990506
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value of the sparsity level K, will give the greater accu-
racy of the classification.

In addition, the correct ratio of classifying the M-FISH
image is affected by the training sample size N; for both
models as shown in Figure 10. A number of different

percentages of training samples were selected: 1%, 3%,
5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, and 50%. In
Figure 10, the correct classification ratios of the two
models are represented by stars and triangles respec-
tively. The analysis results show that the correct
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of the classification results of the new sparse model incorporating the structural information, while the second one shows those using our
previous model.
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classification ratios increase with the increasing size of
the training samples for both models, which is
reasonable.

Conclusions and discussion

A sparse model based classifier that we proposed before
[12] used the pixel by pixel classification, overlooking
structural information so that there are much more iso-
lated spots in the results leading to the low accuracy
of the classification. In this paper we proposed an
improved sparse model, in which the information of a
central pixel as well as its neighbouring pixels is used
simultaneously for improved classification. This is vali-
dated by the comparison of chromosomal classification
accuracy between the two models on a real M-FISH
database [24]. The comparison (as illustrated by Figure
5) shows that there are more isolated spots (i.e., misclas-
sifications) in the classification results of our previously
model [12] than those of using new sparse model incor-
porating the structural information. The correct classi-
fication ratio in Table 2 also shows the improved
accuracy of using the improved sparse model. The sta-
tistical comparison between the two models indicates
that the new sparse model with structural information is
superior to the previously used sparse model, with the
significant level less than le-6,. The effects of para-
meters used in the model on the accuracy of classifica-
tion were also investigated. We have shown how the
sparsity level (Kj) and the neighbourhood size (s) and
the training sample size (N;) affected the RCC of our
improved sparse model incorporating structural infor-
mation and how the training sample size (N;) affected
the RCC of our previously used model as well as
improved model. A proper choice of sparsity level (Ky<
= 5) and neighbourhood size (s = 9) is recommended
based on our experiments.

In summary, all the result shows that our proposed
improved sparse model incorporating structural infor-
mation can significantly improve the accuracy of the
classification compared with a general sparse model that
we proposed before [12]. This will in turn improve the
M-FISH imaging technique for detecting chromosome
abnormalities to better diagnose genetic diseases and
cancers.
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