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Abstract

Background: Identification of cooperative gene regulatory network is an important topic for biological study
especially in cancer research. Traditional approaches suffer from large noise in gene expression data and false
positive connections in motif binding data; they also fail to identify the modularized structure of gene regulatory
network. Methods that are capable of revealing underlying modularized structure and robust to noise and false
positives are needed to be developed.

Results: We proposed and developed an integrated approach to identify gene regulatory networks, which consists
of a novel clustering method (namely motif-guided affinity propagation clustering (mAPC)) and a sampling based
method (called Gibbs sampler based on outlier sum statistic (GibbsOS)). mAPC is used in the first step to obtain
co-regulated gene modules by clustering genes with a similarity measurement taking into account both gene
expression data and binding motif information. This clustering method can reduce the noise effect from microarray
data to obtain modularized gene clusters. However, due to many false positives in motif binding data, some genes
not regulated by certain transcription factors (TFs) will be falsely clustered with true target genes. To overcome this
problem, GibbsOS is applied in the second step to refine each cluster for the identification of true target genes. In
order to evaluate the performance of the proposed method, we generated simulation data under different signal-
to-noise ratios and false positive ratios to test the method. The experimental results show an improved accuracy in
terms of clustering and transcription factor identification. Moreover, an improved performance is demonstrated in
target gene identification as compared with GibbsOS. Finally, we applied the proposed method to two breast
cancer patient datasets to identify cooperative transcriptional regulatory networks associated with recurrence of
breast cancer, as supported by their functional annotations.

Conclusions: We have developed a two-step approach for gene regulatory network identification, featuring an
integrated method to identify modularized regulatory structures and refine their target genes subsequently.
Simulation studies have shown the robustness of the method against noise in gene expression data and false
positives in motif binding data. The proposed method has been applied to two breast cancer gene expression
datasets to infer the hidden regulation mechanisms. The experimental results demonstrate the efficacy of the
method in identifying key regulatory networks related to the progression and recurrence of breast cancer.
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Background
Living cells must be able to correctly respond to internal
and external stimuli by adjusting gene expression levels
[1]. Transcription factors (TFs) cooperatively regulate
genes in forming gene regulatory networks, which plays
a crucial role in the gene regulation process. Recently,
biological researchers have shown that some diseases
like cancer are closely related to the breakdown of regu-
latory networks, and many oncogenes (i.e., genes closely
related to cancer) have been shown enrichment in this
regulation mechanism [2]. Thus identification of tran-
scriptional gene regulatory networks becomes a promis-
ing direction in the field of biology and bioinformatics.
Several statistical methods such as principle component
analysis (PCA) [3] and independent component analysis
(ICA) [4] are developed to discover the underlying regu-
lation mechanism. However, the strong assumption of
independent or uncorrelated components cannot be
easily satisfied in many real biological applications. Due
to the fact that genes tend to cooperate to take effect,
identifying co-expressed genes modules is an intuitive
way to reconstruct regulatory networks. Therefore some
clustering based methods such as Fuzzy C-means clus-
tering [5] have been developed to discover co-expressed
genes modules. However co-expressed gene modules are
different from co-regulated genes in which we are inter-
ested. Co-regulated genes are regulated by some com-
mon TFs and tend to have similar gene expression
pattern. On the contrary, co-expressed genes are not
necessarily regulated by common TFs [6]. Moreover,
these methods fail to incorporate the motif binding
information provided by matching DNA upstream
sequences and TFs with whole genome sequencing tech-
niques [1].
Dynamic Bayesian Network [7] is one of the integra-

tive methods, and it takes the motif-binding information
as prior knowledge and learns the network from gene
expression data. But the method will be hard to analyze
data with large candidate TF pool, which limits its appli-
cation to real biological studies. Network component
analysis (NCA) [8] and several NCA-based methods
such as FastNCA [9] are among several successful inte-
grative methods, which are specifically developed to
interpret gene regulatory network as a bipartite network.
With some reasonable assumptions referred to as NCA
criteria [8], NCA can decompose gene expression data
to estimate the TF activity and then further infer the
regulation strength. Nevertheless, motif binding data are
often contaminated with many false positive connections
and NCA is very sensitive to those false connections. To
address the problem of false positive connections, Gu
et al. have developed a regression based Gibbs sampling
method (namely GibbsOS [10]) to discover true target

genes from an initial gene pool. GibbsOS employs the
same model as NCA does and summarizes regression
t-test statistics into an outlier sum statistic [11], then
with the help of Gibbs sampling strategy [12], it can
identify true target genes from the gene pool. However,
it fails to take modularized regulatory structure into
consideration; therefore GibbsOS will perform poorly
when a large number of TF candidates are investigated,
which significantly limits its application to real biological
studies.
The limitations of current methods can be summar-

ized as follows: (i) being sensitive to contaminations (e.
g., noise and false positives) in genomic data, (ii) failing
to identify the modularized structure and (iii) being
unable to handle a large number of candidate TFs. In
this paper, we aim at tackling the above-mentioned lim-
itations by proposing a novel method that combines a
clustering method with GibbsOS to discover the hidden
regulation mechanism; the clustering method is called
motif-guided affinity propagation clustering (mAPC) [2],
a modified version of affinity propagation clustering
(APC) [13]. To evaluate the performance, we generate
some synthetic data under different signal-to-noise
ratios (SNRs) and numbers of false positive connections,
with which to show that our method has an improved
performance in regulatory network identification.
Besides, two breast cancer patient datasets are used to
demonstrate the feasibility of the proposed method for
real biological studies. Experimental results show that
the proposed method is able to identify active TFs and
their target genes, hence, to reconstruct the underlying
regulatory network.

Results and discussion
Motif-guided affinity propagation clustering and Gibbs
sampler based on outlier sum statistics
The flowchart of the proposed two-step method is
shown in Figure 1. In the first step, mAPC is applied to
identify the modularized structure by clustering genes
into co-regulated modules. Unlike traditional clustering
methods, mAPC uses both gene expression data and
motif-binding data to measure the similarity between
genes, which can reduce the noise effect from microar-
ray gene expression data for more reliable clustering
results. Besides gene clustering, TF identification is also
applied within each cluster in the first step, in order to
select the closely related TFs for further investigation.
In the second step, we apply GibbsOS to each cluster

to remove false positive connections for target gene
identification. For the convenience of explanation, we
define true target genes as “foreground” genes and genes
not regulated by TFs as “background” genes; in such a
way, GibbsOS can be seen as identifying foreground
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genes from the entire gene pool. The detailed descrip-
tion of the method is summarized in the Methods
section with mathematical details outlined.

Simulation experiments
The simulation data are synthesized by MATLAB func-
tions with 300 genes (which include 100 foreground
genes and 200 background genes), 80 TFs and 20
experiments (or samples). The motif binding data are
generated with modularized structures for both fore-
ground genes and background genes, and the TF activ-
ities are randomly generated with Gaussian random
variables of mean 0 and variance 1. Then the foreground
gene expression data can be synthesized by a linear
combination of motif-binding data and TF activities
using a log-linear model provided by Liao et al. [8]. For
the background genes, the gene expression data are ran-
domly generated with Gaussian random variables (of
mean 0 and variance 1) and the amplitude is modified
to ensure the equal variance between foreground and
background gene expression patterns. To perturb the
data, noise is randomly added to gene expression data
with certain signal-to-noise ratio (SNR). The level of
false positives (FPs) added in motif binding data is
measured by FP ratio, which is defined as the number
of false positive connections over the number of true

positive connections within foreground genes. To test
the performance of the proposed method against noise
in gene expression and false positives in motif binding
data, we first fix the SNR level at 5 dB, and then test
the performances of mAPC clustering and TF identifica-
tion under three different FP ratios (0.5, 1.0 and 1.5).
Further, we fix the FP ratio at 1.0 and generate simula-
tion data under three SNR levels (0 dB, 5 dB and 10 dB)
to assess the effect of false positives on the performance
of mAPC-GibbsOS.
The performance evaluation is done systematically in

terms of modularized structure reconstruction and tar-
get gene identification. Firstly, we use the simulation
data to assess the performance of our clustering method,
i.e., mAPC. A partition evaluation method, namely
adjusted rand index (ARI) [14], is used here to compare
the clustering results with the ground truth of the simu-
lation data to assess the clustering accuracy (see Meth-
ods for details). With any two clusters, ARI can be
calculated and summarized into a value between -1 and
1 and a higher value of ARI represents more similarity
between the clusters. If the ARI value is 1, it means that
the two clusters in comparison are exactly the same.
Besides mAPC, three classical methods (which are k-
means clustering, hierarchical clustering and APC) are
used to compare and show the disadvantage of lacking

Figure 1 Flow-chart of the proposed mAPC-GibbsOS approach.
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motif binding information. Table 1 shows the ARI cal-
culated under different SNRs and FP ratios. It can be
seen that when SNR decreases from 10 dB to 0 dB, the
performances of three competing methods tend to drop
greatly. In contrast, with the support from motif binding
information, mAPC can still maintain a good perfor-
mance in clustering under low SNR cases. We can also
see that mAPC cannot gain much improvement under
high FP ratios, because when FP ratio is very large,
motif binding information cannot provide strong sup-
port; thus for cases with high FP ratios, the trade-off
parameter λ (see Equation (4) in Methods) needs to be
tuned to emphasize gene expression data more than
motif binding information.
Besides the clustering performance, the performance

of TF identification (see Methods for details) is also
needed to be evaluated; we use the area under the recei-
ver operating characteristic (ROC) curve (AUC) as a cri-
terion for evaluation. Table 2 shows the AUC values
calculated under different simulation conditions. Con-
sidering Table 1 and Table 2 together, we can under-
stand that the performance of TF identification is
closely related to the accuracy of clustering, which
implicitly underlines the importance of taking modular-
ized structure into consideration. Under different experi-
mental conditions, the performance of TF identification
is excellent with AUC values above 0.83; it supports that
the modularized structure can be robustly reconstructed
by mAPC-GibbsOS.
After evaluating the performance of clustering and TF

identification (in revealing modularized structures), we
need to further test the performance of target gene
identification. Similar to mAPC performance evaluation,

both gene expression noise and false positive connec-
tions are taken into consideration to investigate their
effects on the performance. The experimental results are
also summarized by AUC and the values are shown in
Table 3. Under the same FP ratio at 1.0, our proposed
method has an AUC improvement of 0.15 in average for
each SNR level. From another point of view, when SNR
is fixed at 5 dB, mAPC-GibbsOS can achieve an average
improvement of 0.1 under different FP ratios.
It is also worth noting that the small sample size of gene

expression data is a common problem for robust identifi-
cation of gene regulatory networks. In order to study the
impact of the small sample size onto the performance of
our proposed method, we have generated gene expression
data and motif-binding data under 5 different sample sizes
(with 5, 15, 25, 35 and 45 samples) with 300 genes and 80
TFs. The noise is generated under standard normal distri-
bution with a fixed SNR at 5 dB. FP ratio for motif-binding
data is set to 0.5. Then AUC values of both mAPC-Gibb-
sOS and GibbsOS are calculated 5 times for each condi-
tion. The experimental results are shown in Figure 2 and
Table 4. It can be seen from Figure 2 that the small sample

Table 2 AUC values for mAPC-based TF identification.

SNR(dB) FP ratio mAPC

Cluster1 Cluster2

10 1 0.9844 0.9838

0.5 0.9650 0.9656

5 1 0.9225 0.9225

1.5 0.8369 0.8313

0 1 0.8850 0.8850

*Cluster 1 and 2 are not the same cluster under different conditions

Table 3 AUC values of target gene identification of
mAPC-GibbsOS vs. GibbsOS.

SNR(dB) FP ratio mAPC-GibbsOS GibbsOS

Cluster1 Cluster2

10 1 0.8437 0.8486 0.6568

0.5 0.8296 0.8021 0.7099

5 1 0.7625 0.8417 0.6290

1.5 0.7679 0.7397 0.5952

0 1 0.7203 0.8243 0.6102

*Cluster 1 and 2 are not the same cluster under different conditions

Table 1 Adjusted rand index values for clustering
evaluation.

SNR(dB) FP ratio mAPC APC Hierarchical
clustering

k-means clustering

10 1 0.6363 0.4039 0.3538 0.3504

0.5 0.7026

5 1 0.5135 0.2238 0.0495 0.1380

1.5 0.3067

0 1 0.4037 0.1088 0.0098 0.0921

Figure 2 AUC values of performance evaluation under different
sample sizes.
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size does impact the performance of the methods; in parti-
cular, when the number of samples is less than 25, the per-
formance degrades for both mAPC-GibbsOS and
GibbsOS. However, the performance degradation of
mAPC-GibbsOS is much less than that of GibbsOS; as a
matter of fact, mAPC-GibbsOS outperforms GibbsOS
with an increase AUC of 0.18 to 0.2, when the sample size
is smaller than 25. To our understanding, that mAPC-
GibbsOS suffers less from the small sample size problem
than GibbsOS may largely be a result of its consideration
of the underlying modularized structure. By considering
the underlying modularized structure, the proposed
method is capable of dividing the data into two or more
modules with reduced data dimension by gene clustering
and TF identification. In our case, the data is divided into
two modularized parts for the method to identify target
genes; as a result, the target gene identification using
mAPC-GibbsOS can achieve an AUC value over 0.7,
which is 0.2 higher than that of GibbsOS.

Breast cancer microarray data
Our method is further tested upon two estrogen receptor
(ER) related breast cancer patient datasets mentioned in

Symmans et al. [15] and Loi et al. [16] to identify gene
regulatory networks. The patient samples in the two
datasets are divided into ‘early recurrence’ group
(< 3 years) and ‘late recurrence’ group (> 6 years) accord-
ing to survival time. The Symmans et al. dataset [15]
consists of 21 samples in ‘early recurrence’ group and 41
samples in ‘late recurrence’ group, and the Loi et al. data-
set [16] has 49 samples in ‘early recurrence’ group and 76
samples in ‘late recurrence’ group. An initial gene set is
selected by T-test on gene expression data between ‘early
recurrence’ and ‘late recurrence’ groups with a threshold
p-value of 0.05. In this study, we analyze the up-regulated
genes (over-expressed in ‘early recurrence’ group) and
down-regulated genes (over-expressed in ‘late recurrence’
group) separately. For Symmans et al. data [15], totally
615 up-regulated genes and 344 down-regulated genes
are selected, while there are 668 up-regulated genes and
559 down-regulated genes selected for Loi et al. data
[16]. Motifs are selected from ER related signaling path-
ways and binding sites [17], which are believed to have
strong connections with cancer progression. Finally 88
and 84 motifs are chosen for Symmans et al. data [15]
and Loi et al. data [16] respectively.
Applying the proposed mAPC-GibbsOS method to the

two breast cancer datasets, we can find consistent
results in the TF layer. The analysis is done for up-regu-
lated genes and down-regulated genes separately; for
each case, we identify two clusters of genes and then
motif enrichment is conducted within each cluster. In
Figure 3, the Venn diagrams show that totally 66 up-
regulated motifs and 48 down-regulated motifs are iden-
tified from Loi et al. data [16], and 59 up-regulated
motifs and 44 down-regulated motifs are identified from
Symmans et al. data [15]. About 65% of the motifs are
shared among these two datasets; this large overlap indi-
cates that the similarity between the regulation mechan-
isms enriched in these two datasets is high.
Furthermore, in order to further study the overlap
motifs of the two datasets, we have matched the
enriched motifs to corresponding TFs and incorporated

Table 4 AUC values of target gene identification under
different sample sizes.

Sample Size

5 15 25 35 45

Max 0.7077 0.8421 0.8704 0.9724 0.9742

Cluster1 Median 0.6886 0.8090 0.8381 0.9435 0.9732

Min 0.6333 0.7765 0.7937 0.9268 0.9492

mAPC-
GibbsOS

Max 0.7456 0.8563 0.8497 0.9678 0.9769

Cluster2 Median 0.7082 0.8231 0.8338 0.9554 0.9534

Min 0.6549 0.7953 0.7957 0.9383 0.9460

Max 0.5223 0.6405 0.8704 0.9687 0.9742

GibbsOS Median 0.4933 0.6200 0.8497 0.9554 0.9732

Min 0.4313 0.5759 0.7957 0.9268 0.9534

*Cluster 1 and 2 are not the same cluster under different conditions

Figure 3 Venn diagrams of identified motifs from Symmans et al. data [15] and Loi et al. data [16].
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the protein-protein interaction information from HPRD
database [18]. Then we can construct TF networks with
protein-protein interactions under each case to help
study the regulation mechanism. Figure 4(a) and 4(b)
show the TF networks connected by protein-protein
interaction in terms of up- and down-regulated net-
works, respectively. It can be seen that there is a large
overlap between the two networks and the common
genes such as JUN, STAT5A and SP1 have already been
shown the involvements in cancer progression. JUN and
CREB play an important role in MAPK signaling path-
way and MAPK pathway has been shown as the center

of some signaling networks controlling the growth, pro-
liferation and differentiation of many cell types [19].
Furthermore, JUN is closely related to drug resistance
[20] and CREB is a cyclic-AMP response element-bind-
ing protein and its over-expression or activation is fre-
quently observed in breast cancer tissues [21]. Besides,
CEBPA/B TFs have also been shown a strong correla-
tion with cancer cell growth and differentiation [22].
STAT family TFs such as STAT5 play a central role in
Jak-STAT signaling pathway whose importance has
already been stressed in [23]. The involvement of
POU2F1 in hormonal signals [24] can also lead to

Figure 4 Identified TF networks (as connected by protein-protein interactions): (A) up-regulated TFs, (B) down-regulated TFs, and
expression patterns of target genes of selected TFs on: (C) Symmans et al. data [15] and (D) Loi et al. data [16].

Shi et al. BMC Systems Biology 2013, 7(Suppl 5):S4
http://www.biomedcentral.com/1752-0509/7/S5/S4

Page 6 of 12



cancer progression, and SP1 is demonstrated to be one
of the TFs that either enhance or repress the activity of
promoters of genes involved in differentiation, cell cycle
progression and oncogenesis [25]. ETS1 and ELK1 are
members of ETS family genes that are often over-
expressed in breast cancer [26]. In Figure 4(c) and 4(d),
the gene expression patterns for identified target genes
of the overlapped TFs in (a) and (b) are shown on Sym-
mans et al. data [15] and Loi et al. data [16] respec-
tively. We can see that the target genes show both up-
regulated and down-regulated patterns, because corre-
sponding TFs involve in both regulation directions. If
considering the up-regulation and down-regulation
separately, we can observe consistent expression pat-
terns, which further support the involvement of identi-
fied TFs in regulation.
To further demonstrate the robust performance of

mAPC-GibbsOS, a bootstrapping procedure is used in
this breast cancer study to provide the confidence level
of the identified TFs. The rationale behind this approach
is that the TFs with greater frequency included in the
identified networks should be more confident. The non-
parametric bootstrapping process generates different
datasets many times by re-sampling the experimental
samples with replacement. Our proposed method,
mAPC-GibbsOS, is applied on each newly generated
data, and the times are counted for TFs identified with
a certain confidence level (which is set to 0.9 in this
study). Totally 100 bootstrap versions of the gene
expression data are used in this bootstrapping analysis;
the results are summarized in terms of confidence score,
which is calculated as the frequency of TFs (shown in
Figure 5). As seen from Figure 5, all the identified TFs
have a confidence score greater than 0.3 and most of
them appear more than 50 times. It can also be seen
that some TFs such as CEBPA, ETS1, JUN, SP1 and
STAT family TFs are identified confidently by mAPC-
GibbsOS in both up-regulated and down-regulated net-
works. Furthermore, these two regulation networks also
have some specific TFs like ATF4, CEBPB, ELK1, MYB
and POU2F1 in up-regulated network and MYC in
down-regulated network. We have further converted the
p-value (as calculated by Equation (5) in the Methods
section) from TF identification to a score, which is the
inverse cumulative distribution function (ICDF) of the
corresponding p-value under standard normal distribu-
tion. The upper limit of the score is set to 4 to remove
some extreme values calculated by the ICDF. Figure 6
shows the variation of the score in terms of boxplot.
Most TFs shown have a median value larger than 1.65
which is the score threshold under confidence level 0.9.
Due to the cut-off threshold at 4, some strong TF only
shows a bar in the box plot, which means that over 75%
of the scores reach the upper limit. As seen from

Figure 6, TFs identified on Loi et al. data [16] have very
high and stable score distributions. For Symmans et al.
data [15], the variation is a little larger, but most of the
scores vary in the high confident region.

Conclusion
In this paper, we have proposed a new method consisting
of a clustering method (i.e., mAPC) and a sampling based
method (i.e., GibbsOS) to tackle the problem of regula-
tory network identification. mAPC is different from tradi-
tional clustering methods in terms of constructing co-
regulated gene modules by utilizing both microarray
gene expression data and motif binding information. Fol-
lowing mAPC, GibbsOS is applied to refine the module
for target gene identification to solve the issue of false
positive connections in motif binding data.
The proposed method is tested by simulation data with

different SNRs and FP ratios. Significant improvements
have been observed in terms of both gene module identi-
fication and target gene identification. To further test the
method with real biomedical applications, two breast
cancer patient datasets are used for the identification of
regulatory networks related to recurrence of breast can-
cer. As a result, a key set of regulatory networks has been

Figure 5 Bootstrapping confidence scores of identified TFs: (A)
up-regulated TFs, and (B) down-regulated TFs.
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reconstructed with active transcription factors and their
target genes. Importantly, these regulatory networks are
functionally enriched in the progression and recurrence
of breast cancer, warranting further investigations to
assess their functional roles by biological experiments.

Methods
mAPC-GibbsOS is an integrative method that focuses
on identifying modularized gene regulatory network. We
use the log-linear model proposed by Liao et al, [8]

X = AS + �, (1)

where X is an N × K matrix representing the measured
gene expression data, A is the regulation strength matrix
with a dimension of N × M, M × K matrix S specifies the

TF activities, � represents the inevitable experimental
noise, N is the number of genes, K is the number of
experiments and M is the number of TFs. This model
interprets the regulatory mechanism as a bipartite net-
work and the expression of gene can be considered as a
direct result from TF activity associated with related reg-
ulation strength. Based on this model, we can divide the
whole gene set into two distinct categories: (1) “fore-
ground” genes that are truly regulated by TFs and (2)
“background” genes that are not related with TFs. It can
also be seen that only the foreground genes will hold the
relationship between gene expression and TF activity,
therefore, it is necessary to identify modularized structure
on the foreground gene set rather than the whole
gene set.

Figure 6 Bootstrapping score variation for up-regulated TFs: (A) Symmans et al. data [15], (B) Loi et al. data [16]and down-regulated TFs:
(C) Symmans et al. data [15], (D) Loi et al. data [16].
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Motif-guided affinity propagation clustering (mAPC)
Our first goal is to use clustering methods to group the
genes regulated by common TFs. Recently one innova-
tive clustering method called affinity propagation clus-
tering (APC) [13] has been developed, which has shown
promising results for clustering data points. APC itera-
tively passes messages between each pair of nodes and
generates several ‘exemplars’ that show the characteris-
tics of their own clusters best. The messages passed
include “responsibility” and “availability” and they
together indicate how appropriate to choose a point as
exemplar. The application of APC in clustering of gene
expression data usually uses a Euclidean distance to
measure similarity,

s (i, j) = −∣∣∣∣xi − xj
∣∣∣∣2, (2)

where s(i, j) is the similarity between gene i and j, xi, xj
are the gene expression data of gene i and j. It implies
that the larger Euclidean distance between gene i and j
is, the less similarity between them is. However, this
cost function only considers clustering genes with simi-
lar gene expression patterns, thus it can only cluster co-
expressed genes rather than co-regulated genes. Since
gene expression data are relatively noisy, this cost func-
tion tends to make the clustering results not reliable. In
order to solve this problem, we propose a new cost
function to incorporate motif binding information. Sup-
pose we have a binding strength matrix W with the
same dimension of the regulation matrix A (N × M)
showing the possible connections between N genes and
M TFs. w(i, j) will be a value taking either 0 or 1 repre-
senting the possible binding connection between gene
iand TF j. Given a candidate TF j, the probability that
gene k and t are simultaneously regulated by TF j is
proportional to w(k, j) × w(t, j). Hence, considering all
available M TFs, the co-regulation probability between
gene k and t from motif binding data will be propor-
tional to

sreg(k, t) =
∑M

j=1 w
(
k, j

) × w
(
t, j

)
. (3)

Incorporating co-regulation information described in
Equation (3) into the classical similarity measurement,
we can formulate our new cost function for APC as:

s (i, j) = − (1 − λ)
∣∣∣∣xi − xj

∣∣∣∣2 + λ sreg(i, j), (4)

where λ is a trade-off parameter between 0 and 1 to
adjust the contribution of gene expression data and
that of motif binding information. If λ is 1, the clus-
ters generated by mAPC will totally depend on motif
binding information. On the contrary, if λ is 0,
mAPC turns out to be the classical APC as applied
to gene expression data alone. As gene expression

data are noisy, the second term can lower the noise
effect by the positive support from binding informa-
tion. On the other hand, the false connections existed
in matrix W will be penalized by large negative gene
expression similarity measurement, because genes not
co-regulated do not share similar gene expression
patterns. In general, this type of balanced cost func-
tion will provide us a better representation of gene
modules in terms of both co-regulation and co-
expression.

Transcription factor identification
After obtaining clusters of genes, we have already
uncovered the modularized structure for genes, but we
need to further associate clusters of genes with TFs,
which can be accomplished by testing TF enrichment
for every cluster. A hyper-geometric test is applied to
each TF to tackle this problem with the following
hypotheses:

H0 : TF j is not enriched in cluster c; H1 : TF j is enriched in cluster c.

Assume that there are Nc genes in cluster c and
Nbgenes have connections with TF j. In the whole gene
population, the total number of genes is N and that of
TF j related genes is NB. Then we generate a null distri-
bution by randomly sampling all the N genes to form
random clusters with size Nc many times. For each clus-
ter, we count the number of genes regulated by TF j,
denoted as n. We can then calculate p-value as the per-
centage of the clusters which have a number n greater
than Nb. In fact, this process can be modelled by a
hyper-geometric distribution and the p-value can be cal-
culated as follows:

p − value =
min(NB,Nc)∑

i=Nb

(
NB

i

)(
N − NB

Nc − i

)
/
(
N
Nc

)
. (5)

Based on the calculated p-value, we can determine the
enrichment of TFs in different clusters with a pre-
defined threshold (which can be adjusted according to
various cases).

Gibbs sampler based on outlier sum statistics (GibbsOS)
GibbsOS is a method that exploits both gene expression
data and motif binding information to identify fore-
ground genes from a possible large pool of genes.
Firstly, suppose we can find a foreground gene set
� = [θ1, θ2, . . . , θM] as “seed” genes, where M seed genes
are selected for each of M TFs. Then according to
Equation (1),

E� = A�S, (6)

where E� is the gene expression of M seed genes, A�

refers to the binding matrix of the seed genes and S is
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the corresponding TF activity. Solving the Equation (6)
for S,

S = (A�)- 1E� = αE�. (7)

Given another foreground gene y,

Ey =AyS =AyαE� =βE�, (8)

where Ey and Ay are the gene expression and binding
matrix of gene y and β = Ayα infers the relationship
between gene y and the seed genes. If gene y is a fore-
ground gene truly regulated by TF j, then βj should be
not equal to 0, due to the similarity shared between
gene y and seed gene of TF j. Therefore, the regulation
relationship between gene y and TF j can be solved by
linear regression hypothesis test on the parameter esti-
mated,

H0 : βj = 0;H1 : βj �= 0.

By iteratively conducting the test for gene y and all
the TFs, the regulation mechanism of gene y can be
determined. The estimation of β, denoted as β̂, can be
obtained by least square estimation,

β̂ =
(
FTF

)−1
FTy = CFTy, (9)

where we replace Ey and E� by y and F for the conveni-
ence of representation. The mean squared error (MSE) of
this fitted model with K experiments and M TFs is

MSE =

(
y − Fβ̂

)T (
y − Fβ̂

)
degree of freedom

=
yTy − yTFCFTy
K − M − 1

, (10)

where degree of freedom is K − M − 1. Then a signifi-
cant test statistic of regression coefficients can be
applied,

t =
β̂j√

MSE · √
Cjj

, (11)

where Cmm is the m-th diagonal element of the matrix
C. This test statistic t will follow a Student t-distribution
with a degree of freedom of K − M − 1 , and then we
can obtain corresponding p-value to make decision on
hypothesis with certain predefined confidence level.
Although we have already demonstrated the method to

identify foreground genes, we actually do not know the
ground truth behind the data. It is impossible to accu-
rately draw foregrounds as seed genes, but we are sure
that there must be multiple true foreground genes in the
pool, thus we can make those foreground genes support
each other. This approach can be completed in an itera-
tive way, assuming that the candidate genes for TF j can
be divided into �jF and �jB (�jF ∩ �jB = ∅ and

�jF ∪ �jB = �j), two sets containing foreground genes
and background genes respectively. To start the iteration,
we randomly select one gene θji(1 ≤ i ≤ Kj) from �j,
where Kj is the cardinality of gene set �j. Together with
the candidate genes for other TFs, we can obtain a fore-
ground gene list � = [θ1, θ2, . . . , θj = θji, . . . , θM]. Then
we apply the linear regression T-test mentioned in Equa-
tion (11); totally Kj − 1 (θj1 to θjKj except θji) t statistics
will be generated for TF j.
In order to obtain a summarized score for choosing

θj = θji, we use an outlier sums (OS) statistic and it can
be defined as,

OS =
Kj∑
k �=i

∣∣tjk∣∣ · I
⎛
⎝∣∣tjk∣∣ − tα

2
,K−M−1

⎞
⎠ , (12)

where tjk is the t-test statistic of gene k under the con-
dition that θj = θji, and I(·) is an indicator function
which outputs 1 with a non-negative value and outputs
0 otherwise, and

tα
2
,K−M−1 refers to the threshold of α

confidence level with K − M − 1 degree of freedom. As
interpreted from the above equation, if θji is a good
choice of foreground genes for TF j, OS will achieve a
large value. On the contrary, if θji is not supported by
other genes, OS will have a very small value or even 0.
Considering Equation (12) as a function of θj given the
choices of other TFs, we can then rewrite it as:

OSθj = f
(
θj|θ1, . . . , θj−1, θj+1, θM

)
. (13)

The form of OS statistic indicates the dependency of
the decision of one TF on the choices of foreground
genes for other TFs, but what we are interested in is the
marginal function which is independent of the choices
of other TFs.
Gibbs sampler is a fairly good technique which can

draw samples with respect to marginal distribution with
only the conditional distribution. For our GibbsOS case,
we can construct a conditional probability density func-
tion as follows:

p
(
θj|θ1, . . . , θj−1, θj+1, θM

)
=

1
K0

f
(
θj|θ1, . . . , θj−1, θj+1, θM

)
, (14)

where the function f (·) is the same function as Equa-
tion (13) (i.e., the outlier sum statistic function) and K0

is a normalization constant which ensures the total
probability equals one. Then after initializing a set of
candidate genes [θ01, θ

0
2, . . . , θ

0
M], we can sample the

genes as:

θt+1j ∼ p
(
θj|θt+11 , . . . , θt+1j−1, θ

t
j+1, θ

t
M

)
, (15)

where t denotes the t−th sampling iteration. At each
iteration step, we sequentially sample one candidate
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foreground gene for each TF once. When going through
sufficient steps, we not only sample those candidate
genes, but also estimate the marginal distributions. In
our case, we can simply use the frequency of a gene
emerged in the sampled sequence to approximate the
empirical marginal distribution. Then the genes with
higher frequency will be more probable to be fore-
ground genes.

Adjusted rand index for performance evaluation
To evaluate the clustering performance, a partition eva-
luation method, namely adjusted rand index (ARI) [14],
is used in this study. We will compare the results with
the ground truth of the simulation data to assess the
clustering accuracy. Suppose the resulting N clusters are
C = {c1, c2, . . . , cN} and the M ground truth clusters are
G = {g1, g2, . . . , gM}. Let nij be the number of elements
existed in both cluster ci and gj, and ni.and n.j are the
total numbers of genes in ci and gj, respectively. Then
the ARI can be calculated as follows:

ARI =

∑
i,j

(
nij
2

)
−

[∑
i

(
ni.
2

)∑
j

(
n.j
2

)]
(
n
2

)

1
2

[∑
i

(
ni.
2

)
+

∑
j

(
n.j
2

)]
−

[∑
i

(
ni.
2

)∑
j

(
n.j
2

)]
(
n
2

)
. (16)

Note that ARI will take a value between -1 and 1 and
a higher value represents that two clusters are of more
similarity. If the ARI value is 1, it means that the two
clusters in comparison are the same.
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