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Abstract

Background: Chromatin immunoprecipitation (ChIP) experiments are now the most comprehensive experimental
approaches for mapping the binding of transcription factors (TFs) to their target genes. However, ChIP data alone
is insufficient for identifying functional binding target genes of TFs for two reasons. First, there is an inherent high
false positive/negative rate in ChIP-chip or ChIP-seq experiments. Second, binding signals in the ChIP data do not
necessarily imply functionality.

Methods: It is known that ChIP-chip data and TF knockout (TFKO) data reveal complementary information on
gene regulation. While ChIP-chip data can provide TF-gene binding pairs, TFKO data can provide TF-gene
regulation pairs. Therefore, we propose a novel network approach for identifying functional TF-gene binding pairs
by integrating the ChIP-chip data with the TFKO data. In our method, a TF-gene binding pair from the ChiIP-chip
data is regarded to be functional if it also has high confident curated TFKO TF-gene regulatory relation or deduced
hypostatic TF-gene regulatory relation.

Results and conclusions: We first validated our method on a gathered ground truth set. Then we applied our
method to the ChIP-chip data to identify functional TF-gene binding pairs. The biological significance of our
identified functional TF-gene binding pairs was shown by assessing their functional enrichment, the prevalence of
protein-protein interaction, and expression coherence. Our results outperformed the results of three existing
methods across all measures. And our identified functional targets of TFs also showed statistical significance over
the randomly assigned TF-gene pairs. We also showed that our method is dataset independent and can apply to
ChlIP-seq data and the E. coli genome. Finally, we provided an example showing the biological applicability of our
notion.

Background

Cellular responses to external stimuli or environmental
changes are usually conveyed through cellular regulatory
networks consisting of different regulatory pathways [1-4].
Transcriptional regulation plays an essential role for con-
struction of such regulatory pathways at the level of tran-
scription. The binding of specific transcription factors
(TFs) controls the initialization or the expression level of
genes. Thus, unravelling functional TF-gene binding
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events is a fundamental start-up for us to understand the
regulatory mechanisms in cells [1].

Chromatin immunoprecipitation experiments (ChIP-
chip or ChIP-seq) are now the most comprehensive
experimental approaches for mapping the binding of TFs
to their target genes [2,3,5]. However, ChIP data alone
are insufficient for identifying functional binding target
genes of TFs for two reasons. First, there is an inherent
high false positive/negative rate in ChIP-chip or ChIP-
seq experiments [6]. Although by controlling the level of
statistical significance for the analysis can reduce the
false positive rate, this approach is prone to getting a
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great number of false negatives [7,8]. Second, binding sig-
nals in the ChIP-chip data do not necessarily imply func-
tionality. The binding of TFs to the promoters of genes
may not lead to subsequent transcription activation/
repression [9,10].

It was suggested that one can improve the confidence
of the TF-gene binding pairs by integrating ChIP-chip
data with data from other high-throughput technologies
[10]. Although other high-throughput data may them-
selves be noisy, the stochastic noises are generally
assumed to be uncorrelated [9-11]. Hence, combining
different sources of high-throughput data is a promising
way of extracting biologically meaningful information
embedded in any noisy high-throughput data.

Previous studies had tried to extract functional bind-
ing target genes of TFs by integrating the ChIP-chip
data with various kinds of high-throughput data. By the
types of the integrated data, the integration processes
could be roughly divided into two categories. The first
type of existing methods relied on stepwise integration
of the ChIP-chip data with the expression data and/or
the TF binding motif data. Functionality of the TF-gene
binding pairs was confirmed by some gene properties
inferred from the mRNA expression profiles. For exam-
ple, ChIP positives were classified into functional and
non-functional TF-gene binding pairs by the regression
analysis of the mRNA expression profiles [12]. And
others tried to infer functional binding target genes of
TFs from the ChIP-chip data by the synergy properties
derived from the mRNA expression profiles and the TF
binding motif data [10]. Finally, another group of
researchers developed the CERMT algorithm to refine
the possible functional binding target genes of TFs based
on covariance of multiple expression time series [13].

The other type of existing bioinformatic approaches for
extracting functional TF-gene binding pairs combined
diverse biological data beside the mRNA expression profile
data through the construction of different types of Baye-
sian classifiers. Some utilized the framework of probabilis-
tic inference to predict the functional TF-gene binding
pairs by TF binding site motifs, evolutionary conservation,
regulatory potential, nucleosome data and DNase hyper-
sensitive sites [14]. Others constructed a Bayesian classifier
from comprehensive sources of yeast high-throughput
data such as protein-protein interaction data, the phyloge-
netic data and the nucleosome data [7,8]. Another group
specified a hierarchical Bayesian model to augment the
protein-DNA binding data with gene expression and
sequence data [15]. Still others defined and trained a logis-
tic regression classifier based on a mapping of preference
scores on gene location information and TF-binding
motifs [9].

While previous works had combined comprehensive
sorts of high-throughput experimental data and biological
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data, these approaches did not consider the TF-gene regu-
latory relation when inferring functional TF-gene binding
pairs. Expression data, TF binding motif data and other
integrated biological data, such as nucleosome positioning
and evolutionary conservation, did not directly provide the
TE-gene regulatory relation. Nowadays, the TF knockout
(TFKO) data are available for biologists to infer the
TF-gene regulatory relation [4]. TFKO data convey the
experimental results showing the change in the expression
of some target gene caused by the deletion or mutation of
certain TF-encoding gene, revealing the fact that the TF
regulates this target gene via certain mechanisms [16].
Since none of previous methods had directly utilized the
TF-gene regulatory relation, we propose an alternative
to infer functional TF-gene binding pairs based on the
integration of ChIP-chip data with TF-gene regulatory
relation.

In this study, instead of using the supervised or unsuper-
vised learning tools as in the Bayesian approach and other
methodologies, our method uses a network approach on
the combination of the ChIP-chip data and the TFKO data
to infer the functional TF-gene binding pairs. A TF-gene
binding pair, or a ChIP positive, is called functional if we
can also find evidence showing that the TF regulates the
expression of the target gene. While direct overlapping of
the ChIP-chip and TFKO datasets could give some possible
functional TF-gene binding pairs, this only provided a very
small number of such pairs because of the low overlap of
the ChIP-chip data and the TFKO data [4,17,18]. It was
shown that the low overlap between the TFKO data and
the binding data partly resulted from knockout epistasis [4]
or backup mechanisms [17]. The epistatic regulation
cascade from the given TF-pair with a higher confident
regulation of an intermediate TF on the target gene is sug-
gested to compensate the knockout effect of the regulation
of this hypostatic TF-gene pair. Hence we further consid-
ered the possible hypostatically masked (to the epistatic
regulation cascade) TF-gene regulation relation deduced
from the original TFKO data. The literature-curated TFKO
regulation relation and the deduced hypostatic regulation
regulation for given ChIP positive TF-gene binding pairs
were also checked through regulatory confidence scores
(RCS). Finally, a TF-gene binding pair with a confident
TEF-gene regulation, which may be the curated TFKO regu-
lation or deduced hypostatic TF-gene regulation, was clas-
sified to be functional. We validated the proposed method
on a gathered ground truth set and also demonstrated the
superior biological significance of our method to three
previous methods by testing the results on functional
enrichment, the prevalence of protein-protein interaction
and target gene co-expression. Of all three different aspects
of biological significance demonstration, our results
all showed improvement over the three previous works.
We also showed that our method is dataset independent



Yang and Wu BMC Systems Biology 2013, 7(Suppl 6):513
http://www.biomedcentral.com/1752-0509/7/56/513

and can apply to ChIP-seq data and the E. coli genome.
Finally, we provided an example showing the biological
applicability of our notion.

Materials and methods

ChIP-chip data and TF knockout data

Genome-wide in vivo TF-gene binding data of 204 yeast
Saccharomyces cerevisiae TFs produced by the ChIP-
chip technology were adopted from [3]. The TF-gene
binding assignments were provided in the form of bind-
ing p-values, on the hypothesis that the TF binds to the
promoter region of the target gene. To show the data-
independence of our method, we also adopted the
ChIP-chip data generated from [2]. In their location
analysis protocol, a promoter region of a gene is defined
as the upstream intergenic region. The genome wide
intergenic regions were obtained and amplified using
the Yeast Intergenic Region Primers (Research Genetics)
[19]. In Saccaromyces cerevisiae, transcription factor
binding sites are positioned further upstream in the
intergenic regions and vary over a wide range in promo-
ters [20]. In this study we adopted the promoter defini-
tion and promoter regulation as the ones used in the
study of Harbison et al. [3].

The TF knockout data of 156 yeast Saccharomyces
cerevisiae TFs were retrieved from the Yeastract Indirect
evidence [16]. Yeastract has deposited the published
data showing the change in the expression of the target
genes resulting from the deletion or mutation of certain
TF-encoding genes. This so-called indirect evidence
therefore provides the TF-gene regulation information.
We retrieved 21871 TFKO TF-gene regulation pairs for
156 TFs from Yeastract.

Protein-protein interaction data and mRNA expression
data

Two different datasets were collected for use in the bio-
logical validations. For showing the prevalence of pro-
tein-protein interaction, we gathered the physical
protein-protein interaction data from the Biogrid data-
base, which had deposited comprehensive collections of
protein-protein interactions [21]. And for comparing the
expression coherence between different methods, we
retrieved 40 time series mRNA expression profiles in
yeast Saccharomyces cerevisiae from ExpressDB [22].
These 40 different expression conditions were obtained
as previously suggested [10]. Details of the 40 different
conditions can be found in the online supplementary
files of [10]. These conditions represent the natural and
perturbed expression profiles, including the conditions
under sporulation in budding yeasts [23], yeast cell cycle
conditions [24,25], the DNA damaged conditions [26,27]
and etc.
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Benchmark control sets

A set of 484 functional TF-gene binding pairs adopted
from [7] were used as the positive control set. These lit-
erature-curated ground truth functional TF-gene binding
pairs were collected from the Incyte YPD Database. To
obtain the negative control set, we generated 1516 ran-
dom TF-gene pairs. To enhance the stringency of the
negative control set, we further required the random
pairs not to belong to the positive control and not to
have any literature evidence curated in the Yeastract
database [16]. A total of 2000 TF-gene pairs were used as
the control set.

Finding the hypostatic TF-gene regulation relation

We used the literature-curated TF-gene regulation pairs
from the TFKO data to construct a regulatory relation
network. An edge from a given TF to its regulatory target
gene was added to the regulatory relation network if
there is TF-gene regulatory relation from the TFKO data
showing that the TF regulates the target gene. For a
given TF-gene binding pair, if they are connected by a
path of length of two with an intermediate node TF X in
the constructed regulatory relation network, this means
that the given TF regulates the TF X and the TF X regu-
lates the given gene. We said that there is deduced hypo-
static regulatory relation (to the epistatic regulation
cascade through TF X on the target gene) in the con-
structed regulatory relation network for this given TF-
gene pair (Case II in Figure 2). And the knockout effect
of this hypostatic regulation relation may thereby be
masked. Epistatic regulation cascade path of length more
than two can be inferred in a similar manner.

We searched such deduced hypostatic regulatory rela-
tion of a TF-gene binding pair by the modified breadth
first search (mBEFS) algorithm [18]. The algorithm
returned the shortest regulation path between a given
TF-gene pair in the regulatory relation network. To
briefly explain the algorithm, two different sets of nodes
were kept, one for the visited nodes and one for the dis-
covered nodes. First, we started out from the given TF
and put it in the set of visited nodes. Then we tried out
all of its “unvisited” neighbours in the regulatory relation
network and put the neighbours in the set of discovered
nodes. This process was repeated for each node in the set
of discovered nodes in the “first-in, first-out” manner,
acting as a new starting node in each round, until we
reached the target gene. The shortest regulation path
could be obtained by tracing back the process.

Calculating the RCSs for the confidence of the TF-gene
regulation

The deduced hypostatic TF-gene regulatory relation
might be introduced by chance since there is still a large
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amount of random noises in the original TFKO data due
to the inherent uncertainty in high-throughput technol-
ogies. These inherent random noises could cause the
over-fitting problem when deducing hypostatic relations
from analysing the network paths [17]. We avoided the
stochastically introduced TFKO regulation or epistatic
relation cascade by comparing the paths found in the
constructed regulatory regulation network with those
found in the randomly generated network. We forced
the random networks to preserve the node degrees to
mimic the degree distribution of the original TFKO reg-
ulatory relation pairs [28]. Then we used the Student
t-test to test against the null hypothesis that the length
of the shortest regulation cascade found in the con-
structed regulation relation network is statistically equal
to the average of the lengths of the shortest paths in the
randomly generated regulation network. Multiple
hypotheses test correction was done by using the method
of FDR. And the regulation confidence score (RCS) is cal-
culated by the formula, which takes the minus logarithm
on the corrected statistic p-value:

RCS = —log(p value)

The RCS measures the non-stochastic confidence of
the given regulation pair.

To calculate RCSs, we constructed 10000 degree-pre-
serving TFKO random regulation networks. The choice
for sampling size of 10000 from the random distribution
is to have a sampling precision of 95% confidence within
1% of error, according to the sampling theorem [29]. To
generate the degree preserving random network, first the
degree sequences for nodes in the regulatory relation net-
work were generated, including both the in-degree
sequence and the out-degree sequence. Then we expanded
the degree sequences into node frequency sequences.
For example, if we have an in-degree sequence of {3,2,1},
then we get an in-degree node frequency sequence of
{1,1,1,2,2,3} with respect to the given in-degree sequence,
for the first node having three in-coming edges in the net-
work. Then we randomly shuffled the in-degree node
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frequency sequence and the out-degree node frequency
sequence. Edges in the random network were added for
nodes from the randomly shuffled out-degree node fre-
quency sequence to nodes from the randomly shuffled in-
degree node frequency sequence iteratively. This guaran-
tees the random networks with the degree preserving
property [30]. Details of the degree distribution and the
properties of the random networks can be found in [30].

Results and discussion

Overview of the approach

TFKO data conveys the experimental results showing
the change in the expression of some target gene result-
ing from the deletion or mutation of certain TF-encod-
ing gene and the ChIP-chip data conveys the TF-gene
binding information (Figure 1). To extract the functional
TF-gene binding pairs, we used a network approach to
combine the ChIP-chip data and the TFKO data. The
overall algorithm is depicted in Figure 2. We started out
from the ChIP positives as the potential functional
TE-gene binding pairs. As mentioned, a ChIP positive is
called functional if we can also find evidence showing
that the TF regulates the expression of the target gene.
Hence first we sought two different possible TF-gene
regulation relation from the TFKO data: the curated
TFKO TF-gene regulation (Case I in Figure 2) and the
deduced hypostatic TF-gene regulation (Case II in
Figure 2).

For a given TF-gene binding pair, if there was no litera-
ture-curated TFKO TF-gene regulation for it, we then
tried to see if there exists a possible hypostatic TF-gene
regulation for it. It was shown that the low overlap
between the binding data and the TFKO data may partly
result from knockout epistatic mechanisms and a single
TF knockeout effect on a target gene may be compensated
by the epistasis regulation cascade through another paralo-
gous partner TF X [4,17] (Case II in Figure 2). Note that
TF X may not directly bind the target gene. This innovated
us to find the possible masked hypostatic TF-gene regula-
tion. The compensated TF-gene regulation was said to be
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Figure 1 Properties of ChIP data and TFKO data. a) ChIP-chip data shows that a TF directly or indirectly binds to the promoter region of the
target gene. b) TFKO data shows the change in the expression of some target gene resulting from the deletion or mutation of certain TF-
encoding gene.
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Figure 2 The algorithmic scheme to extract functional TF-gene binding pairs. We used a network approach to combine the ChIP-chip data
and the TFKO data. The central notion of our method is based on the deduced hypostatic TF-gene regulation. This extended the low overlap
between the binding data and the TFKO data. For a given TF-gene binding pair, we first sought for regulation evidence for this pair. The
regulation evidence can be either the direct literature-curated TFKO TF-gene regulation or the deduced hypostatic TF-gene regulation. Then we
calculated the confidence for the TF-gene regulation by comparing the regulation pair with the same pairs in randomly generated TFKO
networks. A final RCS was calculated for confidence measurement. A TF-gene binding pair is called functional if it also has confident TF-gene
regulation information (with RCS > 1000).
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hypostatic to the epistatic regulation cascade through TF
X since the knockout effect of this TF-gene pair may pos-
sibly be masked by the epistatic regulation cascade with a
more confident regulation of an intermediate TF X on the
given target gene. This meant that there might exist at
least an epistatic regulation cascade, or a path from the TF
to its target gene through an intermediate TF X in the reg-
ulatory relation network, for this TF-gene pair. Therefore,
we constructed a regulatory relation network from the
TFKO data and sought the hypostatic TF-gene regulation
relation by checking the existence of a regulation path in
the regulation relation network for the given ChIP post-
ives. This was done by a previously published path finding
algorithm (as described in the Methods section).

Since there are inherent uncertainties in the high-
throughput technologies, the TFKO regulation relation
or the deduced hypostatic TF-gene cascade regulation
may be introduced by chance. Because of this reason, as
a second step, the curated TFKO regulation relation or
the deduced hypostatic regulation relation for the given
TF-gene ChIP positive was also checked by the regula-
tory confidence score (RCS), which was scored through
the comparison with random TFKO data (See Methods
section). A regulation relation with RCS higher than
1000 was set to be confident. Finally, a TF-gene binding
candidate pair was classified to be functional if it has a
confident TF-gene regulation evidence, which may come
from the curated TF-gene regulation or the hypostatic
TE-gene regulation.

Validation on a literature-proven benchmark TF-gene set
First we validated our proposed method on a gathered lit-
erature-curated functional TF-gene binding set from [7].
The literature-proven functional TF-gene binding pairs
were treated as the positive control set and the randomly
generated TF-gene pairs were viewed as the negative con-
trol set. Applying our method on the prepared control
set, we can generate the receiver operating characteristic
(ROC) curve by adjusting the regulatory confidence
scores (RCSs) (Figure 3). The RCS is a measurement for
the confidence of the curated TFKO TF-gene regulation
relation or the deduced hypostatic TF-gene regulation
relation as described in the Methods section.

An ROC curve plot is a graphical tool demonstrating
the performance of the discriminating algorithm as its
discriminating score varies. The curve is plotted for (1-
specificity) against sensitivity. Specificity is defined as
the fraction of true negatives out of the discriminated
negatives and (1-specificity) is also known as the false
positive rate. And sensitivity, also known as the true
positive rate, is defined as the fraction of true positives
out of the discriminated positives. In the ROC curve
plot of our method, we can see that our method acted
as a good classifier for discriminating functional binding
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Figure 3 The ROC curve of the validation on the ground truth
set for Saccharomyces cerevisiae. When applied to the control
set for S. cerevisiae, our method can distinguish functional binding
targets from non-functional binding pairs, shown by the upper left
corner trend on the ROC curve plot with AUC= 0.78. The ground
truth set consists of 484 literature-curated functional TF-gene
binding pairs as the positive control set and 1516 random TF-gene

pairs as the negative control set.

pairs from non-functional binding pairs (area under
curve, AUC = 0.78) due to its performance of low false
positive rates with high true positive rates (to the left-
most of the ROC curve plot). Notice that the trembling
phenomenon between 0.2 and 0.3 shows that most of
the discriminating scores, which is the RCS, resulted in
false positive rate of 0.2 to 0.3 with true positive rate of
about 0.7 to 0.8. Since our method does not rely on any
training process, this result is unlikely to suffer from
over-fitting. Hence we conclude that our method can
distinguish functional TF-gene binding pairs from non-
functional binding pairs.

82% of the original TF-gene binding pairs suggests
functionality

In this study, we demonstrated our algorithm on yeast
Saccharomyces cerevisiae because of the comprehensibil-
ity and availability of the genome-wide TFKO data
source. Harbison et al. have performed the most com-
prehensive genome-wide chromatin immunoprecipita-
tion microarray (ChIP-chip) experiments on the yeast
Saccharomyces cerevisiae [3]. And from the experimental
results, they reported the binding target genes of 204
TFs. It was suggested taking a p-value threshold of
0.001 in the original error models to ensure a low false
positive rate. But it has been shown that the TF-gene
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binding pair might already be functional with the
p-value threshold of 0.01 [7]. Hence in this study, we
took the threshold of 0.01 to get start-up ChIP positives
for identifying functional binding targets.

Only a subset (95 TFs) of the reported TFs in the study
of Harbison et al. were possible for our analysis because of
the lack of the TFKO data. After applying our proposed
algorithm, we further required that the percentage of the
functional binding targets of a TF should reach above 25%
since we observed a jump’ from 23% to 60% in the per-
centage distribution of the extracted functional binding
target genes (Figure 4 and Additional File 1). Since the
binding pairs adopted from Harbison et al. have been
already restricted to the TF-gene binding pairs that fit into
the promoter binding model, this ‘jump’ indicated that the
low percentage of functional binding targets of certain TFs
might also result from the lack of TFKO data. As a result,
there were 72 TFs suitable for our analysis and a total of
7259 functional TF-gene binding pairs were established by
our method (See Additional File 2). On average, there are
about 82% (7259/8904) functional TF-gene binding pairs
in the original ChIP-chip data for the 72 analysable TFs.
Direct overlapping of the ChIP-chip data and the TFKO
data resulted in 1220 functional TF-gene pairs. And we
have expanded the number of functional TF-gene binding
pairs by about 6 folds. We used these 72 analysable TFs
with percentages of the functional binding targets above
25% in the following validation.

Biological significance comparison with previous methods
We next compared the biological significance of the
functional TF-gene binding pairs identified in this study
and by three previously published methods. Only three
approaches on yeast Saccharomyces cerevisiae were
selected for our comparison because of data availability.
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For the methods of combining diverse biological data
sources to extract the functional TF-gene binding pairs,
the log likelihood score (LLS) method [7] is available for
our comparison. The LLS method integrated the most
comprehensive experimental datasets to train the Baye-
sian classifier, where ChIP-chip data, TF binding motif
data, data of sensu stricto species of Saccharomyces cere-
visiae, co-expression clustering, physical protein-protein
interaction data and the phylogenetic profiles of gene
pairs were used.

For the methods relying on stepwise integration of the
ChIP-chip data with the expression data, there are two
approaches available for our comparison. One is the
method of using the expression coherence score (ECS)
and TF binding sites information [10] and the other is the
method of MA-networker (MA) algorithm [12]. The ECS
method was based on the integration of co-expression
clustering, TF binding motifs, TF synergistic interactions
and the TF co-localization in the promoter regions of tar-
get genes, which were mostly evaluated by the EC scores.
And the MA-networker algorithm classified the ChIP-
positives into functional and non-functional targets based
on their expression patterns across different experimental
conditions and the transcription factor occupancy data.

In the following sub-sections, we showed that our
results conveyed better biological relevance than these
three previous works by testing the identified functional
binding target genes of TFs on functional enrichment,
the prevalence of protein-protein interaction and co-
expression. Details of the following validations can be
found in Additional File 3.

Functional enrichment analysis

When several genes are functionally bound by the same
TF, one might expect that the gene products of these
genes are prone to carry similar cellular functions [7,31].

_— Cut-off

—_ -

w &R

O35~ 80 -

o £ 9

S5 60 -

= m 4=

520 40 -

o ow

P 20 A

985 1l

b @© - O = = = © © ™iT™ &N ™ ™ N ™ O ™ I M - = = = % = F &N N = O = = &
+— T O ERR B L ELSLEQEIHBVL IDLEDARELSEL DL DX

835888 3855333532533 832585883

Transcription factor

Figure 4 The percentage distribution of functional binding targets of TFs extracted from the original ChIP-chip dataset. The potential
binding target genes were defined by a p-value threshold of 0.01. As the bar chart shows, there is a jump’ from 23% to 65% of extracted
functional binding target genes. Hence, a cut-off that at least 25% of the original binding target genes should be functional was adopted. This
gives 72 analysable TFs with their functional binding target genes (ratio of functional binding targets for these 72 analysable TFs: mean =
79.68%, standard deviation = 7.3%). Only parts of the TF names were marked in the plot due to space limitations.
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Gene ontology (GO) terms provide this sort of charac-
terization. Following the definition of [7], the target
gene set of a TF is called functionally enriched if the
gene set significantly overlaps with at least one gene
ontology category across the three different GO cate-
gories (the biological process ontology, the molecular
function ontology and the cellular component ontology).
Based on this notion, the functional enrichment test was
performed by the web-based tool, GO Term Finder [32].
The statistical functional GO term enrichment test was
implemented by one-tailed Fisher Exact Test in Go
Term Finder. The statistical results then went through
FDR correction for multiple hypotheses tests. For our
analysis, we took a p-value threshold of 0.05.

Of the 62 common TFs between our results and the
results of the LLS method, 59 TF functional binding target
gene sets (95.2%) extracted by our method showed signifi-
cant functional enrichment while only 54 TF functional
binding target gene sets (87.1%) extracted by the LLS
method bore significant functional enrichment. And com-
paring the 46 common TFs between our results and the
results of the ECS method, our results still outperformed
the results of the ECS method (43 functionally enriched
TF functional binding target gene sets compared with 37
functionally enriched TF functional binding target gene
sets, i.e. 93.5% compared with 80.4%). As for the 18 com-
mon TFs between our results and the results of the MA
algorithm, our results showed better functional enrich-
ment (18 functionally enriched TF functional binding tar-
get gene sets compared with 17 functionally enriched TF
functional binding target gene sets, i.e. 100% compared
with 95.6%) (Figure 5). Note that the high percentage of
100% achieved in the comparison to the results of MA
algorithm is mainly due to the scare available common
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functional gene target sets of TFs between our results and
that of MA algorithm. In summary, our method can
extract functional binding target genes of TFs with better
functional enrichment than previous approaches.
Prevalence of protein-protein interaction

Functionally related genes tend to carry similar cellular
functions by forming protein complexes [21]. Thus, if
the target genes of a TF have statistically significant
overlap with a protein complex, this prevalence of pro-
tein-protein interaction may imply the trend that the
TF-gene pairs are functional [31].

As proposed in [31], a protein complex is defined by two
set of genes, the core genes and the neighbouring genes.
Core genes are defined by the genes that are both assigned
as the target genes and translated to gene products with
physical protein-protein interaction. The set of neighbour-
ing genes gathers the genes that are translated to the gene
products having physical protein-protein interaction with
the core genes. A protein complex is formed by the union
of the core genes and the neighbouring genes.

Following the above definitions, a set of functional
binding targets of a TF showed prevalence of protein-
protein interactions if the proportion of the interacting
proteins, or the core genes, in this set was significantly
higher than the proportion of the protein complex
within the whole genome. By defining the protein com-
plex as described, we then performed the one-tailed
Fisher exact test to test the protein complex overlap sig-
nificance with FDR correction [33] and a threshold of
a = 0.05.

Among the 62 common TFs between our results and
the results of the LLS method, 49 TF functional binding
target gene sets (79.0%) extracted by our method showed
prevalence of protein-protein interaction while only 42
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TF functional binding target gene sets (67.7%) extracted
by the LLS method did. And among 46 TFs between our
results and the results of the ECS method, 34 TF func-
tional binding target gene sets (73.9%) extracted by our
method showed prevalence of protein-protein interac-
tion, comparing with only 23 TF functional binding
target gene sets (50.0%) extracted by the ECS method
did. For the 18 common TFs between our results and the
results of the MA algorithm, 14 TF functional binding
target gene sets (77.8%) extracted by our method showed
prevalence of protein-protein interaction in comparison
with only 12 TF functional binding target gene sets
(66.7%) extracted by the MA algorithm did (Figure 5). In
summary, our method can extract functional binding tar-
get genes of TFs with better protein functional coopera-
tion than previous approaches can.

Expression coherence analysis

It has been shown that functionally relevant target genes
of TFs tend to have similar mRNA expression profiles
[34]. Using this notion, we calculated the Pearson correla-
tion coefficients from the expression vectors between any
two genes [18]. It has been pointed out that the TF-gene
pairs are usually functional under different cellular condi-
tions [10]. Hence, we collected 40 mRNA expression time
series profiles under different conditions, as described in
the Material section, and verified the expression coherence
under these conditions. Since both positive correlation and
negative correlation are both functionally relevant, we took
the squares of the coefficients as our expression correla-
tion measurement. Then under different conditions we
performed the one-tailed rank sum test on the expression
correlation coefficients to compare the expression coher-
ence between two lists of functional binding target genes
of TFs from different methods. We tested on the two dif-
ferent hypotheses: (1) the means of the square of correla-
tion coefficients for the TF functional targets mined out in
this study are Zigher than those generated by other meth-
ods (2) the means of the square of correlation coefficients
for the TF functional targets mined out in this study are
lower than those generated by other methods. Multiple
hypotheses test correction was done by FDR correction
and a threshold of o = 0.05 was adopted.

In different expression time series conditions, we first
counted the percentage of the functional binding target
sets of TFs with statistically higher expression coherence.
Note that the percentages of more expression coherent
functional binding target sets of TFs in two different
methods may not add up to 100% since some of the TF
functional binding gene sets may have statistically invar-
iant average expression correlations between two meth-
ods. Then when one method gained more functional
binding target sets of TFs than the other, we said that
this method is more expression coherent than the other
under this expression time series condition.
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We compared our results with those of LLS, ECS, and
MA methods for all 40 different expression profiles. Com-
pared with the LLS method, our method conveyed better
expression coherence under 31 different conditions. Our
results were more correlated in the expression profiles
than the results of the LLS method under most of the con-
ditions. And our method showed more expression coher-
ent pairs than the ECS method did under all 40 different
conditions. Finally, compared with the MA algorithm, our
method stood out under 21 conditions while the results of
MA algorithm got better expression coherence under 15
conditions (Figure 6). Our methods were still more corre-
lated in the expression profiles than the results of the MA
algorithm. All in all, our method can extract functional
TF-gene binding pairs with better expression coherence.

Comparison with random assignments

To make statistical assessment of the results in this
study, we made simulations against random assignments
of functional/non-functional TF-gene pairs. In our
study, we have shown that about 82% of the original
TF-gene binding pairs suggests functionality. Hence we
randomly removed 18% of the original binding targets
from the 72 analysable TFs as the random assignment
of non-functional TF-gene binding targets. We repeated
this process for 50 times and gained 50 randomly
assigned functional TF-gene binding pair lists. Then we
performed the biological significance validation for the
randomly assigned results as the stochastic lower limit
of the performance of the validation methods.

After that, for the functional enrichment validation and
the prevalence of protein-protein interaction validation,
we used the left-tailed one sample student ¢-test to assess
the significance of our result, compared to randomly gen-
erated TF-gene assignments for these 72 analysable TFs.
The test was performed on the hypothesis that the aver-
age performance of the random results are statistically
lower than the results in this study. As for the expression
coherence validation, we performed the paired two sam-
ple t-test for our results and the random ones in every
expression condition. In each condition-specific expres-
sion profile, we used the rank sum test as described ear-
lier on the two stated hypotheses to compare the
expression coherence between the result in this study
and the randomly assigned TF-gene lists. The number of
target gene sets satisfying the hypothesis of “results in
this study is better than the random results” and the
number of target sets satisfying the hypothesis of “results
in this study is worse than the random results” for the
comparison of our results to the 50 randomly assigned
TF-gene lists formed the testing pairs. We said that our
result is better than random assignments in the specific
condition if we have the right-tailed p-value by the paired
t-test on the 50 testing pairs below 0.05 in this condition.
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As shown in Table 1 to Table 3 and Additional File 5,
the overall performance of results in this study is statis-
tically better than the 50 random TF-gene target lists
(with p-value threshold of 0.05). For the 72 TFs, our
results generated 62 functionally enriched functional
binding target gene sets of TFs, compared to the perfor-
mance of random assignments with mean and standard
deviation equal to 44.8 and 3.53, respectively (one-tailed

p-value = 2.76 x 10). For the validation of prevalence
of protein-protein interaction, there were 53 functional
binding target gene sets of TFs in this study showing
prevalence of protein-protein interaction, while the ran-
dom lists obtained a performance with mean and stan-
dard deviation of 17.68 and 3.78, respectively (one-tailed
p-value = 7.04 x 10™°). Finally for the expression coher-
ence validation, in 39 of the 40 different expression

Table 1 Comparison of our results generated from the dataset of Harbison et al. to randomly assigned TF-gene pair
lists for functional enrichment and prevalence of protein-protein interaction validation.

Harbison et al.

This study Random result One-tailed p-value
Functional enrichment 62/72 448 + 353 2.76E-36 (t = -3441)
Prevalence of PPI 53/72 1768 + 3.78 7.04E-50 (t = -66.13)
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conditions our results were statistically more expression-
coherent than the 50 random lists. Detail of the valida-
tion results can be found in Additional File 5 and Addi-
tional File 6. In summary, the results generated by our
method are statistically meaningful and outperforms
mere random assignments.

Applicability to different datasets

To show that our method for identifying functional TF-
gene binding pairs is not dataset-dependent, we also
performed our method on the dataset provided by Lee
et al. [2]. Since the original binding dataset used in the
ECS method and MA algorithm was from the experi-
mental analysis of Lee et al., we compared the biological
relevance of this result with those generated by the ECS
method and the MA algorithm. In applicable biological
validations, similar conclusion also held for these com-
parisons (See Additional File 4).

For statistical assessment of the our results obtained
by applying our method to the dataset of Lee et al.,,
similar statistical significance also held (See Table 2 and
Table 3). Detail of the validation results can be found in
Additional File 5 and Additional File 6.

Applicability to ChIP-seq datasets and the E. coli genome
The approach described in this study is not restricted to
the Yeast genome or to merely ChIP-chip data. We
further demonstrated that our method can applied to
ChIP-seq binding datasets and to the E. coli genome
data.

ChIP-seq provides a promising way for identification of
transcription factor binding sites, but requires high qual-
ity of antibodies to the transcription factors. Thus the
technique is still not scalable to the genome-wide scale of
transcription factors [35]. While in yeast this is already
done by ChIP-chip, no similar work has yet been done
repeatedly for ChIP-seq. Hence we only showed the
applicability of our method to the binding target of Stel2
identified by ChIP-seq. We adopted the ChIP-seq data
for genome-wide Stel2 transcription factor binding sites
from the work of Lenfrancois et al. [36]. In their work,
the binding targets were manually curated and provided
in the form of binding p-values. We took the binding tar-
gets of Stel2 with the p-value threshold of 0.05, as sug-
gested in their analysis. A total of 926 targets of Stel2
were established from their experimental results. Stel2 is
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Table 3 Number of conditions where our results are more
statistically expression-coherent than random results are.

Harbison et al. Lee et al.

Expression coherent conditions 39 40

a transcription factor known to involve in mating and
cell fusion [37]. Hence we tested the Gene Ontology
enrichment of the original binding target list and the
functional target list filtered by our method. Significantly
enriched GO terms (FDR corrected p-value < 0.001)
related to cell fusion (GO:0000747, conjugation with cellu-
lar fusion) and mating (GO:0019236, response to phero-
mone) were identified in the filtered functional TF-gene
binding targets but not in the original target list (Table 4).
This shows that our method can extract functional bind-
ing targets from the original ChIP-seq dataset.

We also demonstrated the applicability of our algorithm
to the genome-wide data of E. coli. Since there is no other
similar analysis for E. coli, we gathered a literature-proven
benchmark functional TF-gene binding pair set for E. coli
and performed our algorithm on this ground truth dataset.
The benchmark set of 338 functional TF-gene binding
pairs with at least three different experimental supports
was collected from RegulonDB [38]. The negative control
set was generated as described in the Method Section. We
also collected 3990 TF-gene regulation pairs, which con-
veyed the same information as the TFKO data, from Regu-
lonDB. Then we used these TF-gene regulation pairs to
construct the E. coli regulatory relation network. Applying
our method on the prepared control set, we can obtain the
ROC curve by varying the RCSs. As shown in Figure 7,
our method acted as a good classifier for discriminating
functional binding pairs from non-functional binding pairs
with AUC = 0.78. Hence our method can well-suited for
the E. coli genome as well.

Biological applicability of our method

We have listed the potential epistatic regulation cascade
for every functional TF-gene binding pairs settled in this
study (Additional File 2). To demonstrate the biological
applicability of our method, we took the literature-proven
functional TF-gene binding pair (Leu3p, BAP2) as an
example. BAP2 is a gene encoding a permease in Sac-
charomyces cerevisiae for the uptake of branched-chain
amino acids from media containing nitrogen source [39].

Table 2 Comparison of our results generated from the dataset of Lee et al. to randomly assigned TF-gene pair lists for
functional enrichment and prevalence of protein-protein interaction validation.

Lee et al.
This study Random result One-tailed p-value
Functional enrichment 42/46 31.84 + 328 3.11E-27 (t = -21.87)
Prevalence of PPI 34/46 1382 + 321 148E-41 (t = -44.43)
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Table 4 Cellular fusion and mating GO term enrichment for the original binding targets and filtered functional

binding targets of Ste12.

Original target list

Filtered functional targets

Cellular Fusion
Response to Pheromone

33/926 (p = 0.00115)
31/926 (p = 0.00133)

9/48* (p = 7.36E10°)
7/48 * (p = 86E107)

(*indicates statistically enriched.)

Deletion of BAP2 greatly reduced the up-take of leucine,
isoleucine and valine. And Leu3p is a TF in yeast that
regulates the transcription of a group of genes involved
in leucine biosynthesis [40]. In the original binding data-
set from the work of Harbison et al., the promoter region
of BAP2 was found to be bound by Leu3p (with binding
p-value of order 1077). But there were no single TF
knockout evidence showing the regulation of BAP2 by
Leu3p. In our method, we found out that although there
were no TFKO evidence for this TF-gene pair, we could
find a regulation cascade (Leu3p - Msn4p — Rpndp —
Yaplp — Stplp — BAP2) in the constructed regulation
relation network through the TF Stplp with RCS bigger
than 1000. Hence we concluded that the ChIP positive
(Leu3p, BAP2) has hypostatic regulation evidence and is
a functional TF-gene binding pair.

The Leu3p binding site of BAP2 was established by com-
puter assisted analysis [41]. In their work, Nielsen et al.
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Figure 7 The ROC curve of the validation on the ground truth
set for E. coli. When applied to the control set for E. coli, our
method can distinguish functional binding targets from non-
functional binding pairs, shown by the upper left corner trend on
the ROC curve plot with AUC= 0.78. The ground truth set consists
of 338 literature-curated functional TF-gene binding pairs as the
positive control set and 1662 random TF-gene pairs as the negative
control set.

also showed that mutating the Leu3p binding site reduced
the transcription level of BAP2 on SC medium and con-
cluded that Leup3 binding is required to obtain full BAP2
promoter activity. This matches our classification of the
functional binding of Leup3 to BAP2. They also demon-
strated that Stp1lp can functionally bind to the promoter of
BAP?2 independently of the presence of the functional bind-
ing of Leu3p to BAP2 and are synergistic with Leu3p, sug-
gesting the possible masking effect on the knockout event
of Leu3p on BAP2.

Conclusion

Inferring functional TF-gene binding pairs serves as the
first step toward under-standing the regulatory pathways
in cells. We have demonstrated that by integrating the
ChIP-chip data with the TFKO data, our method can
infer functional TF-gene binding pairs. And compared
with three previous works, our method generated more
biologically relevant results. Using our identified func-
tional TF-gene binding pairs, it is possible to reconstruct
a more reliable cellular transcriptional network, which
will be helpful to unravel the unknown cellular mechan-
isms in future researches.

Additional material

Additional file 1: Percentage of functional binding targets.
Additional file 1 contains the table showing the percentages of
functional binding target genes of TFs with available TFKO data. In the
table, the number of binding targets specified in the original binding
data and the number of functional binding targets mined out by our
method are shown. The percentage of functional target genes was
calculated by the number of functional binding targets divided by the
number of original binding targets.

Additional file 2: Functional TF-gene binding pairs. Additional file 2
contains the table of functional TF-gene binding pairs mined out by our
method. The potential epistatic regulation cascades were also listed in
the table for possible subsequent analysis. Note that epistatic regulation
cascades of path length one refer to the directly curated TFKO evidence.

Additional file 3: Biological significance validation on the results
generated from the dataset of Harbison et al. Additional file 3 zipped
the raw files for the three biological validations: 1) Prevalence of protein-
protein interaction validation 2) Functional enrichment validation 3)
Expression coherence validation. Detailed description of the raw files is
written in the file ‘ReadMe.doc’ in Additional File 3.

Additional file 4: Supplementary validation for the biological
significance on the results using the dataset generated by Lee et al.
Additional file 4 contains Figure S1-S3 showing the biological significance
validation on our results using the dataset generated by Lee et al. Figure S1
demonstrated the percentages of functional binding target genes of TFs
with available TFKO data. Figure S2 showed the results of functional
enrichment validation and prevalence of protein-protein interactions
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validation. Figure S3 showed the results of the expression coherence
comparison.

Additional file 5: Summary of the comparison of our results to the
50 randomly assigned TF-gene lists. Additional file 5 contains the

results generated using the dataset of Harbison et al. and the results
generated using the dataset of Lee et al.

Additional file 6: Validation results of our results compared to 50
randomly assigned TF-gene lists. Additional file 1 zipped the raw files
for the three biological validations on the comparison of our results,
both for the results generated using the dataset of Harbison et al. and
the results generated using the dataset of Lee et al, to the 50 random
TF-gene lists. Detailed description of the raw files is written in the file
‘ReadMe.doc’ in Additional File 6.

table showing the detailed summary for Table 1 to Table 3, both for the

List of abbreviations used

ChIP: chromatin immunoprecipitation; TF: transcription factor; TFKO data:
transcription factor knockout data; PPI: protein-protein interaction; LLS: log
likelihood score method; ECS: expression coherence score method.
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