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Abstract

Background: Phylogenetic networks are employed to visualize evolutionary relationships among a group of
nucleotide sequences, genes or species when reticulate events like hybridization, recombination, reassortant and
horizontal gene transfer are believed to be involved. In comparison to traditional distance-based methods,
quartet-based methods consider more information in the reconstruction process and thus have the potential to be
more accurate.

Results: We introduce QuartetSuite, which includes a set of new quartet-based methods, namely QuartetS, QuartetA,
and QuartetM, to reconstruct phylogenetic networks from nucleotide sequences. We tested their performances and
compared them with other popular methods on two simulated nucleotide sequence data sets: one generated from a
tree topology and the other from a complicated evolutionary history containing three reticulate events. We further
validated these methods to two real data sets: a bacterial data set consisting of seven concatenated genes of 36
bacterial species and an influenza data set related to recently emerging H7N9 low pathogenic avian influenza viruses
in China.

Conclusion: QuartetS, QuartetA, and QuartetM have the potential to accurately reconstruct evolutionary scenarios
from simple branching trees to complicated networks containing many reticulate events. These methods could
provide insights into the understanding of complicated biological evolutionary processes such as bacterial taxonomy
and reassortant of influenza viruses.
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Background
In the natural history of life, recombination, reassortant,
hybridization and horizontal gene transfer (HGT) rep-
resent four types of important reticulate evolutionary
events. For example, recombination plays a significant
role in driving human genome evolution [1]; reassortant
occurs frequently in influenza viruses and has facilitated
the generation of 1957 H2N2, 1968 H3N2, and 2009
H1N1 pandemic influenza viruses [2]; hybridization is
crucial in the evolution of plants and fish [3]; and HGT
is a significant evolutionary mechanism in shaping the
diversification of bacteria genomes [4]. Although most
evolutionary events can be modeled as tree-like relation-
ships, these reticulate events can be expressed muchmore
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effectively by networks. Moreover, even if the history is
not reticulate, parallel evolution,model heterogeneity, and
sampling or inference errors may also cause the ambiguity
in reconstructing a unique tree. In such cases, networks
are efficient in visualizing a group of feasible trees.
Generally speaking, a phylogenetic network is a general-

ization of a phylogenetic tree, allowing non tree-like struc-
tures to represent conflicting signals or alternative evolu-
tionary histories of a group of taxa. Under this umbrella
concept, there are two fundamentally different types of
phylogenetic networks according to the interpretation of
reticulate blocks. An explicit network describes an explicit
evolutionary scenario, e.g. hybridization network [3,5],
recombination network [6,7] and HGT network [8,9]. In
contrast, an implicit network aims to capture incompati-
bilities in the data, e.g. split network [10,11]. We focus on
implicit network in this study.
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In past decades, a number of methods have been
proposed for reconstructing implicit networks either
from pairwise distances, e.g. Split-Decomposition [10,11],
Median Network [12], and Neighbor-Net [13] or from
weighted triplets and quartets, e.g. QNet [14], SuperQ
[15], and QuartetNet [16]. Distance-based methods are
usually computationally efficient but tend to be inaccurate
since pairwise distances reflect only small information of
two taxa, while quartet-based methods are more accurate
since quartet contains the information of four taxa. How-
ever, simulation studies show that current quartet-based
methods are suffered from identifying false-positive and
false-negative splits of the taxa set, and the trivial split
weights are usually systematically overestimated [16].
Consistency is an important criteria to evaluate the

reconstruction performance of a reconstruction method.
A reconstruction method is considered as consistent on a
special set of trees or networks if the method reconstructs
precisely every tree or network in the set provided that the
input data are generated from it and that sufficient data
are available. Theoretically, one can prove that Neighbor-
Joining is consistent on compatible split systems (trees)
[17]; Split-Decomposition is consistent on weakly com-
patible split systems [10,11]; Neighbor-Net, QNet and
SuperQ are consistent on circular split systems [13-15];
and Quartet-Net is consistent on 2-weakly compatible
split systems [16]. Since 2-weakly compatible split system
contains trees, circular split system, and weakly com-
patible split system as proper subsets, Neighbor-Joining,
Neighbor-Net, Split-Decomposition, QNet, and superQ
tend to have more false-negatives because these meth-
ods restrict the splits they reconstruct to be compatible,
weakly compatible, and circular. Any split does not fit
the criterion will be removed even if they are true split.
Quartet-Net also have the potential to generate false neg-
atives since it takes minimum in calculating the weight
of a split whenever there are many possible scenarios
[16]. A looser criterion like second minimum, average,
or maximum should be able to keep more true splits. In
addition, all methods tend to generate some false-positive
splits when there are some randommutations or sequence
errors, and thus a filtering strategy should be applied to
remove the false positives while keeping the final results
interpretable.
In this paper, we present three quartet-based methods

QuartetS, QuartetA, and QuartetM in QuartetSuite to
reconstruct split networks from a collection of weighted
triplets and quartets. These methods first calculate triplet
and quartet weights directly from multiple sequence
alignments (MSAs) by a parsimony method and then
functions by iteratively decomposing all triplet and quar-
tet weights into simple components based on full splits.
The three methods QuartetS, QuartetA, and QuartetM
are designed in the same manner with slight differences.

Specifically, QuartetM is a maximum method, in which
we take the maximum whenever there are several possi-
ble weights of a split. Similarly, QuartetA is an average
method and QuartetS is a minimummethod. Analyses on
simulation data and real data show that these methods
are capable of reconstructing accurate phylogenies from
branching trees to complicated scenarios containingmany
reticulate events. In addition, the methods are effective in
inferring phylogenetic distances.

Results and discussion
The proposed quartet-based methods were validated
through application into two artificial data and two real
data sets. The first artificial data set was simulated
from a simple tree phylogeny, whereas the second one
was from a complicated phylogenetic scenario contain-
ing three reticulate events. The purpose was to show that
the quartet-based methods are competent in accurately
reconstructing a wide range of phylogenetic networks,
from branching trees to very complicated reticulate phy-
logenies. We chose a bacterial data set consisting of seven
concatenated genes of 36 bacterial species whose evo-
lutionary history is generally believed to contain very
few reticulate events. We also chose an influenza data
set containing 22 selected influenza A viruses related
to the evolutionary pathways for the recently emerg-
ing H7N9 low pathogenic avian influenza virus. Since
the confirmation of the first H7N9 case on March 27,
2013 [18], H7N9 has caused more than 136 human cases
in China (http://www.who.int/influenza/human_animal_
interface/influenza_h7n9/Data_Reports/en/). The read-
ers are referred to the online website http://sysbio.
cvm.msstate.edu/QuartetMethods/ for the nucleotide
sequences and nexus files used and generated in this study.

Simulated data
The software Dawg [19] was applied to generate six DNA
sequences from a phylogenetic tree in Figure 1 and seven
DNA sequences from a phylogenetic network contain-
ing three reticulate events in Figure 2. Specifically, the
model is set to be GTR+Gamma+I; the substitution rate
is 0.01 and the sequence length is 10,000 bp for tree
and 80,000 bp for network since it is a concatenation of
eight underlying trees. To avoid randomness, we com-
pleted 100 runs of Dawg and the 100 multiple sequence
alignment (MSA) were applied to six methods QuartetS,
QuartetA, QuartetM, Quartet-Net [16], Neighbor-Net
[13], and Neighbor-Joining [20] for phylogenetic tree and
network reconstruction.

Tree analysis
Table 1 lists all true splits and splits reconstructed by the
six methods with bootstrap values larger than or equal to
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Figure 1 A phylogenetic tree with 6 leaves. Each labeled node
indicates a taxon and r is the common ancestor. Branch length
indicates evolutionary distance between two taxa.

15 in 100 runs for the tree data. The value in the column
“wei” denotes the averaged weight on 100 runs. We only
listed one block of a split in Table 1 to increase clarity. For
instance, split ab|cedf is listed as ab. We normalized each
split with the weight of split ab since it was successfully
reconstructed by all of these six methods. All methods
successfully reconstructed the true splits in all 100 runs.
However, Neighbor-Net and Quartet-Net reconstructed
a few false-positive splits. For example, Neighbor-Net

Figure 2 A phylogenetic network with 3 reticulates. Each node
labeled in lower case letter indicates a taxon and r is the common
ancestor. There are three reticulate events labeled by A, B, and C. For
example, the sequence of taxa h is resulted from concatenating partial
sequence from j and partial sequence from k in reticulate event A.

reconstructed 10 additional splits with bootstrap values
varying from 15 to 40. These false-positive splits might be
due to some random mutations in the data. In addition,
except for QuartetA andQuartetM, all other methods sys-
tematically over-estimate the weights of trivial splits and
the weights from QuartetA is closer to the true weights
with a root mean square error of 0.016. Thus, QuartetA
might be good for reconstructing tree-like phylogenies.

Analysis on a phylogenetic network with three reticulate
events
In Table 2, all true splits and splits reconstructed by the six
methods with bootstrap value larger than or equal to 10
for the network data are listed. The weight of a true split
in Figure 2 is calculated as summing up the split weights
of this split in eight underlying trees by switching off one
branch in a reticulate event. For example, an underlying
tree is obtained by switching off three branches jA, hC,
and iB in reticulate events A, B, and C. Similarly, we also
normalize each split with the weight of split abc and then
multiple it by four for convenience. As can be seen from
the table, QuartetS, QuartetA, QuartetM, and Quartet-
Net accurately reconstruct all the true splits in all 100
runs, while Neighbor-Net and Neighbor-Joining fail to
reconstruct a lot of true splits. For example, Neighbor-Net
fails to reconstruct the split acefg in more than 90 out of
100 runs and Neighbor-Joining fails to reconstruct splits
abd, abce, abcg, aefg, abceg, and acefg in all 100 runs. This
occurs because that Neighbor-Joining only reconstruct
trees and Neighbor-Net also reduces the splits to make
the split system planar. As a result, the reconstructed
trees and networks are much simpler than the true phy-
logeny, distorting the originally complicated evolutionary
histories. In addition, Neighbor-Net and Quartet-Net also
reconstruct a few false-positive splits with low weights.
It is worth noting that QuartetS reconstructs the closest
non-trivial split weights with a root mean square error of
0.054 and QuartetA reconstructs the most accurate triv-
ial split weights with a root mean square error of 0.124.
Thus, QuartetS and QuartetA could be useful in recon-
structing phylogenetic networks with a lot of reticulate
events.
For a better comparison of the reconstruction per-

formance of QuartetA, Quartet-Net, Neighbor-Net, and
Neighbor-Joining on simulated data sets, we plot the sen-
sitivity and specificity of these methods over the 100 runs
in Figure 3(A) and 3(B), respectively. We only plot Quar-
tetA because the sensitivity and specificity of QuartetS,
QuartetA, and QuartetM are the same by our definition
(see Methods). For tree reconstruction, the sensitivities
of all methods and the specificities of Neighbor-Joining
and QuartetA are equal to 1, while Neighbor-Net has
the lowest median specificity. For network reconstruction,
only QuartetA has the perfect performance, indicating
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Table 1 Comparison of true and reconstructed splits and weights on the artificial tree by 6methods

True Phylo QuartetS QuartetA QuartetM Quartet-Net Neighbor-Net Neighbor-Joining

Split Wei Split Wei BV Split Wei BV Split Wei BV Split Wei BV Split Wei BV Split Wei BV

ab 1 ab 1 100 ab 1 100 ab 1 100 ab 1 100 ab 1 100 ab 1 100

abcd 3 abcd 3.03 100 abcd 3 100 abcd 2.98 100 abcd 3.03 100 abcd 2.98 100 abcd 2.98 100

abef 1 abef 1.03 100 abef 1.03 100 abef 1.03 100 abef 1.03 100 abef 1.02 100 abef 1.02 100

a 1 a 1.03 100 a 0.99 100 a 0.98 100 a 1.03 100 a 1.04 100 a 1.04 100

b 1 b 1.04 100 b 1 100 b 0.99 100 b 1.04 100 b 1.05 100 b 1.05 100

c 1 c 1.03 100 c 0.99 100 c 0.98 100 c 1.03 100 c 1.04 100 c 1.04 100

d 1 d 1.03 100 d 0.99 100 d 0.98 100 d 1.03 100 d 1.04 100 d 1.04 100

e 1 e 1.04 100 e 1.01 100 e 1.00 100 e 1.04 100 e 1.04 100 e 1.05 100

f 1 f 1.06 100 f 1.03 100 f 1.02 100 f 1.06 100 f 1.06 100 f 1.06 100

abc 0.01 15 abc 0.02 31

abd 0.02 15 abd 0.02 40

acef 0.01 15 acef 0.01 21

abf 0.02 34

acd 0.02 33

aef 0.02 36

abe 0.02 35

ad 0.01 16

ae 0.01 15

adef 0.01 19

The column “True Phylo” denotes the underlying truth and the columns “QuartetS”, “QuartetA”, “QuartetM”, “Quartet-Net”, “Neighbor-Net”, and “Neighbor-Joining”
denote the reconstructed results by each method respectively. In addition, “Wei” denotes the average weight of the corresponding split over 100 runs; “BV” denote
bootstrap value.

its potential in reconstructing complex phylogenetic net-
works, whereas the sensitivity of Neighbor-Joining is the
lowest.

Real data
To remain concise, we only showed the phylogenetic
networks constructed by QuartetS as it performs well
in reconstructing non-trivial splits in the artificial data
above.

Analysis on bacteria data
The bacteria sequence data set consists of concatenated
sequences of seven important genes (16S rRNA, 23S
rRNA, gyrB, phyH, recA, rpoA, and rpoD) from 36 bac-
teria species, with lengths around 9200 ∼ 12700 base
pairs. Each sequence falls into three groups (GC-poor,
GC-median, GC-rich) according to their percentage lev-
els ( ≈ 30%, ≈ 50% and ≈ 60%) of GC content. There
are 14 GC-poor, 11 GC-median, and 11 GC-rich bacte-
ria respectively. The readers are referred to [21] for the
detailed sequence information of concatenated as well as
each gene of the species.

We use Clustal-W [22] to align 11 GC-rich sequences,
25 GC-poor and GC-rich sequences, and all 36 sequences,
respectively. The obtained multiple alignments are taken
as inputs to QuartetS, QuartetA, QuartetM, Quartet-Net
[16], Neighbor-Joining [20], and Neighbor-Net [13]. We
ran the program in a Dell desktop with 2.93G HZ pro-
cessor and 4 GB memory. In practice, Neighbor-joining is
the fastest, and the time for QuartetS, QuartetA, Quar-
tetM, and Quartet-Net vary from seconds to around 2
minutes for different MSA sequences. Then, the recon-
structed weighted split systems are viewed by SplitsTree
[23]. Due to page limitations, we only show the three split
networks reconstructed by QuartetS.
Figure 4 shows the split network reconstructed by Quar-

tetS on 11 GC-rich bacteria. As commonly believed, it is
generally a tree structure with reticulate blocks of very
small weights. Figure 5 and Figure 6 show the QuartetS
split network on 25GC-poor andGC-rich bacteria, and all
36 bacteria respectively, which are also generally tree-like
with a few reticulation blocks. The bacteria in the same
genus are classified together, supporting the current bac-
terial taxonomy. An interesting observation is that there is
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Table 2 Comparison of true and reconstructed splits and weights on the artificial network by 6methods

True Phylo QuartetS QuartetA QuartetM Quartet-Net Neighbor-Net Neighbor-Joining

Split Wei Split Wei BV Split Wei BV Split Wei BV Split Wei BV Split Wei BV Split Wei BV

ab 1 ab 1.08 100 ab 1.09 100 ab 1.12 100 ab 1.08 100 ab 0.76 80 ab 0.41 56

abc 4 abc 4 100 abc 4 100 abc 4 100 abc 4 100 abc 4 100 abc 4 100

abd 1 abd 1.03 100 abd 1.03 100 abd 1.03 100 abd 1.02 100 abd 1.32 50

abcd 4 abcd 3.99 100 abcd 3.99 100 abcd 3.99 100 abcd 3.99 100 abcd 4.17 100 abcd 3.97 100

abce 1 abce 1.01 100 abce 1.02 100 abce 1.01 100 abce 1.01 100 abce 0.86 46

abcg 1 abcg 1.03 100 abcg 1.03 100 abcg 1.03 100 abcg 1.02 100 abcg 0.89 54

aefg 1 aefg 1.02 100 aefg 1.03 100 aefg 1.02 100 aefg 1.02 100 aefg 1.39 50

abcde 1 abcde 1.08 100 abcde 1.09 100 abcde 1.12 100 abcde 1.07 100 abcde 0.76 67 abcde 0.39 46

abcdg 1 abcdg 1.07 100 abcdg 1.08 100 abcdg 1.11 100 abcdg 1.07 100 abcdg 0.71 68 abcdg 0.39 54

abceg 2 abceg 2.07 100 abceg 2.09 100 abceg 2.12 100 abceg 2.07 100 abceg 2.36 47

acefg 2 acefg 2.06 100 acefg 2.07 100 acefg 2.11 100 acefg 2.06 100 acefg 2.23 8

adefg 1 adefg 1.08 100 adefg 1.09 100 adefg 1.12 100 adefg 1.07 100 adefg 0.76 73 adefg 0.43 44

a 10 a 10.31 100 a 10.15 100 a 10.17 100 a 10.43 100 a 10.07 100 a 9.42 100

b 6 b 6.25 100 b 6.11 100 b 6.07 100 b 6.33 100 b 7.62 100 b 7.15 100

c 10 c 10.26 100 c 10.11 100 c 10.12 100 c 10.38 100 c 10.05 100 c 9.40 100

d 4 d 4.21 100 d 4.06 100 d 4.08 100 d 4.26 100 d 6.02 100 d 6.82 100

e 10 e 10.28 100 e 10.14 100 e 10.16 100 e 10.41 100 e 10.12 100 e 9.43 100

f 6 f 6.25 100 f 6.11 100 f 6.06 100 f 6.34 100 f 7.22 100 f 7.11 100

g 10 g 10.31 100 g 10.16 100 g 10.18 100 g 10.44 100 g 10.14 100 g 9.47 100

ac 0.08 99 abdfg 0.04 15

abcdf 0.08 97 ag 0.04 13

acdeg 0.02 74 ae 0.03 12

acdef 0.03 66 abdef 0.04 10

ae 0.04 65

abdeg 0.03 65

ag 0.04 64

abdfg 0.04 64

acdfg 0.02 62

abdef 0.04 59

af 0.03 58

The column “True Phylo” denotes the underlying truth and the columns “QuartetS”, “QuartetA”, “QuartetM”, “Quartet-Net”, “Neighbor-Net”, and “Neighbor-Joining”
denote the reconstructed results by each method respectively. In addition, “Wei” denotes the average weight of the corresponding split over 100 runs; “BV” denote
bootstrap value.

a split in Figure 5, which divides the GC-poor andGC-rich
bacteria. And the GC-median bacteria are mixed among
GC-rich and GC-poor bacteria in Figure 6. The results
suggest that GC content might be an important factor in
the evolution of bacteria.

Analysis on flu data
We downloaded whole genome sequences of 22
influenza A viruses related to the recently emerg-
ing H7N9 low pathogenic avian influenza viruses in

China [18]. Similarly, we aligned them using Clustal-W
[22] and reconstructed the split network by QuartetS.
The reconstructed network are shown in Figure 6.
In Figure 7, the three viruses that caused human H7N9
cases (A/Shanghai/1/2013, A/Shanghai/2/2013, and
A/Anhui/1/2013) are grouped together. The phyloge-
netic network shows that these viruses were possibly
derived from a reassortment event between two ancestral
viruses A and B. Virus A might emerge by an reassort-
ment event between avian-origin H7N9 viruses and
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Figure 3 Comparison of four phylogenetic reconstruction methods in tree (A) and network (B) reconstruction. The red bar indicates
sensitivity and the other one indicates specificity; the horizontal line indicates the median performances.

a virus D associated with H7N3 and H7N7 viruses.
Virus B were shown to be genetically linked to H9N2
viruses.
Our results suggested that these novel H7N9 viruses

in China are a triple reassortant from avian-origin H7N9
viruses, H9N2 viruses, and H7N3 viruses, which are

consistent with other reports [18]. However, the detailed
evolutionary process for these H7N9 viruses may bemuch
more complicated, and we will further analyze the details,
including the reassortment temporal order and each
potential scenario, in the future. A possible direction is to
reconstruct the ancestral sequences at the internal nodes

Figure 4 QuartetS networks on 11 GC-rich bacteria. Each node indicates a bacteria and the labels in bold font indicate the genus of a group of
bacteria.
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Figure 5 QuartetS networks on 11 GC-rich and GC-poor bacteria. Each node indicates a bacteria and the labels in bold font indicate the genus
of a group of bacteria. The two groups GC-Rich and GC-Poor bacteria are shaded separately.

by minimizing the number of substitutions. Since there
are many methods for ancestral states reconstruction
along a tree topology, e.g. [24], we need only recon-
struct ancestral states at reticulate blocks, which could be
resolved by considering all underlying tree structures and
applying parsimony or maximum likelihood criterion at
the block.
We have shown that the proposed quartet based meth-

ods achieved good sensitivity and specificity on simulated
data. However, the comparison of reconstruction meth-
ods on real data is hard since the real evolutionary his-
tory is unknown. Thus, we only listed the number of
full splits reconstructed by QuartetS, QuartetA, Quar-
tetM, Quartet-Net, Neighbor-Net, and Neighbor-Joining
in Table 3. It is interesting that sometimes quartet-based
methods reconstructed even fewer splits than Neighbor-
Joining, indicating that the full resolution of taxa is not
achieved. This scenario also happens for other reconstruc-
tion methods, e.g. Split-Decomposition [16]. Generally,
QuartetS and QuartetM reconstruct very few number of

full splits, while QuartetA reconstructs moderate number
among the comparison methods.

Conclusions
We have introduced and implemented three quartet-
based methods QuartetS, QuartetA, and QuartetM
in QuartetSuite to infer phylogenetic networks from
multiple sequence alignment. As can be seen from both
simulation data in which the evolutionary histories are
known and two real data sets, these three methods
can accurately reconstruct phylogenetic scenarios from
branching trees to complicated reticulation events. In
addition, QuartetS and QuartetM are also good at esti-
mating evolutionary distances between ancestral taxa and
current taxa. A comparison study shows that QuartetA
is useful in reconstructing tree-like phylogenies, while
QuartetS performs well in reconstructing phylogenies
with a lot of reticulation events. Our methods have the
potential to help untangle the complicated mechanisms
underlying evolution.
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Figure 6 QuartetS networks on all 36 bacteria. Each node indicates a bacteria and the labels in bold font indicate the genus of a group of
bacteria. The two groups GC-Rich and GC-Poor bacteria are shaded separately.

Methods
Splits and their weights
A split on a taxa set X is a bipartition of X into 2 non-
empty disjoint subsets (or blocks). The split with two
blocks A and B is denoted by A|B. If A and B contain all
taxa in X, then A|B is called a full split; otherwise, it is
called a partial split. A split A|B is called trivial if |A| = 1
or |B| = 1. For example, the phylogenetic tree in Figure 1
contains six trivial full splits e.g. a|bcdef , three non-trivial
full splits ab|cdef , abcd|ef , and abef |cd and many partial
splits, e.g. ab|ef . For any split A|B, we define w(A|B) to
be the evolutionary distance between taxa set A and B.
For example, w(abcd|ef ) = 3 in Figure 1. Specifically, if
A = {a} and B = {b} contain only 1 taxon in each set,
then w(a|b) is the distance between taxon a and b. A split
of type a|bc is called a triplet and thus w(a|bc) is called
a triplet weight. Similarly, a split of type ab|cd is called a
quartet andw(ab|cd) is called a quartet weight. In general,
a split A|Bwith |A| = m and |B| = n is called anm|n-split.
For any four taxa a, b, c, and d, there are three different
quartets denoted by ab|cd, ac|bd, and ad|bc, respectively,
and thus there are overall 3

(n
4
)
different quartets for a taxa

set of size n.
We define a weighted split system to be a set of full

splits together with their split weights. There is a corre-
spondence between a split network and a weighted split
system [10]. For example, a phylogenetic tree defines a
natural weighted split system, where each edge in the tree
defines a full split and the edge length defines the weight

of that split. On the contrary, if all the edges and their
lengths are provided, then the tree is fixed [25]. Thus, we
can formulate the problem of reconstructing phylogenetic
networks as calculating the weight of all full splits for a
given taxa set. After the weighted split system is calcu-
lated, a software called splitstree [23] is used to visualize
the network.

Calculating triplet and quartet weights
We provide a naive parsimony method to estimate the
triplet and quartet weights from the multiple sequence
alignment of a taxa set. For any quartet ab|cd, we first col-
lect the sub-alignment consisting only of the sequences
a, b, c, and d from the multiple sequence alignment.
w(ab|cd) is defined as the proportion of sites such that
a and b share a same character c1, and c and d share a
character c2, but c1 �= c2. This could be considered as a
generalization of uncorrected P distance for a pair of taxa.
Similarly, one can define triplet weight. It is worth noting
that there are a lot of methods to calculate quartet and
triplet weight, for example likelihood methods, and the
weights from all these methods can be directly applied to
our algorithms.

Quartet based methods
Using the quartet and triplet weights calculated from the
multiple sequence alignment, we compute the full split
weights from three methods QuartetS, QuartetA, and
QuartetM. We used QuartetA as an example and listed
the general steps in the following,
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Figure 7 Reassortant network related to H7N9 influenza A viruses.

QuartetA
Input: all weighted triplets and quartets, e.g. w(a|bb′)
and w(aa′|bb′)
Calculate 2|n-splits: suppose |B| ≥ 3,
w(aa′|B) = max{0, 12Avgbb′b′ ′∈B{w(aa′|bb′) −
w(bb′|b′′a)+w(b′′a|a′b)−w(a′b|b′b′′)+w(b′b′′|aa′)}}
Calculate 3|3-splits: suppose |A| = |B| = 3,
w(A|B) = min

{
Avga∈A{w(A − a|B) − w(A − a|B + a)} ,

Avgb∈B{w(A|B − b) − w(A + b|B − b)}}}
Calculatem|n-splits: suppose |A| ≥ 3 and |B| ≥ 3,
w(A|B) = mina,a′ ,a′ ′∈A;b,b′ ,b′ ′∈B w(aa′a′′|b, b′b′′)
Calculate trivial full splits:
w(a|X − a) = minb,c∈X−a

{
w(a|bc) − ∑

a∈A; b,c∈B A|B}

Filter splits: Remove non-trivial full splits with weight
less than c% of the average weight of trivial full splits.

Output:Weighted split system

Here, “Avg” means taking the average of all the
values. The difference between QuartetS, QuartetA, and

QuartetM lies in how the weights of large splits were cal-
culated from those of small ones. In QuartetM, the “Avg”
is replaced by maximum value in all possible scenarios,
whereas in QuartetS it is the second minimum value.
The parameter c is a user defined threshold value for

filtering random splits. We test the performance of c on
two simulated data and the bacteria data. Specifically, we
check the variation of sensitivity and specificity of Quar-
tetS by letting c vary from 0 to 100 with a step of 5. The
results are shown in Figure 8. As can be seen, QuartetS
achieves perfect performances when c varies from 5 to
70 for tree, and when c varies from 5 to 10 for network.
Since the simulated tree and network are two extreme
cases, we believe that c = 10 performs well in removing
some splits incurred by random mutations and sequenc-
ing errors in general. As for bacteria data, we plotted in
Additional file 1: Figure S1 the variation of the number
of full splits reconstructed by QuaretS and QuartetA with
the increasing of c since the true evolutionary history is
unknown. In Additional file 1: Figure S1, the numbers of
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Table 3 Comparison of the numbers of full splits
reconstructed by six methods

Methods GC-Poor GC-Poor and rich All bacteria Influenza

QuartetS 20 43 56 38

QuartetA 22 59 120 42

QuartetM 21 46 58 40

Quartet-Net 22 45 60 49

Neighbor-Net 29 77 114 68

Neighbor-Joining 19 47 69 41

full splits reconstructed by both methods decrease with
the increase of c. c being 5 to 10 seems to be able to reduce
the complexity of the final network while keeping inter-
pretable results, and all curves becomes flat when c is
larger than 30. In addition, QuartetA is more affected by
the choice of c than QuartetS on bacteria data. Theoreti-
cally, c is related to mutation rate and branch length, and
a detailed analysis will be performed in the future.

Sensitivity and specificity
For n taxa, there are overall 2n−1 − 1 splits. The splits in
the true phylogeny are condition positives, and the other
splits are condition negatives. The splits reconstructed by a
reconstruction method are test outcome positives, and the
other splits are test outcome negative. By definition, true
positive splits are the intersection of condition positives
and test outcome positive and true negative splits are the

intersection of condition negatives and test outcome neg-
ative. The precision of a reconstruction method is defined
as

Precision = number of true positive
number of condition positive

and specificity is defined as

Specificity = number of true negative
number of condition negative

.

Implementation
A direct implementation of these methods will lead to
exponential algorithms. Similar to [10] and [16], we
applied an alternative way that will improve them to poly-
nomial algorithms in most cases. A split A|B is said to
display another split A′|B′ if either A′ ⊆ A and B′ ⊆ B, or
A′ ⊆ B and B′ ⊆ A. For example, ab|cdef displays ab|cd.
The following lemma is proved in [10].

Lemma 1. If a split A|B displays another split A′|B′, then
w(A|B) ≤ w(A′|B′).

By this lemma, if a partial split receives weight 0, then
all the splits displaying this split will be associated with
weight 0. To make use of this property, we implemented
quartet methods in the following way: Suppose there are n
taxa and they are ordered by number 1, 2, 3, · · · , n. There
are only three quartets 12|34, 13|24, and 14|23 for the first
4 taxa 1, 2, 3, 4. We stored the quartets together with their
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Figure 8 The influence of threshold c on sensitivity and specificity of QuartetS for two simulated data. The sensitivity and specificity plotted
for all 100 runs with the horizontal line in the bar indicating themedian performances. The upper whisker extends from the hinge to the highest value
that is within 1.5× IQR of the hinge, where IQR is the inter-quartile range, or distance between the first and third quartiles. The lower whisker extends
from the hinge to the lowest value within 1.5 × IQR of the hinge. Data beyond the end of the whiskers are outliers and plotted as solid squares.
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weights in an active set, say S. After that, iteratively we
added i = 5, 6, · · · , n to the left and right blocks of the
splits stored in S and calculated the weights of newly gen-
erated splits from those of splits already resolved. Noticing
that the only splits that cannot be generated in this way
were ki|1 · · · k−1 k+1 · · · i−1 for k = 1, · · · , i−1, we also
calculated their weights and added them to S. At the end
of each iteration, we removed the splits with weight 0 from
S since they cannot be further extended to splits with pos-
itive weights. After the last iteration, only full non-trivial
splits with nonzero weights were left in S. We also cal-
culated the trivial splits and added to S. The process is
illustrated in the following algorithm,

Algorithm 1: An alternative way to implement
quartet methods
Data: All quartet and triplet weights
Result: A weighted split system S
Initialization: Set S = {12|34, 13|24, 14|23} ;
for i = 5, 6, · · · , n do

(1) Add i to every split in S and calculate weights
of new splits;
(2) Calculate the weights of splits
ki|1 · · · k − 1 k + 1 · · · i − 1 for k = 1, · · · , i − 1 ;
(3) Update S by the non-zero weight splits in (1)
and (2) ;

end
Add trivial full splits to S and filter S

It could be proven that for some special split systems the
number of non-zero splits in each iteration are bounded
[10,16]. Thus, the time complexity of quartet methods is
polynomial for these special split systems like the split sys-
tem from trees. However, it is beyond the scope of this
study. We implemented the algorithm in C++ and the
codes are downloadable for free from http://sysbio.cvm.
msstate.edu/QuartetMethods/.

Additional file

Additional file 1: The effect of c on bacteria data.
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