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Abstract

biology modeling research.

Background: A major challenge in mathematical modeling of biological systems is to determine how model
parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to
address this issue using a systematic approach. Here, we propose a simple methodology that first performs an
enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can
produce the required system dynamics; this is then followed by a statistical test to elucidate the association
between individual parameters and different parts of the system’s dynamics.

Results: We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics,
namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental
data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic
parameters and that these motifs are governed by constraints of the specified system dynamics.

Conclusions: A systematic approach based on enrichment statistical tests has been developed to elucidate the
relationships between model parameters and the roles they play in affecting system dynamics of a prototype
biological network. The proposed approach is generally applicable and therefore can find wide use in systems

Keywords: Kinetic motif, Parameter profile, Biological network, Systems biology

Background

Systems biology aims to unravel the design principles
of living organisms from a network perspective [1,2].
Advances in experimental studies have generated a
large amount of data on several key biological processes
[3-8], and networks of interactions between molecular
species have been hypothesized [9-14]. Despite these
advances, one unresolved challenge in systems biology is to
understand how the hypothesized molecular interactions
can lead to the observed biological phenomenon for com-
plex biological systems. One way of pursuing this is via
mathematical modeling of biological processes, which can
also generate testable hypothesis for future experiments.
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Biological processes are often complicated, and the
complexity of their mathematical models usually in-
creases with the amount of parameters involved. This
generally gives rise to two fundamental problems in
mathematical modeling. First, it is possible to have mul-
tiple sets of parameter values that are equally likely to
produce the observed data and finding the “best” param-
eter set might be insufficient to fully characterize a bio-
logical system if such a parameter set is not the only set
with biological relevance [15]. Second, understanding the
role of individual parameters on different aspects of ob-
served systems dynamics can be difficult for parameter-
rich models as it might be too time consuming to explore
this systematically and exhaustively. Although a number of
approaches, for instance the genetic algorithm-based method
[16] and others [15,17], have been developed to search for
parameter solutions in high dimensional spaces, they have
not been extended to make inferences on the contribution of
individual parameters to specific components of the system
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dynamics. As such, in this paper we propose a general frame-
work for addressing the aforementioned problems in math-
ematical modeling of biological systems. Our methodology
can be summarized as follows. For a given mathematical
model of a biological process, one first defines the system’s
dynamics that the model is required to reproduce; one then
searches through the parameter space by a sampling method,
and keeps those sets of parameters with which the model
can produce the required dynamics. These then form a
matrix Z of functional parameter values, with each element
z; denoting the value of the j-th parameter in the i-th param-
eter set. This matrix then undergoes statistical analysis to test
whether a particular parameter is biased towards a certain
value (or certain range of values) for the model to produce
the target dynamics. After this is done for all parameters,
the results can be compiled to identify recurrent par-
ameter values and any patterns they might form. Fi-
nally, if the system’s dynamics can be decomposed into
different components or parts, then further analysis can
be performed to associate a parameter with a particular
aspect of the dynamics.

Our methodology is demonstrated on a well-studied
example of adaptation dynamics, that of the chemotaxis
of Escherichia coli [18-21]. Generally speaking, adapta-
tion refers to the ability of an organism adjusting to a
new environment, and it is thought to be an important
attribute for survival under fluctuating conditions
[22-28]. In Escherichia coli, adaptation allows its
chemotaxis system to reset stimulus-induced output to
pre-stimulus value, even upon persistent external
stimulation [29,30]. The dynamics of chemotaxis adap-
tation has two parts (Figure 1A): first, the output signal
of the system exhibits a sharp increase after the initial
stimulation, and this is referred to as the sensitivity
phase; second, after the initial sharp rise, the output
signal decays to its initial state, and this is referred to as
the precision phase. Figure 1B illustrates the molecular
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processes involved, which have been identified experimen-
tally [31,32]. Briefly, input signals are fed into the histidine
kinase CheA-chemoreceptor R complex, and CheA then
phosphorylates CheY (which can be dephosphorylated by
CheZ) to regulate the process that drives the flagella of a
bacteria. The key point here is that the activity of CheA is
determined by the level of methylation of the CheA-
bound receptor complex, which is controlled by demethy-
lase CheB, which is in turn positively regulated by CheA
itself, forming a negative feedback loop (Figure 1B). Re-
cently, Ma et al. [33] constructed a mathematical model
for a three-node enzyme network and found that only two
major types of network topologies can produce dynamics
associated with adaptation (Figure 1C and Additional file
1: Figure S8). One topology consists of a negative feed-
back loop with a buffer node (NFBLB for short): node A
positively influences the production of nodes B and C, and
node B in return negatively regulates node A (Figure 1C).
The other topology has an incoherent feed-forward loop
with a proportioner node (IFFLP for short): here, node A
induces node B, which in turn induces node C, and nodes
A, B and C also have inhibiting role on nodes C, A and B,
respectively (Additional file 1: Figure S8). The enzyme net-
work driving the chemotaxis of E. coli has been found to
resemble the NFBLB model [33]. Thus, in the rest of this
paper, we use the NFBLB model to demonstrate our
methodology in order to better understand how individual
parameters contribute to the mechanism underlying the
chemotaxis of E. coli. Empirical findings from the litera-
ture will be compared to our numerical results for valid-
ation purposes. Results for the IFFLP model will be
presented in supplemental data.

Methods

Model of the adaptive enzyme network

The original E. coli chemotaxis model was proposed as a
two-state model [29] and was later expanded to include
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Figure 1 Dynamics and models of an adaptive enzyme network. (A) A schematic illustration of adaptation dynamics: sensitivity refers to the
magnitude of the change in the output after the introduction of an external signal, and precision refers to the ability of the system returning to
its pre-stimulus state after being perturbed by the external signal. Two quantities, a sensitivity score and a precision score, can be defined to
measure these two dynamic properties (see Methods for details). (B) Network topology of the chemotaxis machinery in E. coli. (C) An enzyme
network with a negative feed-back loop, known as the NFBLB model, that exhibits similar topology to the E. coli chemotaxis circuit where

Va1 (Vpo) (Nn=A, B or C) represents the activation (deactivation) process of the rate equation for node n.
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the phosphorylation cascade [34]. In this study, the
model we used is essentially the same as that used by [29]
and [34], in which we consider the CheA-bound receptor
complex as a single entity (node A in Figure 1C) and as-
sume that this receptor complex exists in either a CheA
active (A”) or a CheA inactive (A) state. The superscript
m denotes the methylated form of the receptor complex.

The binding kinetic equation for the inactive receptor
complex is given by,

[+ A R A, (1)

where I denotes the concentration of chemo-attractant,
K4 is the ligand dissociation constant and k4 is the lig-
and catalytic constant.

The demethylation kinetic equation for the active re-
ceptor complex is given by,

B 4+ Am o, gPam Ko gy g 2)

where B” denotes the concentration of phosphorylated
demethylase CheB, K, is the dissociation constant of
phosphorylated CheB and kg, is the catalytic constant of
phosphorylated CheB.

The process of phosphate group transfer from active
CheA to CheB is given by,

A" B e, qmp Kan qm o P (3)

where K, p and k3 are the dissociation constant and the
catalytic constant of active CheA, respectively.

The dephosphorylation of phosphorylated CheB is
given by,

p Kegs

where kgpp is the dephosphorylation constant.

Transfer of the phosphate group from active CheA to
CheY (node C in Figure 1C) is given by,

A" g e, ame s qm P, (5)
where K, and kyc are the dissociation constant and the
catalytic constant of active CheA, respectively.

The dephosphorylation of phosphorylated CheY by
CheZ (represented by F¢ in Figure 1C and by Z in the
equation below) is given by,

Z+ P ze? 2 7 ¢, (6)

where K¢ and k are the dissociation constant and the
catalytic constant of CheZ, respectively.

The dynamics of these processes can be described by
using a set of differential equations that model the
NFBLB network depicted in Figure 1C [33]:
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where I denotes the input signal (i.e. the concentration
of chemo-attractant); A, B and C denote the concentra-
tions in active states; (1-A), (1-B) and (1-C) denote the
concentrations in inactive forms; Fg and F are the con-
centration of deactivating enzymes (assumed to be a
constant value of 0.5 as in [33]) that transform the active
states of B and C into inactive states. Kinetic parameters
kij and K; are respectively the catalytic rate constant and
Michaelis-Menten constant for the catalytic reaction be-
tween substrate i and its regulator (activating or deacti-
vating) enzyme j, where i and j= A, B, C, Fp, or Fc. Note
that for each node A, B or C, the first term (v;) and the
second term (v,) of the equation represent its activation
and deactivation rates respectively.

Measuring adaptation

Two quantities were used to evaluate the performance
of a kinetic parameter set in producing adaptation dy-
namics: (i) sensitivity to the input stimulus (equation
(8)), which is defined as the difference between output
response and the initial steady-state value, and (ii) preci-
sion (equation (9)), which is defined as the inverse of the
difference between pre- and post-stimulus steady state
values. The corresponding mathematical equations for
these two quantities are [33]:

o }OP—OI}/OI
Sensitivity = -6/ ;
-1
Precision — (102=01l/01 9)
|12 —11 |/11

where O; and O, represent two steady-state values, re-
spectively corresponding to the two input values I; and
I, (I; = 0.5 and I, =0.6 following [33]), and O, is the peak
value of a transient pulse in response to the input
change (see Figure 1A).

Sampling parameter values and numerical simulations
As in [33], Latin hypercube sampling [35] was used to
sample uniformly at random the values of kinetic
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parameters on a logarithmic scale, with the catalytic rate
constant k being in the range of [107, 10'] and the
Michaelis-Menten constant K in the range of [1073, 10%].
These two parameter ranges were chosen by Ma et al.
[33] to, presumably, minimize computational cost while
covering previously reported values used to model the E
coli chemotaxis system [36-38]. In order for our results
to be comparable with those from previous studies, we
opted to use the same parameter ranges in this paper.
For each parameter set, the model (equation (7) for the
NFBLB model and equation (S1) in the supplemental
data for the IFFLP model) was numerically simulated
and those producing the desired adaptation dynamics
were identified. The original 10* parameter sets sampled
by Ma et al. for the NFBLB model produced only eight
kinetic solutions [33], which are insufficient for discover-
ing parameter motifs with any statistical significance. To
remedy this, a 10-fold greater sampling size was used in
this study; for the IFFLP model, the original 10* sam-
pling produced 131 solutions, enough for the subsequent
enrichment tests to be carried out. Results from add-
itional sets of simulation and also from a run increasing
the sample size to 10 fold, which increased the number
of kinetic solutions to roughly 10 fold, indicated that the
parameter motifs reported here had been reliably de-
duced (see Discussion).

Following Ma et al. [33], we discarded those parameter
sets that render the model to produce extremely small
steady-state values, persistent oscillations, weakly damped
oscillations, and exceedingly long transient dynamics. For
each of the remaining parameter sets (46,715 for NFBLB
and 6,073 for IFFLP), the sensitivity and precision scores
(i.e. equation (8) and equation (9) respectively) were calcu-
lated. We said a particular parameter set was a kinetic so-
lution to the model if its sensitivity score was greater than
1 and its precision score greater than 10, as these criteria
have been used to define perfect adaptation [33]. It can be
shown from equation (8) and (9) that these thresholds
were chosen to ensure a stimulus of at least 20% of the
initial steady-state value, and the system can return back
to this value within an error of 2%, in consistence with
those used in experimental measurements (Khan et al
[39] and Alon et al. [40]). More stringent thresholds re-
duced the value range of the parameter motifs, but the re-
sultant minor changes did not significantly affect the main
findings (see Discussion). We used computer programs from
Ma et al. [33] and Matlab software (version 7.6.0.324, release
R2008a) [41] available at http://www.mathworks.com, to im-
plement a computational pipeline to simulate both the
NEFBLB model and the IFFLP model numerically. We vali-
dated our simulation pipeline by reproducing the
numerical results of [33] and also the steady-state solu-
tion of a four-node transcriptional regulation cascade
of [42].
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Enrichment test

In order to see if there exists an underlying pattern in
the values of kinetic parameters for the NFBLB model to
yield perfect adaptation dynamics, we obtained the kin-
etic solutions and plotted the distribution of parameter
values for each kinetic parameter. To test whether the
resulting distributions of parameter values were enriched
in the sets of kinetic solutions among those 10°> (NFBLB)
parameter sets sampled, we adopted an enrichment test
that has found many uses in genomics sciences [43,44].
For a given kinetic parameter, let N be the total number
of parameter values sampled (here, N =10° for NFBLB
model), and let y; be the number of those in N belonging
to the i™ value class in the logarithm scale (i=1, 2, ...,
5); furthermore, let M be the number of kinetic solutions
(here, M =74 for NFBLB model), and x; be the number
of those in M belonging to the same i™* value class. Par-
ameter values belonging to the 1° value class are within
the interval [10°%, 107?], those belonging to the 2™ value
class are within [10%, 10™], and so on and so forth, with
the 5™ value class containing parameter values within
[10%, 10%]. The five value classes of kinetic parameters
may correspond to varying strengths of enzymatic reac-
tions that can be measured and classified experimentally.
Doubling the number of value classes resulted in a simi-
lar, albeit finer, map of parameter motifs, but did not
alter the conclusions reached (see Discussion).

Under the condition of M being sampled independ-
ently and uniformly at random without replacement
from N, the probability of observing x; by chance follows
a hypergeometric distribution [43,44]:

i N- i
p(n = xily; M,N) = W,

where i =1, 2, 3, 4 and 5, and <1]\\/;> :WLM)'

As in the enrichment test employed in genomics sci-
ences [43,44], we can then compute the p-value to meas-
ure the statistical significance of the likelihood for
observing x; when the null distribution (equation (10)) is
assumed to be the true count distribution. In this study,
we used a p-value threshold of 107 to decide the statis-
tical significance of the enrichment test.

Thus, for each Michaelis-Menten constant K, we car-
ried out five independent enrichment tests, each for each
value class, and for each catalytic rate constant k, we
carried out two independent enrichment tests, one for
the 3™ value class (i.e. [107, 10°]) and the other for the
4™ value class (i.e. [10° 10']), due to the smaller range
of parameter values for k (see above). If an enrichment
test was statistically significant (p-value < 107°), a motif

(10)
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in the form of value class was assigned to the kinetic
parameter tested. To sum up, the outcome of this ana-
lysis produced motifs of kinetic parameters, which tells
us whether a particular kinetic parameter is biased to-
wards any specific value class on the logarithm scale, or
none at all.

Functional association test and parameter
inter-dependence
For each kinetic parameter, values from all the kinetic
parameter sets (46,715 for NFBLB and 6,073 for IFFLP)
were partitioned into two groups. The first group, called
the motif group, consists of parameter values belonging
to the biased value class(es) as identified by the above
mentioned enrichment test on kinetic solutions; and the
second group, called the non-motif group, comprises
those parameter values that are not in the motif group.
We then tested whether the motif group exhibited
higher sensitivity or precision scores than the non-motif
group by comparing the score medians of the two
groups. Since the scores were not normally distributed,
we used the Mann—Whitney U-Test [45] for the analysis.
The test produced a z-score, and we said a particular
kinetic parameter is positively associated with the sensi-
tivity or precision parts of the adaptation dynamics if the
corresponding z-score is greater than 3.29 (i.e. the upper
boundary of the critical value of the 99.9% confidence
intervals). In this study our focus was on finding param-
eters that can significantly improve the function, al-
though some of the parameters may exhibit a large
negative z-score indicative of a negative role in the
function. A bipartite kinetic-functionality network can
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then be constructed to display the associations be-
tween the kinetic motifs and the functionalities
identified.

Finally, we investigated the cooperation between
every pair of kinetic parameters. Specifically, we took
the kinetic parameters from those 74 kinetic solutions
(131 for IFFLP) and performed Pearson correlation test
between the values of a pair of kinetic parameters that
appeared in the kinetic motifs identified. We said two
parameters are correlated if the p-value of the correl-
ation test is less than 0.05.

Results

Detecting kinetic motifs

As described in the Methods, we found only 74 sets of
parameters from 10° randomly sampled sets that could
satisfy the criteria of perfect adaptation dynamics for the
NEBLB model. Figure 2 shows the distributions of these
74 sets of parameter values. We can see that while some
parameters, krpp especially, were limited to be within a
relatively small range of values, others, like krcc and
K4, saw a distribution covering nearly the entire range
of the values sampled. On the whole, catalytic rate con-
stants kppp and kz, were biased towards the 3™ and the
4™ value class, respectively, while all five Michaelis-
Menten constants were biased towards one or more of
the first three value classes. Other catalytic rate con-
stants, namely kap, k4c and kpcc, did not show apparent
biases towards any vale classes. These observations were
quantified with statistical significance by the enrichment
tests; the results, summarized in Table 1, are consistent
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Figure 2 Distributions of kinetic parameters. Distributions of parameter values obtained from a total of 74 kinetic solutions exhibiting perfect
adaptation for the NFBLB model. Each tick on the x axis is a specific catalytic rate constant k or Michaelis-Menten constant K, and the values of
the parameters are in power of 10, which are divided into five value classes as indicated at the right of the figure. On each data box, the
contracted center is the median, while the edges of the box are the 25" and 75" percentiles of the distribution.
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Table 1 Results of parameter enrichment test for the NFBLB model
Parameter 1% class 2" class 3" class 4™ class 5% class

1103, 10721° [102,107] [107, 10% [10% 10'] [10',10%

Xy p? x y p? x y p? x y P x p?

kag 32 49999 8.5E-01 42 50,001 1.0E-01
Kac 32 50,000 8.5E-01 42 50,000 1.0E-01
kga 24 50000 10E4+00 50 50000 @ 7.6E-04
kegp 73 50000 <2.2E-16 1 50,000 1.0E+00
Kece 35 50,000 6.4E-01 39 50,000 2.8E-01
Kag 44 19,998 9.4E-11 25 19999 1.7E-03 4 20,000 1.0E+00 1 20000 10E+00 O 20000  1.0E+00
Kac 26 20,000 7.4E-04 1719999  2.1E-01 17 20,000 2.1E-01 6 20000 1.0E+00 8 20,000 9.7E-01
Ksa 33 199% 4.3E-07 28 20000 1.1E-04 11 20,000 8.3E-01 2 20000 10E+00 O 20000  1.0E+00
Krgs 57 19997 <2.2E-16 17 19999  2.1E-01 0 19999  1.0E+00 0 20000 10E+00 O 20000 1.0E+00
Kece 9 19,999 94E-01 23 19999  8O0E-03 32 20,000 1.5E-06 9 20,000 94E-01 1 20000 1.0E+00

“In square brackets are the intervals of parameter values for the indicated class.

POut of M (=74) kinetic solutions, x is the number of solutions with the value of the indicated parameter belonging to the indicated value class.
Out of a total of N (=10°) parameter sets sampled, y is the number of sets with the value of the indicated parameter belonging to the indicated value class.
9An enrichment test is considered statistically significant if its p-value < 10 and is highlighted in boldface. Based on p-values (using 107 as threshold), an

enrichment state, i.e. motif, was assigned.

with the distributions of parameter values shown in
Figure 2.

Functional roles of kinetic motifs
For each of the seven kinetic parameters showing bias to
at least one value class with statistical significance as de-
termined in Table 1, we carried out Mann—Whitney
U-test [45] to find out whether a motif (i.e. a preferred
value class) of that parameter is involved in the sensitivity
function of the adaptation dynamics, or, correspondingly,
whether the median of the sensitivity scores for the motif
group is significantly larger than that for the non-motif
group (see Methods). The same analysis was then repeated
for precision.

The results, summarized in Table 2, indicate that three
kinetic parameters, Kac, Krpp and Kpcc, were highly

significant in improving sensitivity scores, and six kinetic
parameters, kga, kegp, Kap, Kac, Kpa and Kpcc, were highly
significant in improving precision scores. Furthermore, for
the majority of parameters, their motifs were either associ-
ated with improving sensitivity or precision scores, but not
both. Two interesting exceptions are K¢ and Krcc as their
motifs tended to reflect improvements in both functional-
ities (Table 2). These observations are generally in accord
with the results from an analytical analysis of the rate
equations (see below and supplemental data). Note that
sensitivity and precision are two conflicting dynamic pro-
cesses with the former requiring the system to deviate
from steady state abruptly and the latter requiring the sys-
tem to return to the original steady state in a timely fash-
ion (Figure 1A). Therefore, theoretically speaking, a
parameter that improves one function will also have a

Table 2 Functional association test results for the NFBLB model

Parameter Motif [m] Non-motif [~m] Precision test® Sensitivity test® Function®
’ Prm Pr.m 24 Sng, Sn.m 24

ksa [10°101 107,109 1.81 135 30.88 -1.18 -0.76 -875 PR
Kess 107,107 [10°107 168 145 16.71 -1.16 -0.80 667 PR

Kag 103 107 102107 159 142 6.60 —140 -090 665 PR

Kac [10°,107 (102,107 157 152 9.23 123 -138 26.57 PRSN
Kga 1031071 107,107 176 1.29 35.34 —141 -068 1272 PR
Krgg 1103 107 (102,107 147 2.05 -3432 -061 -1.06 3.95 SN
Keee [1o", 109 [103 10" and [10° 107 163 134 16.98 330 -231 28.37 PRSN

?In square brackets are the intervals of the parameter values, ‘m’ is the motif group and ‘~m’ the non-motif group. Note that for the kinetic parameters (kas, kac,
and kecc) showing no apparent bias towards any value classes, the statistical tests were not conducted because their parameter values could not be partitioned

into motif group and non-motif group (see Methods).

bapy " (“Snpy”) is the mean logarithm value of precision (sensitivity) scores for the motif group, and “Pr.,,," (“Sn..,") is the same but for the non-motif group.
““PR” (“SN”) indicates that the corresponding kinetic motif is statistically significant (z-score 23.29) in improving precision (sensitivity).

dz-score greater than 3.29 (99.9% confidence interval) is highlighted in boldface.
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negative effect on the other function, as reflected generally
by the opposite signs of the z-scores obtained from the
sensitivity and precision tests (Table 2). Finally, the above
findings can be succinctly captured by drawing a kinetic-
functionality network (Figure 3), which highlights both the
functional roles and constraints (i.e. the enriched value
classes) of kinetic parameters.

Cooperation of kinetic parameters

Next, we asked the question of whether kinetic parame-
ters work independently or in a cooperative way with
each other when contributing to the system’s adaptation
dynamics. Figure 4 shows the results of correlation tests
performed on all pairs of the seven kinetic parameters
that exhibited value class biases. We identified one sig-
nificant positive correlation (p-value < 0.05) between pa-
rameters krpp and Kpu, and four significant negative
correlations in (kggg, Kag), (kegs, Krcc), (Kag, Kegg) and
(Kga, Krcc) pairs. Interestingly, with the exception of
Krpp, most of these correlated parameters contributed
significantly to system’s precision (Figure 3), suggesting
that they work in a cooperative manner in the precision
mechanism of adaptation dynamics. In contrast, kinetic
parameters contributing to the system’s sensitivity (i.e.
K4, Kepp and Kpce, see Figure 3) were not correlated

Sensitivity

Precision

-3-2-101 2

Parameter value
(power of 10)

Figure 3 A kinetic functionality network. A bipartite network
connecting kinetic parameters to functionalities (sensitivity and
precision) of the adaptation dynamics. On the left are kinetic motifs
emerged from the enrichment tests (see Methods), where filled
boxes represent enriched values bounded by the indicated power of
10 for the indicated parameter. On the right are different
functionalities (sensitivity and precision) of adaptation dynamics.

A connection between a kinetic parameter and functionality was
established if the association between the two was determined to
be significant in the statistical test (see Methods).
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with each other, implying that they function independ-
ently in the sensitivity mechanism. If the mathematical
model employed can indeed simulate the mechanics of
adaptation in real biological systems, a corollary of
these findings is that precision seems to be a more
complicated mechanism than sensitivity in the system,
thus the former requires many parameters to work to-
gether in order to achieve the desired level of high
precision.

Experimental data for kinetic parameters of E. coli
chemotaxis

The NFBLB model is equivalent to the E. coli chemo-
taxis model with nodes A, B and C corresponding to the
CheA-bound receptor complex, CheB and CheY, re-
spectively. Chemotaxis of E. coli has been studied ex-
perimentally and parameters relating to individual
processes involved in the model have been estimated
[36-38,46]. Intriguingly, as described below, the kinetic
motifs observed here for the NFBLB model compared well
with the experimental data for the E. coli chemotaxis
(Table 3).

To facilitate and simplify the comparison, we dictated
that parameters with a value in the first three value clas-
ses (i.e, < 10°) are small-value parameters, while those
in the 4™ and 5" value class (i.e. 210°) are large-value
parameters. Note that in enzyme kinetics, an enzyme
with a large K value (Michaelis-Menten constant) indi-
cates a weak binding affinity to its substrate, while a
large k value (catalytic rate constant) implies the occur-
rence of a rapid catalytic event [49]. For sensitivity, the
empirical estimates for K¢ and Kpcc, after being nor-
malized with the concentration of CheY, were 0.36 and
0.006 respectively (Table 3). This echoes our finding that
both parameters should take small values. Kyc and Kgcc
are respectively involved in the rates of phosphorylation
(i.e. activation) and dephosphorylation (i.e. deactivation)
of the response regulator CheY. Goldbeter and Koshland
[50] explored a simple model of enzyme reaction and
found that if the activating and deactivating enzymes op-
erate at saturation where the substrate concentration
does not affect reaction rate, then an ultra-sensitivity re-
sponse is observed. Similar arguments may apply to
chemotaxis in E. coli: namely, in order to produce sensi-
tivity dynamics, both phosphorylating and dephosphory-
lating agents (i.e. CheA and CheZ, respectively) must be
saturated, implying a situation where the concentration
of the substrate (i.e. CheY) cannot alter the reaction rate.
A close inspection of the rate reaction for node C in
equation (7) suggests that both K, and Krcc taking on
small values can fulfil this condition. Note that if both
Kyc and Kgcc are small, then C> > Kgcc and (1-C)> >
K, such that
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Figure 4 Correlation between kinetic parameters. The Pearson correlation coefficients between pairs of the seven parameters that exhibited
value class enrichment are shown in the top-right triangle, where a box is colored black if the corresponding correlation is significant
(p-value < 0.05). In the bottom left triangle, the scatter plots of the paired parameters are shown. On the diagonal are occurrence distributions
of individual kinetic parameters.

Table 3 Experimental data for the kinetic parameters of E. coli chemotaxis

Description Reaction® Eq7° k(s K Notes® [Reference]
Receptor Complex B Am B g gy, 12 008 kP =125" [46] and K®¥ =039 uM [46]; kgs = kK%
Demethylation and Kga = KZP/[AJ.
CheB AT 4 B, pmp ME o am P Vg 32 0281 kP =325" [37] and K = 1405 UM [37]; kng = K*P
Phosphotransfer and Kug =K*/IBJ.
CheB g L g Ver 035 - KP=07s" at 35°C, or 035 s at 25°C [47); krgg =
Dephosphotransfer K
CheY AN G e M pm Py 650 036 kP =6505" [48] and K®P = 6.5 uM [48]; kuc = k*P
Phosphotransfer and Kac =K/
CheY Fo+ CPeS FecP s Feg 0 v, 30 0006 k¥ =650 " [34] and K*P = 0.1 uM [34]; krcc = k2P
Dephosphotransfer and Kyce =K*/1C.

Superscript m denotes methylated form and superscript p denotes phosphorylated form.

PEach biochemical reaction is equivalent to the process of activation (v,;) or deactivation (v,,) (n=A, B, and () as indicated in the NFBLB model (see equation (7)
in Methods).

“Total concentrations for the CheA-bound receptor complex ([A]), CheB ([B,]) and CheY ([C,]) are 5.0 uM [34], 2.27 uM [37] and 17.9 uM [34], respectively.
Superscript exp denotes experimental measurement.
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dc (1-C) C
== = Akyc—— e Fekpoc———
dt ACA=C)+Kue T CHKrc
(1-C) C
~ Akyc~——2 ~Fckpoc—
A AC(l_C) ckrce &

= Akac—Fckr.c
(11)

and the concentration of node C (i.e. CheY) disappears
from the rate equation completely.

The kinetic parameter Krpp is involved in the deactiva-
tion of node B in the NFBLB model and Kppp is also
found to be biased to small values (1°* value class motif
in Table 1) for the model to exhibit sensitivity dynamics.
Although node B of the NBFLP model corresponds to
CheB in the chemotaxis of E. coli, to the best of our
knowledge there are no natural enzymes reported to de-
activate CheBP in the manner suggested by the NFBLB
model. Perhaps an unrevealed enzyme exists to dephos-
phorylate CheBP, the phosphorylate form of CheB, or
there might be other mechanism of CheBP dephosphory-
lation that is more complicated than the current know-
ledge can offer.

As for precision, the empirical estimates for K3 (nor-
malized with the concentration of CheB), krpp, Ky (nor-
malized with the concentration of receptor complex)
and kg4 are 0.281, 0.35, 0.08 and 1.2, respectively
(Table 3). These are also in agreement with our findings
(Table 1) that K45, krgp and Kz, are biased towards
small values, and kg, is constrained to large values. K4p
and kgpp are involved in the phosphorylation and de-
phosphorylation of CheB, respectively. According to Ma
et al. [33], K4p is constrained to small values by the
topological features of the NFBLB model such that the
rate equation of node B (i.e. CheB) is independent of
the input level I; this then implies the system is in a
stable state independent of the initial perturbation and
thus is able to maintain high precision level. From equa-
tion (7), a small value for kzpp can reduce the dephos-
phorylation rate of CheB, this in turn increases the
deactivation rate of the receptor complex, thereby ensu-
ing high precision. Finally, Kz4 and kg4 play a part in
the demethylation of the receptor complex, and intui-
tively the rate of its demethylation must be great (e.g.
with a large kg4 and a small Kp,) such that the perturb-
ation initiated by the input signal can be mitigated in
order to maintain high precision.

These observations of key parameters of the NFBLB
model are furthermore supported by a number of ex-
perimental findings on the chemotaxis system of E. coli:
1) Krcc having a large effect on the sensitivity part of
the system dynamics is in agreement with CheZ playing
an important role in adjusting the concentration of CheY
[43]; 2) K4c being an important kinetic parameter in
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affecting sensitivity agrees well with the receptor com-
plex being a major contributor to sensitivity [44]; 3)
CheB mutants being far less sensitive than the wild type
due to the functional abnormality of the receptor com-
plex in those mutants [45] implies that Kgpp is an im-
portant parameter affecting sensitivity; 4) that
phosphorylated CheB can increase the rate of receptor
demethylation and thus speeds up adaptation [51] sup-
ports the finding that kga, kpgp, Kap and Kz were all im-
portant parameters in contributing to the system’s
precision mechanism.

Discussion

We have developed here a methodology using parameter
profiling and enrichment statistical tests to uncover not
only the sets of kinetic parameters with which a model
produces user-specified system dynamics, but also motifs
(i.e. enriched value classes) of these parameters and their
associations with specific functional aspects of the sys-
tem’s dynamics. For these tasks, conventional methods
usually focus on identifying the “best” parameter set in
fitting the empirical data and on using complicated ana-
lytical explorations of models (e.g., sensitivity analysis)
[52-54] or by a laborious local approach examining how
changing the parameters one at a time would affect sys-
tems dynamics [55-57]. Note that the sensitivity analysis
of conventional methods (not to confuse with the sensi-
tivity of adaptation (Equation 8) studied in this work) is
usually carried out for one specific output dynamics,
whereas our profiling approach investigated the sensitiv-
ity of functional elements (sensitivity and precision of
adaptation) for a collection of outpout dynamics (those
that qualified as a perfect adaptation; there were 74 for
the NFBLB model). Interestingly, the kinetic parameters
showing value class biases (Table 2) are those exhibiting
non-negligible sensitivity indices obtained from analyt-
ical derivation (Additional file 1: Equation S2) or from
the numerical method implemented in AMIGO [58]
(Additional file 1: Figure S1), the latter two being com-
puted using the output dynamics and the parameter set
of a randomly chosen one of the 74 kinetic solutions.
Note that bootstrap-derived distributions of the kinetic
parameters and their confidence intervals for this par-
ticular kinetic solution were generally in accord with the
kinetic motifs deduced from the 74 kinetic solutions
(Additional file 1: Figure S2). In summary, by profiling
the parameters as a whole our method takes a global
view to find not just one but clusters of viable parameter
sets, thus moving a step further to account for the com-
plexity of biological systems. Although a number of
global-view approaches have recently been developed to
sample from large and high dimensional parameter
spaces, including a combined global and local explor-
ation [15] and an approach with model checking on
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partitioned regions of parameters [17], these studies do
not make inferences on whether motifs of parameters
exist and how they might contribute to specific elements
of the system dynamics. Our approach therefore offers a
simple framework to systematically characterize and elu-
cidate the functional contribution of kinetic parameters
in a biological network.

The kinetic motifs obtained are quite robust in that
only minor differences in their resolution were resulted
from independent sampling runs (Additional file 1:
Figure S3), different thresholds of the adaptation objec-
tives (Additional file 1: Figure S4), and added number of
value classes (Additional file 1: Figure S5). Further ana-
lysis showed that, for NFBLB and to satisfy the statistical
significance of p-value < 103, 8 x 10* (rather than 10°)
sampling runs were required to converge and stabilize
the kinetic motifs (Additional file 1: Figure S6). The
computational cost of our method is dominated by the
sampling and simulation step (see an analysis Additional
file 1: Section III). To investigate the difficulties that will
inevitably arise from larger networks for our method, we
artificially linked two modules of NFBLB together (see
Additional file 1: section IV) while requiring the system
to produce the same adaptation dynamics as before. The
results showed that 5 times of sampling/simulations
(4 x 10° vs. 8 x 10%) were needed to produce stabilized
kinetic motifs (Additional file 1: Figure S7) for the twice-
sized network (20 kinetic parameters vs. 10). However, it
should be noted that the required number of sampling/
simulations depends on many factors, including the spe-
cified output dynamics, the level of statistical signifi-
cance desired, and the network topology (e.g., the IFFLP
model needed 10 times less number of sampling/simulations
than the NFBLB model to exhibit stabilized kinetic motifs,
despite they both having 10 kinetic parameters). Note
that our approach is quite general and can be inte-
grated with other approaches. For instance, the Latin
hypercube sampling (LHS) used here (and as in [33])
can be replaced by other methods, such as those men-
tioned above, to identify the kinetic solutions needed in
the subsequent enrichment tests. Results from an ex-
periment of combining LHS and genetic algorithm
(GA) showed that 10® of LHS sampling followed by 100
generations of GA optimization yielded a similar set of
kinetic motifs for NFBLB (Additional file 1: Table S1),
suggesting that optimization can help to find more so-
lutions from a smaller initial parameter set, but in this
case the hybrid approach did not reduce the computa-
tional cost (since it also needed a total of 10° model
evaluations), and could miss some of the marginally sig-
nificant motifs (Additional file 1: Table S1). While fur-
ther research 1is required to fully address the
dimensionality problem of scaling up the system, com-
plex biological networks are known to be composed of
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simple recurrent structural components [59-61]; a dee-
per understanding of these network components is an
important first step toward a better understanding of
the assemblage and functioning of a much larger
system.

One interesting observation from the case studies of
the NFBLB and the IFFLP (presented in Additional file
1: section VI) adaptation model is that the majority of
parameters seem to contribute to only one single func-
tionality (i.e. either sensitivity or precision, see Figure 3,
Additional file 1: Figure S10). If the mathematical
models are indeed mechanistic, this could have import-
ant biological implications as follows. The behavior or
dynamics of a biological system is likely to be the result
of intricate interactions of many biological processes. If
a biological process has a major influence on all aspects
of the systems behavior, then any changes to such a
process may have a drastic impact on the system. Modu-
larity is ubiquitous in biological systems as it provides an
effective mechanism to corral damaging perturbations to
local consequences [62]. Thus, to ensure system robust-
ness, evolution might have favored a biological system
with a fine division of labors (i.e. modularity) among dif-
ferent biological components or processes [63-65]. Here,
in the kinetic-functionality association, we may have un-
covered yet another example of nature’s modularity design
manifestated in the organization of kinetic parameters.

Previous studies have shown that certain types and ar-
rangements of network structures are required to pro-
duce certain types of system dynamics [33,66-68]; here,
we have shown that, for a given network structure, cer-
tain types of values, or motifs, also exist for kinetic pa-
rameters in order to achieve specific system dynamics.
Our results suggest that, as has been noted by others
[69,70], system dynamics can put constraints on the
values of kinetic parameters. The discovery of these mo-
tifs underscores the intricate inter-relationships be-
tween structure (i.e. topology) of the biological
network, kinetic parameters of the reactions involved,
and the function of the biological system. Delineation
of these relationships by methods such as the one de-
veloped here, which is general and can be applied to
other types of well defined dynamics, will greatly ad-
vance our understanding of the design principles of
prototype biological systems.

Conclusions

An increasing number of studies have revealed that
complicated biological systems often share simple and
universal design principles that are more understandable
to biologists. The identification of motifs in biological
networks is a prime example relating recurrent network
structures to biological functions. Many studies have
also argued for the importance of kinetic parameters in
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determining the dynamics of biological networks, but
dissecting the association between system dynamics and
kinetic parameters has been difficult. In this study, we
have developed a methodology, akin to the enrichment
analysis of gene expression profiles, to determine
whether a preference of kinetic parameters adopting cer-
tain parameter values exists. Such preferences, or kinetic
motifs, encapsulate the possible roles and functional
constraints of kinetic parameters. Our analysis on
models for the adaptation dynamics of the chemotaxis
of Escherichia coli showed that design principles also
exist from the perspective of kinetic parameters. Our
methodology, owning to its generality and simplicity,
provides a computational framework for understanding
the kinetic mechanics of prototype biological networks.
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