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Abstract

Background: Common approaches to pathway analysis treat pathways merely as lists of genes disregarding their
topological structures, that is, ignoring the genes' interactions on which a pathway's cellular function depends. In
contrast, PathWave has been developed for the analysis of high-throughput gene expression data that explicitly
takes the topology of networks into account to identify both global dysregulation of and localized (switch-like)
regulatory shifts within metabolic and signaling pathways. For this purpose, it applies adjusted wavelet transforms
on optimized 2D grid representations of curated pathway maps.

Results: Here, we present the new version of PathWave with several substantial improvements including a new
method for optimally mapping pathway networks unto compact 2D lattice grids, a more flexible and user-friendly
interface, and pre-arranged 2D grid representations. These pathway representations are assembled for several
species now comprising H. sapiens, M. musculus, D. melanogaster, D. rerio, C. elegans, and E. coli. We show that
PathWave is more sensitive than common approaches and apply it to RNA-seq expression data, identifying crucial
metabolic pathways in lung adenocarcinoma, as well as microarray expression data, identifying pathways involved
in longevity of Drosophila.

Conclusions: PathWave is a generic method for pathway analysis complementing established tools like GSEA, and
the update comprises efficient new features. In contrast to the tested commonly applied approaches which do not
take network topology into account, PathWave enables identifying pathways that are either known be involved in
or very likely associated with such diverse conditions as human lung cancer or aging of D. melanogaster. The
PathWave R package is freely available at http://www.ichip.de/software/pathwave.html.
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Background
Large-scale gene expression profiling by microarrays or
transcript sequencing enables identifying relevant ex-
pression changes in cells by comparing gene expression
patterns of two distinct conditions (e.g. tumor versus
normal tissue). A frequent goal of such studies is the
identification of dysregulated cellular pathways involved
in an observed phenotype like, for example, abnormal
proliferation and migration of cancer cells.
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For this, gene set enrichment tests are commonly ap-
plied on large scale gene expression profiles, testing over-
representation of up- or/and downregulated genes in
pathways. While most gene set enrichment approaches
used for pathway analysis ignore topological information,
we have introduced a computational method (PathWave)
[1] that explicitly takes the topology of metabolic and sig-
naling networks into account by applying adjusted wavelet
transforms on optimized, compact 2D grid representations
of curated pathway maps, like those from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [2]. In par-
ticular, this approach allows identifying not only metabolic
pathways that show differential regulation as a whole, but
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also pathways affected by specific, localized switch-like
regulatory shifts indicating a redirection of metabolic
fluxes. This way, we have identified important metabolic
switches in neuroblastoma [1], breast cancer [3], Alzhei-
mer's disease [4], glioblastoma [5] and in an evolutionary
study of E. coli [6].
Here, we present the new, entirely revised and re-

fined version of PathWave with several substantial
improvements:

i. a faster and more efficient arrangement of 2D grid
representations of pathway networks (see below),

ii. pre-arranged 2D grid representations for several
species, including H. sapiens, M. musculus,
D. melanogaster, D. rerio, C. elegans, and E. coli,

iii. compliance with version 0.7.1 of the KEGG Markup
Language (KGML),

iv. an interface to obtain colored KEGG pathway maps
depicting the identified expression changes,

v. the use of pathways extracted from the Human
metabolic model reconstruction [7] from the
Biochemical Genetic and Genomic (BiGG)
knowledgebase [8],

vi. performance improvements due to faster processing
of expression data, and

vii.a more flexible and user-friendly interface.

We briefly summarize the PathWave workflow, discuss
the most important novelties of the new version and
demonstrate its usage by two case studies: (i) we applied
PathWave to RNA-seq expression data to identify meta-
bolic pathways that play a role in lung cancer, and
(ii) we analyzed microarray expression data to identify
Figure 1 Mapping of pathways and expression data. Schematic represe
grids and (B) gene expression data mapped onto to the embedded pathw
pathways associated with longevity of Drosophila. Fi-
nally, we show that PathWave is more sensitive than the
frequently used methods Gene Set Enrichment Analysis
(GSEA) [9] and DAVID [10].

Implementation
PathWave workflow
The workflow consists of two major steps: the prepro-
cessing of pathway information and the analysis of ex-
pression data. We briefly summarize the two steps (for
more details, see Schramm et al. [1]):
Step 1 (preprocessing of pathway information): To run a

PathWave analysis which involves the use of wavelet
transforms (see below), compact 2D grid representations
of pathways are required. Curated pathway maps are
translated into networks in which nodes represent
metabolic reactions and edges link two reactions if
one reaction produces a metabolite that serves as a
substrate for the other. Edges in signaling pathways
are derived from direct interactions of the corre-
sponding signaling proteins. These networks are de-
scribed by their binary adjacency matrices {Aij}i,j ∈ V

where V is the set of nodes and Aij = 1 if nodes i and j
are joined by an edge. The sparse adjacency matrices
(Aij = 0 for most pairs of nodes) are optimally rear-
ranged and embedded into smaller 2D, regular square
lattice grid representations, best preserving the neigh-
borhood characteristics of the reactions by placing ad-
jacent nodes (Aij = 1) of the original network as close
to each other as possible on the lattice grid (see
Figure 1A). For this, the overall Manhattan distance on
the lattice grid between neighboring nodes of the network
is minimized using integer linear programming techniques.
ntations of (A) the embedding of pathways into compact 2D lattice
ays. In this toy example, R1 to R9 represent metabolic reactions.
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These optimal 2D grid representations need to be com-
puted only once for a given set of pathways and can be
saved for later use. We calculated and integrated prepro-
cessed pathway sets for several species into the new
PathWave R package (see below), such that this step can
be skipped for these organisms.
Step 2 (analysis of expression data): To identify path-

ways that are differentially regulated between two condi-
tions or subsets of gene expression data, PathWave first
associates gene expression levels with metabolic reactions
or signaling proteins, thus mapping the expression data of
each individual sample onto the 2D lattice grids of the
pathways (see Figure 1B). Then, Haar wavelet transforms
are applied to each optimized grid to explore every
possible expression pattern of neighboring reactions or
signaling proteins within an embedded pathway and to
identify statistically significant discriminative patterns bet-
ween samples of the two different conditions [1]. We
used Haar wavelet transforms to systematically apply
low pass and high pass filters from fine grain to coarse
resolutions [11].
Namely, a 2D expression grid—corresponding to the ex-

pression data of a single sample mapped onto a particular
pathway (as exemplified in Figure 1B)—is divided into dis-
joint sections of 2 × 2 pixels (i.e. nodes), e.g. a 2D grid of
size 8 × 8 is divided into 16 disjoint sections. Grids with
odd sizes (e.g. 3 × 3, 4 × 5, 5 × 5) are extended with rows
and/or columns of zeros to allow their division into dis-
joint 2 × 2 sections. For each section, all combinations of
row-wise and column-wise mean and differences, respec-
tively, are calculated, yielding 4 combined quantitative fea-
tures for each 2 × 2 section: 1st) mean of the mean of the
upper and mean of the lower row; 2nd) difference of the
mean of the upper and the mean of the lower row; 3rd)
Figure 2 Schematic representation of the Haar wavelet transformatio
expression pattern that is (A) not detected by low pass filters (here, 1st fea
feature; mean of differences). (C) Step-wise reduction of the resolution by a
mean of the difference of the upper and the difference of
the lower row; and 4th) difference of the difference of the
upper and the difference of the lower row (see Figure 2A
and B for an example). When these features are deter-
mined for all sections of the grid, all mean of means fea-
tures (1st) are taken to construct a new, smaller averaged
grid which is again grouped into 2 × 2 sections to be trans-
formed into features in the same manner, again yielding 4
quantitative features for every section. This procedure
is repeated until no further averaging is possible (see
Figure 2C), thus computing quantitative low and high pass
features from fine grain (initial 2D grid) to coarse reso-
lutions (averaged grids after repeated grouping). For more
details on this Haar wavelet transformation, please see
Mallat [11]. For each pathway, the features at all resolu-
tions, obtained from the wavelet transformation, are used
to identify features that can significantly discriminate bet-
ween samples of the two conditions or subsets.
Thus, Haar wavelets suit to detect both globally dys-

regulated pathways (low-pass filter) and switch-like beha-
viors within the pathways, which significantly affect only
small subnetworks (high-pass filter). To overcome the
rigidity of wavelet transforms, PathWave covers any pos-
sible combination of neighboring nodes by implementing
a one-step frameshift concept that applies the transform
to the original grids and to grids shifted by one row, one
column, or by both. Finally, pathways are ranked accord-
ing to their most discriminative expression pattern, being
it at a fine (e.g. metabolic switch in a sub-network) or
coarse grain resolution (e.g. global up- or down-regulation
of an entire pathway). This ranking is done by statistical
significance which is obtained by repeated random sam-
pling of the samples (i.e., patients; drawing without re-
placement) [1]. Namely, for each pathway a Gumbel
n. (A, B) Representation of a local (high frequency) change in an
ture; mean of means) but (B) detected by high pass filters (here, 3rd
veraging (1st feature) of 2 × 2 sections.
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distribution (extreme value distribution) is fitted to the
pathway-scores obtained for the randomly shuffled sam-
ples. P-values of the pathways are determined from the
respective fitted curves and the actual scores obtained
for unpermuted samples, and are finally corrected for
multiple testing. The robustness of both the estimated
P-values of single pathways and the resulting overall
pathway ranking increase with the number of random
samplings. An assessment of their stability demonstrates a
good to excellent robustness already at a rather modest
number of 1,000 to 10,000 random samplings (see
Additional file 1).
It is to note that an expression pattern composed of

multiple genes (regarding an entire pathway or a sub-
network) may significantly discriminate between two
conditions (e.g. tumor and normal tissue) even when the
single genes do not appear to be differentially expressed
after multiple testing correction (e.g. using t-tests). Due
to the identification of such potentially relevant patterns
within pathways, PathWave can be more sensitive than
common gene set enrichment approaches.

Improved embedding of metabolic pathways in 2D lattice
grids
The current PathWave version uses a new, up to 103 times
faster branch-and-cut algorithm to embed metabolic and
signaling pathways into compact 2D lattice grids, on
which wavelet transforms can be applied, and to allow for
optimal arrangements of larger instances [12]. The new
method to optimally arrange every KEGG/BiGG pathway
G = (V,E) (represented by an undirected, unweighted net-
work or graph G with nodes V and edges E) into a com-
pact 2D lattice grid computes an embedding of G into the
lattice grid with the minimum possible total Manhattan
distance (edge length) of nodes (metabolic reactions or
signaling proteins) that are adjacent in G. The method is
based on a novel integer programming formulation that
models the pairwise distances between the nodes on the
grid, instead of their absolute positions used in the pre-
vious version [1]. Clearly, not every distance combination
is a feasible solution: We say that an integral distance vec-
tor {duv}uv ∈ E is embeddable, if there exists a 2D arrange-
ment of the nodes V on the grid such that the Manhattan
distance of u and v is exactly duv for every edge uv.
For every unordered pair {u,v} of adjacent nodes u and

v, we set the distance variable xuvk to 1 if k is less than
or equal to the Manhattan distance of u and v. We set it
to 0 otherwise. Since for fixed u and v the number of
variables being 1 is exactly the Manhattan distance of
u and v, the latter can be written as the sum of all va-
riables xuvk over k. To obtain the total length of a
pathway's embedding (sum of all Manhattan distances)
one has to additionally sum over all edges uv that consti-
tute the pathway. This is done in the objective function
(1) of the following integer programming formulation
whose goal is to minimize the pathway's total length in
the embedding:

min
X

uv∈E

Xdmax

k¼1
xuvk ð1Þ

subject to
X

uv∈EH
xuvduv−xuv duvþ1ð Þ
� �

≤ EHj j−1 ð2Þ

for all sub graphs H = (VH,EH) of G and all distance vec-
tors d on H that are not embeddable, and to

xuvk≥xuv kþ1ð Þ ð3Þ
for all uv ∈ E, 1 ≤ k ≤ dmax − 1, where all x variables are
required to be binary.
The objective function (1) minimizes the total edge

length of the embedding. The constraints in equation (2)
ensure that the optimal distance vector is embeddable.
They are the reason for the choice of the binary distance
variables x, as these constraints cannot be modeled with
integer variables directly taking the distance values (i.e.,
duv). Since their number is exponential, we do not add
them to the model from the beginning, but separate
them during the branch-and-cut algorithm. The con-
straints in equation (3) ensure consistency of the x vari-
ables: if the Manhattan distance is at least k + 1, then it
must be also at least k. The maximum possible distance
dmax can be set to the diagonal diameter of the lattice
grid. As dmax is usually significantly lower in practice, it
is estimated by our algorithm via an initial series of tests.
Moreover, the branch-and-cut algorithm features a sim-
ple primal construction heuristic. It produces approxi-
mate solutions even for large instances.

Compatibility and programming languages
PathWave 2.1 is compliant with the latest KEGG KGML
version (v0.7.1) and an additional Perl script can be used
to translate Systems Biology Markup Language (SBML)
files from the BiGG database [7,8] to compatible KGML-
like files. While the parsing of the KGML pathway files to
produce adjacency matrices is implemented in R, the inte-
gral linear program (LP) that optimizes grid arrangements
is written in C++, using CPLEX (ILOG, Gentilly, France)
as an LP solver.

Improved user-interface
We made the PathWave user interface more flexible and
easier to use. Now, running a PathWave analysis (step 2)
requires a single function call in R, as shown in the fol-
lowing simplified example:
pwres < − pathWave.run(preprocessed.tag = "KEGG.

hsa", input.sampleclasses = "sample_classes.tsv", input.
exprdata = "expr_data.tsv", param.numperm = 10000,
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param.pvalue.correction.method = "Bonferroni", param.pva-
lue.threshold = 0.001, param.kegg.only_metabolism =TRUE)
Expression data and the definition of the two sample

classes, or conditions, can either be specified as file
names or passed as R data.frame objects and/or factor
objects. The preprocessed pathway information (from
step 1) to be used is specified as well as the number of
permutations to be performed for statistical testing.
When using KEGG, the search can optionally be limited
to metabolic pathways. Additionally, we provide a simple
function to build URLs for querying the KEGG web ser-
ver at http://www.genome.jp/kegg/ to obtain graphical
pathway maps with color-coded metabolic reactions or
signaling proteins according to their up- or down-
regulation:
urls < − pathWave.getColorKEGGMapURLs(pwres$re-

sults.filtered, preprocessed.tag = "KEGG.hsa")
For convenience, the R package of the new version

includes seven sets of preprocessed pathways for six
species: KEGG pathways for H. sapiens, M. musculus,
D. melanogaster, D. rerio, C. elegans, and E. coli and
pathways extracted from the human metabolic model
from BiGG [7,8].

Results and discussion
First case study: analyzing regulation of metabolic
pathways in lung cancer
Lung adenocarcinoma is the most common type of lung
cancer, and lung cancer is the world-wide leading cause of
cancer-related deaths in males [13]. Here, we have used
PathWave and analyzed a gene expression dataset derived
from a large-scale RNA sequencing study [14] to identify
metabolic pathways showing significant dysregulation bet-
ween lung adencarcinomas and patient matched normal
controls of tumor adjacent tissues. As expected, metabo-
lism of lung cancer cells showed profound differences to
normal cell metabolism (Table 1). One of the characte-
ristic changes in metabolism of tumor cells is an increased
uptake and utilization of glucose and fermentation into
lactate [15], already described by Otto Warburg in
the 1920s [16]. Accordingly, PathWave identified glycoly-
sis to be significantly dysregulated (Bonferroni corrected
P < 1E-16), along with the citrate cycle (TCA cycle;
P < 1E-16). Notably, in contrast to most reactions of the
two pathways, some key reactions were down-regulated
as shown in Additional file 1: Figure S1 and Additional
file 1: Figure S2: FBP1 and FBP2 encode fructose-1,6-
bisphosphatase 1 and 2 (EC 3.1.3.11) and showed sig-
nificantly lower expression in tumor cells than in adjacent
normal tissue (P = 2.5E-7 and P = 5.8E-3, respectively).
The reaction catabolized by these enzymes converts D-
fructose 1,6-bisphosphate to D-fructose 6-phosphate and
opposes the metabolic flux during glycolysis (gluco-
neogenesis). In turn, the inverse reaction catabolized by
phosphofructokinase (EC 2.7.1.11) was upregulated to
allow high glycolytic flux. Phosphoenolpyruvate carbo-
xykinase (PCK1, EC 4.1.1.32) is the main control point for
extracting metabolites from the TCA cycle for gluconeo-
genesis, and this enzyme was downregulated while lactate
production was upregulated.
We detected a less known but nonetheless interesting

metabolic switch in lung adenocarcinomas, namely the
increased conversion of tryptophan to kynurenine by tryp-
tophan 2,3-dioxygenase (EC 1.13.11.11) and indoleamine
2,3-dioxygenase (EC 1.13.11.52), both of which were up-
regulated (see Additional file 1: Figure S3). Kynurenine has
been shown to induce immunosuppression and aid tumor
cells to evade immune surveillance in tumors [17-19].
Interestingly, we also found a significant pattern in glyco-
sylphosphatidylinositol (GPI) anchor biosynthesis. Bio-
synthesis of GPI anchors is essential for appropriately
locating GPI-anchored proteins onto cellular membranes.
GPI transamidase (GPI-T) is in the downstream part of the
pathway representation by KEGG. The upregulation of
GPI-T has been described in tumorigenesis and its genes
suggested as biomarkers [20]. Interestingly, the pattern we
found showed particularly the upper part of GPI bio-
synthesis to be upregulated (significant upregulation
of PIG-C: P = 1.46E-11 (Bonferroni corrected), DPM2:
P = 7.04E-11, PIG-L: P = 0.005, PIG-W: P = 5.21E-8 and
PIG-M: P = 1.02E-13 encoding enyzmes processing UDP-
N-acetylglucosamine into GPI anchor (GlcN)1 (Ino(acyl)-P)
1 (Man)1).
For comparison, we performed the same analysis using

pathways extracted from the human metabolic model of
the BiGG database (see Additional file 1: Table S1). The
obtained results were generally in line with those obtained
for KEGG and differences were mostly due to pathways
that were differently represented in these databases.
To demonstrate that PathWave's extension of pathway

analysis to the identification of significantly dysregulated
subnetworks is more sensitive than common gene set en-
richment approaches, we applied GSEA [9] and DAVID
[10] to the same dataset for metabolic KEGG pathways.
Using DAVID, only two pathways were significant after
correction for multiple testing (Bonferroni), namely
aminoacyl-tRNA biosynthesis (P = 6.46E-4) and purine
metabolism (P = 9.80E-3), and only six pathways had a
nominal (uncorrected) P-value of less than 0.05 (see
Additional file 1: Table S2). For GSEA, three pathways
were identified at nominal P < 0.05 but none was signifi-
cant after correction for multiple testing (see Additional
file 1: Table S3).

Second case study: pathways associated with aging in
Drosophila melanogaster
As a second case study, we analyzed microarray expres-
sion data of D. melanogaster with an extended lifespan

http://www.genome.jp/kegg/


Table 1 Metabolic pathways with significant dysregulation in lung cancer

Pathway P* Up* No_ch* Down*

Glycolysis/Gluconeogenesis < 1E-16 20 9 4

Citrate cycle (TCA cycle) < 1E-16 12 9 2

Fructose and mannose metabolism < 1E-16 10 8 1

Fatty acid metabolism < 1E-16 15 11 8

Steroid biosynthesis < 1E-16 7 11 11

Ubiquinone and other terpenoid-quinone biosynthesis < 1E-16 8 0 3

Purine metabolism < 1E-16 63 22 6

Pyrimidine metabolism < 1E-16 55 16 5

Alanine, aspartate and glutamate metabolism < 1E-16 16 9 2

Cysteine and methionine metabolism < 1E-16 11 12 2

Arginine and proline metabolism < 1E-16 16 26 6

Tyrosine metabolism < 1E-16 5 20 19

Tryptophan metabolism < 1E-16 9 18 10

N-Glycan biosynthesis < 1E-16 19 9 5

Amino sugar and nucleotide sugar metabolism < 1E-16 15 20 2

Inositol phosphate metabolism < 1E-16 5 14 11

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis < 1E-16 8 5 2

Glycerophospholipid metabolism < 1E-16 13 17 11

Arachidonic acid metabolism < 1E-16 13 8 15

Sphingolipid metabolism < 1E-16 7 17 3

Glycosphingolipid biosynthesis - lacto and neolacto series < 1E-16 31 13 3

Glycosphingolipid biosynthesis - ganglio series < 1E-16 4 8 11

Pyruvate metabolism < 1E-16 9 14 4

One carbon pool by folate < 1E-16 16 8 2

Vitamin B6 metabolism < 1E-16 7 0 4

Nicotinate and nicotinamide metabolism < 1E-16 5 8 5

Folate biosynthesis < 1E-16 9 8 3

Porphyrin and chlorophyll metabolism < 1E-16 9 7 1

Drug metabolism - cytochrome P450 < 1E-16 8 15 23

Drug metabolism - other enzymes < 1E-16 15 7 6

Metabolic pathways < 1E-16 418 388 201

Primary bile acid biosynthesis 8.77E-15 12 18 16

Butanoate metabolism 1.75E-14 8 4 2

Valine, leucine and isoleucine degradation 2.63E-14 11 24 2

Glutathione metabolism 6.14E-14 13 9 0

Starch and sucrose metabolism 2.10E-13 7 14 6

Steroid hormone biosynthesis 3.86E-13 32 45 21

Glycine, serine and threonine metabolism 2.05E-12 12 15 2

Lysine degradation 7.22E-12 10 6 0

Fatty acid elongation in mitochondria 9.09E-11 12 6 7

*Up is the number of up-regulated reactions in lung adenocarcinoma when compared to normal controls, down the number of down-regulated reactions; and
no_ch the number of reactions without notable changes. P is the Bonferroni corrected P-value for the pathway pattern.
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and controls [21] to identify pathways being relevant for
aging. We compared gene expression profiles of 8 sam-
ples from naturally long-living specimen with 8 samples
from normal specimen at optimal nutrition. For the
Drosophila study signaling and metabolic pathways were
considered. The two most prominent pathways obtained
(see Table 2) are indeed associated with aging in other
species:
(i) Starch and sucrose metabolism (Additional file 1:

Figure S4) is central for starch digestion which has been
reported to increase with increasing age in chicken
[22,23], suggesting that it is more effectively metabolized.
In long lived specimen of Drosophila this could in prin-
ciple be driven by an increased expression of genes en-
coding for enzymes digesting starch into glucose (we
identified upregulation of EC 2.4.1.1, EC 3.2.1.33, see
Additional file 1: Figure S4). (ii) We detected a significant
pattern in the pathway for circadian rhythm. The dis-
ruption of the circadian clock has been associated with
aging and morbidity [24]. Notably, expression of the clock
gene was higher in D. melanogaster with an extended life-
span, consistent with the recent observation that the dis-
ruption of the encoded protein (dCLK in Additional file 1:
Figure S5) reduces lifespan in mice [25].

Methods
KEGG pathways
KEGG pathways [2] were extracted from the corre-
sponding KGML files obtained from the KEGG website
(download: April 14, 2011) for the following species:
H. sapiens (human), M. musculus (mouse), D. melanoga-
ster (fly), D. rerio (zebrafish), C. elegans (worm), and
E. coli. The KGML files were preprocessed to build path-
way networks in which nodes represent metabolic reac-
tions or signaling proteins (depending on the type of
pathway) that are linked by an edge if one reaction pro-
duces a metabolite that serves as a substrate for another
Table 2 Pathways with significant dysregulation in long-lived

Pathway P*

Starch and sucrose metabolism 2.71E

Circadian rhythm - fly 7.90E

Glycerophospholipid metabolism 1.02E

Tyrosine metabolism 1.44E

Nicotinate and nicotinamide metabolism 2.23E

Glycine, serine and threonine metabolism 2.97E

Jak-STAT signaling pathway 3.15E

Ubiquinone and other terpenoid-quinone biosynthesis 3.26E

Endocytosis 4.52E

Purine metabolism 4.87E

*Up is the number of up-regulated reactions in long-lived flies when compared to n
number of reactions without notable changes. P is the Bonferroni corrected P-value
or one signaling protein interacts with another, respec-
tively. For each of these pathway networks an optimally
arranged 2D grid representation was produced as de-
scribed in Results.

Extraction of pathway maps from the human metabolic
model
The compartmentalized version of the Human recon 1
metabolic model [7] was obtained from the BiGG data-
base [8]. The SBML file was parsed to extract subsystems
(e.g. “Alanine and Aspartate Metabolism”) that were inter-
preted as pathways and converted to KGML-like XML
files. These files were preprocessed in the same way as the
pathways obtained from KEGG (see above).
To focus on functionally relevant interactions, several

exceedingly common metabolites (like H2O) were ignored.
Roughly, metabolites were excluded if they were involved
in more than eight reactions. The final list was manually
curated to (i) retain some specific, informative metabolites
even if they were involved in more than eight reactions;
and to (ii) exclude additional uninformative metabolites
even if they were involved in eight or less reactions.
Additional file 1: Table S4 lists all metabolites that were
excluded from the model and thus from the extracted sub-
systems/pathways.

RNA-seq data for lung cancer
Gene expression levels for 77 lung adenocarcinomas and
patient matched normal tissue were obtained from a re-
cently published large-scale RNA sequencing study [14]
(GEO accession: GSE40419). Expression levels were given
in reads per kilobase of exon model per million mapped
reads (RPKM) [26]. We mapped the HUGO gene symbols
obtained from GEO to their corresponding Entrez/NCBI
gene IDs [27] (mapping downloaded on August 31st,
2013) and restricted our analysis to genes with unique
mappings (20,817 genes). For these, the lowest non-zero
D. melanogaster

Up* No_ch* Down*

-03 6 11 1

-03 3 5 0

-02 9 25 3

-02 4 5 0

-02 3 6 0

-02 4 14 3

-02 1 11 2

-02 7 4 0

-02 6 16 1

-02 23 49 9

ormal controls, down the number of down-regulated reactions; and no_ch the
for the pathway pattern.
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RPKM value of the dataset was added to all expression
levels as a pseudocount, such that expression levels could
be log2-transformed for use with PathWave.

Gene expression data for the Drosophila study
For this case study, we used a very recent expression data
set for D. melanogaster [21] (Gene Expression Omnibus
identifier: GSE36582). The dataset consisted of 46 samples
of adult females of normal lifespan (22 samples) and adult
females of a long-lived, natural variant of D. melanogaster
(24 samples; obtained by selection for starvation resistant
specimens). Samples were selected at two time points
(middle age sampled at 90% survival; and old age sampled
at 10% survival) and for three adult diets (malnutrition,
optimal food, and overfeeding). For more details, see
Doroszuk et al. [21]. For our analysis, we selected 16 sam-
ples of animals with optimal nutrition: 8 samples for
normal specimen (four at each time point) and 8 samples
for long-lived specimen (four at each time point). We used
the data as normalized in [21]. We mapped probeset IDs
of the Affymetrix Drosophila Genome 2.0 Array to gene
IDs using the producers annotation information (na31).
Probesets that mapped to more than one EntrezGene ID
were discarded. Expression profiles from multiple probe-
sets mapping to the same gene ID were averaged yielding
one single expression profile for each of the 12,578 genes
analyzed.

Mapping of gene expression data to metabolic reactions
PathWave applies Haar wavelet transforms to compact 2D
grid representations of metabolic pathways. The repre-
sented nodes are metabolic reactions, not genes. Hence
the gene expression values were associated with these re-
actions. This is done by averaging the expression values of
all genes coding for enzymes that are required for cata-
bolizing the reaction. The resulting reaction expression
profiles are z-transformed over the sample set and
mapped onto the compact 2D grid representations of each
pathway.

PathWave analyses
For the Drosophila case study, we performed the
PathWave analysis on both metabolic and signaling KEGG
pathways using default parameters with the exception of
performing 10,000 (default: 1,000) random shufflings of
phenotype labels (long-lived D. melanogaster and normal
controls) for statistical testing. Final pathway P-values
were corrected for multiple testing using the Bonferroni
correction. For the lung cancer case study, we performed
the PathWave analysis on metabolic pathways from KEGG
and the human metabolic model from BiGG. Having more
samples and thus more statistical power, we additionally
required at least 10 genes/reactions to be up- or down-
regulated for a pathway to be selected and lowered the
threshold of the Bonferroni corrected P-value from 0.05
to 0.001.

Comparison with DAVID and GSEA
To compare the sensitivity of PathWave with other, com-
mon approaches we used the RPKM expression values of
77 lung adenocarcinomas and their matched normal tis-
sue, which was the larger dataset of our case studies.
We identified 4,078 significantly upregulated and 3,065

significantly downregulated genes (Wilcoxon signed-rank
test; Bonferroni-corrected P-value < 0.05) which were tes-
ted for significant pathway enrichment using DAVID
(http://david.abcc.ncifcrf.gov/). The background was the
set of all 20,817 genes we had used for the PathWave ana-
lysis. The functional enrichment analysis was performed
with default parameters. Results were extracted only for
metabolic KEGG pathways and P-value correction for
multiple testing was applied accordingly. For GSEA
(http://www.broadinstitute.org/gsea/), we used only anno-
tations from metabolic KEGG pathways. Statistical signifi-
cance was evaluated by comparison with 10,000 random
shufflings of phenotype labels (tumor or normal) of the
154 samples.

Conclusions
Many patho-physiological clinical courses come along
with major changes in cell physiology affecting single
pathways or even largely remodelling signaling and the
entire cellular metabolism, such as in the case of cancers
[15,28]. Even the dysregulation of only a few genes in a
pathway can lead to a substantial regulatory switch that
alters the output of a signaling process or redirects the
metabolic flux in the cell. This may be related to aging or
lead to growth advantages driving tumorigenesis, particu-
larly when dysregulated genes are connected in the same
subnetwork of a pathway and their functionality is closely
linked. A good example found in this study, is the conver-
sion of starch to glucose for which we observed a regula-
tory switch enabling improved digestion of starch in long-
lived Drosophila specimen. Unfortunately, most pathway
analysis methods require a considerably high number of
genes to be dysregulated within a pathway in order to sug-
gest the pathway as functionally relevant for the disease.
These approaches do not consider significant regulatory
patterns interlinked at smaller scales. For the purpose of
identifying not only globally dysregulated pathways but in
particular important switches in pathways, we have devel-
oped PathWave. Here, we presented a considerably im-
proved version that, among other changes, uses a novel
LP formulation to optimally embed pathway networks
into compact 2D lattice grids and provides a more flexible
and user-friendly interface including ready-to-use pre-
arranged 2D grid representations of pathway collections
for now six organisms.

http://david.abcc.ncifcrf.gov/
http://www.broadinstitute.org/gsea/
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We used PathWave to identify pathways that play central
roles in human lung cancer and longevity of D. melanoga-
ster. A comparison to commonly used pathway and gene
set analysis methods showed PathWave to be considerably
more sensitive. In contrast to common approaches, it
regards pathways also when they contain only small num-
bers of significantly dysregulated genes, which may po-
tentially constitute functionally relevant pathway switches,
suggesting follow up investigations in the wet-lab.

Availability and requirements
Project name: PathWave
Project homepage: http://www.ichip.de/software/
pathwave.html
Operating system(s): Platform independent
Programming language: R, C++, Perl
Other requirements: For running PathWave on ex-
pression data: R version 2.14 or higher, standard CRAN
R packages (XML, e1071, gtools, evd), standard Biocon-
ductor R packages (multtest, RCurl, genefilter); for em-
bedding pathways into compact 2D lattice grids: CPLEX,
GridArranger v1.0 (available from the project home-
page), ABACUS v2.4-alpha (available from the project
homepage).
License: GNU GPL
Any restrictions to use by non-academics: none
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