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Abstract

participate in the transcriptional regulation.

available at http://www.msu.edu/~jinchen/mTRIM.

Background: Living cells are realized by complex gene expression programs that are moderated by regulatory
proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context
of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how
the TFs control the expression of target genes is a challenging task, especially when multiple TFs collaboratively

Results: We model the underlying regulatory interactions in terms of the directions (activation or repression) and
their logical roles (necessary and/or sufficient) with a modified association rule mining approach, called mTRIM. The
experiment on Yeast discovered 670 regulatory interactions, in which multiple TFs express their functions on
common target genes collaboratively. The evaluation on yeast genetic interactions, TF knockouts and a synthetic
dataset shows that our algorithm is significantly better than the existing ones.

Conclusions: mTRIM is a novel method to infer TF collaborations in transcriptional regulation networks. mTRIM is

Background

The complex gene expression programs in living cells are
moderated by regulatory proteins called transcription
factors (TFs) [1]. In the context of a transcriptional regu-
latory network (TRN), a TF may act independently or
collaboratively with other TFs [2], leading to complex
regulatory interactions that influence the transcription of
target genes [3,4]. A regulatory interaction includes target
genes and all the TFs that control their transcriptional
activities. An individual-TF regulatory interaction has
been defined in terms of two properties: the TF’s func-
tional role as an activator or a repressor, and its logical
role as being necessary or sufficient (see Figure 1a) [3,5].
The categories in the TF’s functional and logical roles are
combinable; they can be activator necessary (AN), activa-
tor sufficient (AS), or activator necessary and sufficient
(ANS). For example, pheromone response elements are
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necessary and sufficient for basal and pheromone-
induced transcription of the FUS1 gene of yeast [6].
Similarly for TFs that are repressors, they can be RN, RS
or RNS [7]. In a multiple-TF regulatory interaction, a
group of TFs collaborate to control the expression levels
of the same target genes. The directions of all the TFs in
the group, therefore, form a transcriptional regulation
pattern of the target genes. Recent developments in bio-
technology (such as ChIP [8] and yeast one-hybrid [9])
have been applied to uncover TF-target binding relation-
ships [10,11] to reconstruct draft regulatory circuits at a
systems level [3,4,12]. Furthermore, to identify regulatory
interactions in vivo and consequently reveal their functions,
TF single/double knockouts and over-expression experi-
ments have been systematically carried out [13]. However,
the results of many single or double-knockout (or over-
expression) experiments are often non-conclusive [14],
since many genes are regulated by multiple TFs with com-
plementary functions [4]. For example, in yeast (one of the
most well-studied eukaryotic organisms), 47% of genes are
bound by at least two TFs [15], and approximately 73%
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Regulatory | Description
Interaction
Activator Response of target gene is inline with
Functi the expression change of TF
unctional : i
Repressor Response of target gene is opposite to
the expression change of TF
Necessary | Decreasing TF’s expression level leads
to responses opposite to its functional
role
Direction | Sufficient Increasing TF’s expression level leads
of to the responses consistent with its
Logical functional role
Necessary Increasing TF’s expression level
and leads to responses consistent with its
Sufficient functional role, and decreasing the TF’s
expression level leads to the responses
opposite to its functional role

collaboratively co-regulate two target genes.

Figure 1 (a) Concepts of regulatory interaction and (b) an illustrative example of regulatory interaction in a TRN, in which three TFs

(~4,500) of the known genes are non-essential [16], sug-
gesting that higher order genetic variations are needed for
precise inference of transcriptional regulations.

Considering the prohibitive costs and the tremendous
number of possible combinations of higher-order gene
knockouts, it is currently impossible for researchers to
examine all of possible gene knockout combinations
experimentally. One solution to this problem is to select
only the TF groups that are most likely to bring about
the phenotypic change. In order to accomplish this, we
need to understand the interactions employed by multi-
ple TFs (called regulatory interactions) to regulate their
common target genes. However, this is a difficult task,
because when multiple TFs simultaneously or sequen-
tially control their target genes, a single gene responds
to merged inputs, resulting in complex gene expression
patterns [17,18]. The exhaustive approach requires enu-
merating all TF combinations, which, given the high
complexity of combinatorial, is simply impractical at the
whole genome level.

In our previous research [19], a Hidden Markov model
was developed to relate gene expression patterns to regula-
tory interactions, in order to solve a relatively simpler sub-
problem that considers only two TFs. To predict regulatory
interactions for all possible collaborative TFs, we propose
an algorithm called “mTRIM” (multiple Transcriptional
Regulatory Interaction Mechanism) in this paper. By unco-
vering the regulatory interactions in terms of their direc-
tions (activation or repression) and corresponding logical
roles (necessary and/or sufficient) from gene expression
and TF-DNA binding data, mTRIM identifies TF groups

that are collaboratively responsible for target gene expres-
sions. Such inferences may provide high-quality candidate
sets for further experimentally detecting the collaborative
functions of gene regulations that are largely unknown
[18]. Yeang and Jaakkola [3] attempted to characterize the
combinatorial regulation of multiple-TF regulatory interac-
tions using a heuristic approach to measure how well a
regulatory module fits the associated binding and gene
expression data with a log-likelihood function. The regula-
tory module’s likelihood is maximized with a greedy
approach by incrementally adding genes to the module and
monitoring the predictions of the regulatory interactions
for optimality. However, this incremental approach does
not study the functions of the TFs simultaneously because
of the scalability issue introduced by the greedy search.
This method also uses a probability-based approach to cal-
culate the significance of the combinatorial property of
TFs, determined by the gap of likelihood scores between
their model and a model built on randomized data in the
entire time frame. However, as stated in [4], a TF usually
functions at specific “activation time points” instead of
throughout the entire time course, meaning that the identi-
fication of regulatory interaction modules should be
focused on activation time-points rather than the entire
time frame.

To derive dynamic regulatory networks that associate
TFs with target genes at their activation time-points, an
algorithm called DREM was proposed [4]. DREM inte-
grates time-series gene expression data and protein-DNA
binding data to build a global temporal map, in order to
uncover transcriptional regulatory events leading to the
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observed temporal expression patterns and the underly-
ing factors that control these events during a cell’s
response to stimuli. The method mainly works by identi-
fying bifurcation time-points where the expression of a
subset of genes diverges from the rest of the genes. The
bifurcation points are then annotated with the TFs regu-
lating these transitions, which result in a unified temporal
map. The method can therefore facilitate the determina-
tion of the time when TFs are exerting their influence,
and assigns genes to paths in the map based on their
expression profiles and the TFs that control them. Unlike
the method by Yeang and Jaakkola [3], DREM’s ability to
derive dynamic maps that associate TFs with the genes
they regulate and their activation time-points has indeed
led to better insights for the regulatory module being stu-
died. However, DREM does not infer the logical roles of
the TFs (i.e., whether a specific TF is necessary or suffi-
cient for regulating a set of target genes). Such knowl-
edge is extremely useful for designing high-order genetic
variation experiments to understand the complex regula-
tory mechanisms of biological processes.

TRIM is an HMM based model which was developed to
infer the collaboration of at most two TFs that regulate
the same target genes. In the HMM, the functions of a TF
are hidden states. The model starts with random priors,
and then is iteratively trained using EM till convergence.
Since each possible function of a TF is a node in the
HMM, there are four nodes (AS, AN, RS, and RN) for
each TF. With the design of HMM (and the limited train-
ing data), the number of TFs TRIM can handle is limited.

The enumeration of all TF combinations is clearly a NP
problem. Therefore, we focused on the most important
biological problem (i.e., 2-TF combination) and therefore
“hardcoded the problem in TRIM. In this paper, we solve
the efficiency problem by developing an association
rule mining algorithm which is capable to handle a large
amount of data with high-level combinations.

In this paper, we propose a new model mTRIM for
inferring regulatory interactions for multiple TFs with an
EM-based Bayesian inference approach [20,21] and a
modified bottom-up association rule mining method.
Experimental results evaluated with yeast genetic interac-
tions, TF knockouts and a synthetic dataset shows that
our algorithm is significantly better than the existing
ones.

Methods

mTRIM is developed to efficiently infer regulatory inter-
actions for all possible collaborative TFs in a TRN. The
feasibility is achieved in two steps. First, an EM-based
Bayesian inference approach is developed to identify all
the significant individual TF regulatory interactions,
meaning that individual TFs that can regulate the target
genes independent to the existence of other TFs. For the
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TFs which require collaborations with other TFs to drive
the target genes, or are actually non-deterministic (mean-
ing lack of clear evidence of regulation), their p-values
are insignificant. They are considered as the inputs of the
second step.

Second, in order to identify the collaboration of k TFs
(k = 2), i.e., k-TF regulatory interaction, a bottom-up
association rule mining approach is developed. While
the significant TF groups are reported to the users, the
insignificant ones are joined with each other to mine
(k + 1)-TF regulatory interactions. It should be noted
that unlike the conventional association rule mining
which seeks the longest possible patterns, mTRIM out-
puts the shortest significant results, in that the goal of
mTRIM is to discover the smallest group of TFs that can
regulate the target genes, so that biological experiments
with high-order genetic variations can be subsequently
carried out for the understanding of the behavior of
TRNSs. In terms of time complexity, consider a candidate
k-TF regulatory interaction I =< hyy,, ..., hyf, >= hg. The
algorithm computes AfnScore and p-values of all of the
subsets, I - {¢f}} (Vj = 1, 2, ..., k). If one of them is signifi-
cant, [ is immediately pruned. Hence the time complexity
is O(k) for each candidate k-TFs regulatory interaction.
Every merging operation requires at most k - 2 equality
comparisons. In the best-case scenario, it produces a
viable candidate k-TF interaction. In the worst case, the
algorithm merges every pair of infrequent (k - 1)-TF
candidates. Therefore, the overall cost of merging candi-

dates is between Y"1 (k — 2)|PyJ and Y"1 (k — 2)1Py1 12
where Py is the candidate set of k-TF regulatory interac-
tions. To improve the algorithm efficiency, a hash tree is
constructed for the storage and quick access to all of the
candidates. Because the maximum depth of the hash

tree is k, the cost for populating the hash tree of candi-

dates is O(ZLZ' k|Py|). During candidate pruning, it is
required to verify whether the k - 1 subsets of every
candidate k-TF regulatory interactions are significant.
Since the cost for looking up an item in a hash tree is

O(k), the time complex of candidate pruning step
is O(X 1, k(k — 2)|Py|).

Concepts

A TRN can be represented as a directed graph in which
each node is a TF or a gene, and each edge pointing
from a TF to a gene represents a regulation relationship
between them. In many organisms, in-depth transcrip-
tome analysis has revealed the modular architecture of
gene expression [22]. A regulatory module is a self-con-
sistent regulatory unit R(TF, G, I) representing a set of
co-expressed genes G = {gy, g, ..., g} regulated in con-
cert by a group of TFs in TF = {tfi, tf5, .., tf,,} that gov-
ern the target genes’ behaviors via regulatory interaction



Awad and Chen BMC Systems Biology 2014, 8(Suppl 1):S1
http://www.biomedcentral.com/1752-0509/8/51/S1

I [5]. An example of the regulatory module is shown in
Figure 1b.

A regulatory interaction I =<hy . ..., hy, ..., hy, >= Ry
(which is the final output of mTRIM) is defined as a set of
TFs {tf1, ..., tf,,} co-regulating a set of genes {g1, ..., g},
where hy, is the behavior of TF i; kg is the behavior of all
the target genes in R, and &, € {1, |, -}, meaning up-
express, down-express and no change respectively. For
example, if tf] T and tf, | always cause the target genes
g1 and g, to be up-regulated, the regulatory interaction is
<tfi 1, tf |> = g 1. For individual regulatory interactions,
I € {AN, AS, RN, RS, ANS, RNS}. In this work, we assume
that a regulatory interaction is consistent in the context of
transcriptional control as long as the experimental condi-
tions are unchanged. Note that binaries gene expression
values are used in mTRIM, since TF activity is not always
proportional to its mRNA abundance [23].

mTRIM Step 1. Inferring individual regulatory interactions
To solve a relatively easier problem of inferring the reg-
ulatory interactions for each individual TF and to pre-
pare input for multi-TF regulatory interaction inference,
an EM-based Bayesian inference algorithm has been
developed [20,21].

To define the probabilities in Eq. 2 and Eq. 3, we fol-
lowed the definitions in [20]. Eq 2 represents the prior
probability of the interaction model I,,, and Eq 3 repre-
sents the probability of gene expression correlation
between TFs and targets given the interaction model 7,,,.
In the Bayesian model, the training dataset is a matrix
that contains gene expression levels of TFs and their
targets, from which I'(Z,,) is estimated using Eq 4. And
then, the likelihood is calculated using Eq 3. The prior
probabilities are randomly assigned initially. In each
iteration, the posterior probabilities and the frequency
of I, are updated. The iteration will continue till the
posterior probabilities converge.

Let Pos be the posterior probability of a TF tf, to
have a specific regulatory interaction /,, in regulatory
module Ry, where I,, € {AN, AS, RN, RS} (ANS and
RNS will be discussed later). To infer Pos, both the
prior probabilities Pri and the likelihood Lk of the same
TF need to be computed, given that:

Pos(tfm, Ry, Im) = Pri(ly) x Lk(tfm, Re, In) (1)

where Pri(l,,) is the prior probability of regulatory
interaction [, (defined in Eq 2) and the likelihood Lk
(tfy Rio L) is defined in Eq 3.

The prior probability Pri(f,,) captures how likely a
given interaction /,, exists given the background of all of
the other TFs:

fre(Im)

Pri(I,,) =
i) = R 17

(2)
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where fre(l,,) is the frequency of regulatory interaction
L, in all of the regulatory modules, |R| is the number of
the regulatory modules, |TF| is the number of TFs, and
I, € {AS, RS, AN, RN}.

Given the definition of a regulatory interaction, the
likelihood Lk(tf,,, Ry, I,,) indicates how likely tf,, in Ry
has regulatory interaction /,,, which is defined by the
expression level changes of the TF and its targets:

T-1 Gl
_ =1 Z =1 F(Im)
Lk(tfm, Ry, Im) = IR| |TF| 1'"1—1 |Gl (I
r=1 Lum=1 Lat=1 n=1 (m)

where T is the number of time-points in the training
data, |G| is the number of genes in regulatory module
Ry, and I'(1,,,) is defined as:

1ifL, = AS and (tf, + and g 1), or
if I, = RSand (tf, + and g |), or
ifl,, =AN and (tf, | and g ), or (4)
ifI,, = RN and (tf,, | and g 1)

0 otherwise

1—‘(Im) =

An expectation-maximization (EM) algorithm is
adopted to maximize the posterior probabilities Pos(tf,,,,
Ry, I,)). The EM model is initialized with each TF
assigned a random regulatory interaction. In the expec-
tation step, we compute the likelihood of each TF to be
a specific interaction using Eq 3. Consequently, the pos-
terior probabilities of interactions for every TF is
updated with Eq 1. As a result, each TF is assigned with
the regulatory interaction with the highest posterior
probability. In the maximization step, we maximize the
scoring function S(Ry) = l;f ‘1 chll I'(I,,) for each reg-
ulatory module R;, which measures how the interaction
of each TF in R; matches the target gene expression
changes. Note that in the iteration the priors are
updated but the likelihoods are constant.

Finally, in order to determine whether I, is “necessary
and sufficient” (ANS and RNS) or “no decision”, the fol-
lowing strategy is adopted: if none of the posterior prob-
abilities are significant, the output is “no decision”; if the
probabilities of both N and S states are significant, and
there is no significant difference between them, the out-
put is ANS or RNS depending on the target gene expres-
sion direction; otherwise the output is the regulatory
interaction with the highest posterior probability.

An illustrative example is shown in Figure 1b, in which
if1, tf> and tf; regulate target genes g; and g», and they all
belong to the same regulatory module R;. With the gene
expression changes in Table 1, we start with equal prior
probabilities, i.e., Pri(AS) = Pri(RS) = Pri(AN) = Pri(RN) =
0.25, so Lk(tf;, R, AN) = 12/26 = 0.461, (Eq 3). After 10
iterations, in the expectation step, Pri(AN) is updated to
0.70 (Eq 2), hence Pos(tf1, Ry, RS) = 0.70 x 0.461 = 0.323
(Eq 1). In the maximization step, we have <t¢f; |> =>g |,
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Table 1 lllustrative example of time-series gene
expression data for the genes in Figure 1b.

to & b t3 ta ts te t; g to o 1t

oo o bl Ll
S N A N A I e
I !
L I A R R T T T T !
Lo 2 T A A

because the maximum posterior probability is assigned to
AN with p-value 0.05 (see Table 2 row 1).

mTRIM Step 2. Mining multiple-TF regulatory interactions
Besides the individual TF regulatory interactions, a sig-
nificant portion of TFs collaboratively work together to
regulate the same target genes. In order to identify these
multiple-TF regulatory interactions, a new association
rule mining approach has been developed. Instead of
using the concepts of support and confidence that are
commonly used in a conventional association rule
mining application [24], we define an affinity scoring
function (called AfnScore) according to the gene expres-
sion agreement between the TF groups and their target
genes, to meet the biological meaning of a multiple-TF
regulatory interaction (see Section Background). Mathe-
matically, AfuScore of each candidate regulatory interac-
tion I =< hy,, hys,, ..., hy, >= hg is calculated with:

P(hyf,, gy, - .- By, hg) % P(hg)
P(htfl' hffz' s htfm)

where P(x) is the number of times that x appears in the
given time series gene expression dataset divided by the
product of the total number of time points and the total
number of target genes. The p-value of each candidate
regulatory interaction is computed by considering the dis-
tribution of AfnScore for the regulatory interactions with
the same number of TFs. Only the candidate interactions
with p-values smaller than 0.05 are reported to the user.
Specifically, if all the TFs in / are up-regulated, the TFs are
“sufficient”; if they are all down-regulated, the TFs
are “necessary’; otherwise, each TF acts differently to drive
the target genes to the same direction.

AfnScore(I) = (5)

Table 2 Illlustrative example of regulatory interaction
identification on the TRN in Figure 1b.

Regulatory Interaction AfnScore p-value
lo <thh |>>g | - 0.05
I <th 1, th 1> g 1 0.347 0.06
I <th 1, th [>> g 1 0.173 0.09
Iy <th 1, th > g 1 0.347 0.06
Iy <th 1, th 1 th 1>=> g1 0.347 0.04
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To identify all the significant k-TF regulatory interac-
tions, the new association rule mining algorithm starts
with an empty set Q, and all the insignificant (k - 1)-TF
interactions saved in P;_; (see pseudocode in Figure 2
line 1). For interactions Iy =< hyf,, ..., hy_, >= hy
and L =<Mhy, ..., by >= hin P, ;, we combine
them and compose a new interaction I, (line 3), if I,
and I, are combinable. We define that /; and I, are
combinable if and only if they satisfy the conditions that
hg =hy, by, = b (for i = 1, 2, ., k - 2) and hy, #
If none of the (k - 1)-TF subsets of I, is significant (line
2-8), I, is added to candidate set C and its AfuScore is
computed. Finally, we compute p-values for all of the k-TF
candidates in C using t-test, report all of the significant
regulatory interactions to the user, and save all the insig-
nificant ones Py to for the identification of the (k + 1)-TF
regulatory interactions (line 9-17).

For an illustrative example, there are 40 possible mul-
tiple-TF regulatory interactions in the regulatory mod-
ule shown in Figure 1b. Using the time-series gene
expression data in Table 1 all the 2-TF regulatory inter-
action candidates are screened and their p-values are
computed (see Table 2 row 2-4). Since none of the 2-
TF regulatory interaction candidates is significant, a 3-
TF interaction I, =<tf; 1, tfr 1, tfs |>=>g 1 is generated
by merging I, and I3. The AfuScore of 1, is ((10/24) *
(10/24))/(12/24)) = 0.347 and its p-value is 0.04 (see
Table 2 row 5). Based on I, and I, we conclude that
the target genes g; and g, are induced by the up-expres-
sion of tf; and tf, and the down-expression of ff;, and
the same target genes are repressed by the down-
expression of tfi.

Experimental results
mTRIM was applied on two independently-constructed
yeast transcriptional regulatory networks (the Harbison
dataset [15] and the Reimand dataset [12]) to identify
regulatory interactions. For performance comparison,
DREM v3.0 [17] and TRIM [19] were both applied on
the same datasets. We did not compare mTRIM with
Yeang’s method [3] because the latter’s objective is to
build a reliable TRN instead of predicting regulatory
interactions. We evaluated these methods systematically
with three independent sources: single TF knockouts
[16] for individual regulatory interactions, genetic inter-
actions (GI) [25] for 2-TF regulatory interactions and
synthetic data for high-order regulatory interactions.
Using the EM-Based Bayesian inference approach, 658
significant individual regulatory interactions were mined
in the Harbison dataset and 164 significant ones were
mined in the Reimand dataset (Table 3). The results
show that while many individual TFs drive target genes’
behaviors, it is clear that most of them (4,414 in the
Harbison dataset and 1,539 in the Reimand dataset) are
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Algorithm 1 Procedure Generating Significant Patterns

0: p-value threshold

p

forall ] € C do

11:  if pvalue(l)<0 then
12: Qr « QU {l};
13:  else

14: P,L-{—PkU{I}Z
15:  endif

16: end for

17: return Q. and P

Input: Qj_1: Set of significant (k — 1)-TF regulatory interactions
Pi._1: Set of insignificant (k — 1)-TF regulatory interactions

Output: Q;.: Set of significant k-TF regulatory interactions
Py.: Set of insignificant k-TF regulatory interactions
1: Qi + 0: P + 0: candidate set C + {;
for all 11. 12 € Pk—l with ]1 :<hlf1 ‘“‘h‘ffk—'l‘h’ffk i >=
hgl . 1'2 :<h¢f1 "'!hlfk_gﬁh‘tf‘(_ ; >= h'9'2' and hgl — h92 do
Iio — <huy, ""'h'fk—ﬂ'h'tfk— 1 'h‘ff,{. 3 =9 R
if none of the (k — 1)-subset of 15 isin Qx_; then

3

4:

5: Compute A fnScore(l12);
6: C+ CU{l2};

7. endif

8: end for

0:

10:  Compute p-values pvalue(l);

\

Figure 2 Procedure of identifying significant multiple-TF regulatory interactions.

“no decision”. It indicates that a large proportion of TFs
need to work collaboratively with other TFs.
Multiple-TF regulatory interactions were inferred with
a new association mining algorithm. In total, 670 regula-
tory interactions with multiple TFs were discovered
(Table 4). The results show that at most 6 TFs collabora-
tively regulate the same target genes. All the TF combi-
nations with more than 6 TFs are either insignificant or
have a significant subset. The whole experiments finished
in 30 minutes on a high performance computer cluster.

Data preparation
Yeast ChlP-chip binding data [15] was downloaded from
http://younglab.wi.mit.edu/regulatory_code, and a p-value

cutoff of 0.001 was applied (the same threshold used in
[4]) to obtain the Harbison dataset. It contains 169 TFs,
2,864 target genes and 6,253 TE-DNA bindings. Next we
applied the same statistical approach as in [12] to filter the
union of the yeast ChlP-chip binding data [26] and the
binding-site predictions [27,28] to generate the Reimand
dataset with 2,230 TF-DNA binding relationships between
268 TFs and 1,509 target genes. To obtain the regulatory
modules in the TRNS, all the target genes were clustered
based on their gene expression values with Cluster 3.0
(specifically, k-means), which uses Pearson correlation
coefficient for gene similarity metric [29], resulting in 50
clusters. The clusters are then evaluated with Gene Ontol-
ogy enrichment analysis using Bingo [30], and unenriched

Table 3 The number and type of the regulatory interactions for individual TFs predicted by mTRIM.

Dataset Necessary Sufficient Necessary & Sufficient No Decision
Activator Repressor Activator Repressor Activator Repressor

Harbison 194 184 118 162 29 69 4414

Reimand 22 43 42 32 7 18 1543
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Table 4 Number of the multiple-TF regulatory
interactions identified by mTRIM.

Dataset 2-TF 3-TF 4-TF 5-TF 6-TF
Harbison 350 61 82 43 10
Reimand 95 15 7 7 0

clusters are discarded. To construct regulatory modules
from the clustering results, the target genes that are regu-
lated by the same TFs were partitioned if they are not in
the same cluster. Finally, 2,172 and 1,031 regulatory mod-
ules were obtained in the Harbison and Reimand networks
respectively. The distribution of genes and regulatory
modules (Figure SI and Table S2 in Additional file 1)
reveal that many genes are bound by multiple TFs.

To identify the individual and collaborative regulatory
interactions in the above datasets, three widely used
time-series microarray datasets (alpha, CDC28 and elu)
from yeast cell cycle studies were collected [31] as train-
ing data. These datasets contain 49 time points in total.
In these experiments, yeast cells were first synchronized
to the same cell cycle stage, released from synchroniza-
tion, and then the total RNA samples were taken at
even intervals for a period of time (Table SI in Addi-
tional file 1). In order to decide whether a gene is signif-
icantly up or down regulated, a gene expression change
cutoff of 0.35 was applied (the same threshold used
in [19]).

To evaluate the individual regulatory relations, single-
TF knockout microarray data were collected [16], and a
p-value cut-off of 0.05 (as used in [16]) was applied to
determine whether a gene is significantly affected by a TF
knockout. To evaluate the 2-TF regulatory interactions,
we downloaded the SGA genetic interaction dataset [25],
which is composed of 1,711 queries crossed to 3,885
array strains. Of the 1,711 queries, 1,377 are deletion
mutants of non-essential genes and 334 are essential
gene alleles. The SGA dataset contains 762,146 genetic
interactions. Two genes are genetically interacted if
mutations in both of them produce a phenotype that is
significantly different to each mutation’s individual
effects. In a 2-TF regulatory interaction, if TFs collabora-
tively regulate the same target genes, the down-regulation
of both TFs should have a significantly different pheno-
type as the down regulation of each individual TF. There-
fore, such TF pairs should have a significant p-value in
the GI dataset. To evaluate the high-order multiple-TF
regulatory interactions, a synthetic binding network were
built, which contains 11 TFs, 17 target genes and 58 reg-
ulation/binding relationships. The network also contains
two feed forward loops. Corresponding time-series gene
expression data containing 500 time-points were ran-
domly generated with 10% or 40% noise rate.
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Evaluation 1. Single TF knock-outs

We used the single TF knockout microarray data to evalu-
ate the performance of mTRIM on individual TF regula-
tory interaction predictions in terms of the identification
of “necessary” TFs (i.e., if the expression values of the
target genes are significantly changed when the TF is
knocked out). For the Harbison dataset, the prediction
precision of mTRIM is 94.44%, higher than the results of
TRIM (82.50%). Using the Reimand dataset, mTRIM has a
precision of 91.94%, significantly higher than the results of
TRIM (61.54%). DREM is not compared since it does not
predict “necessary” TFs.

Evaluation 2. Genetic interaction

In a regulatory module with two TFs, if both TFs colla-
borate to regulate the same target genes, the down- reg-
ulation of both TFs should have significantly different
phenotypes from the down-regulation of each individual
TEF. Therefore, such TF pairs should have a significant
p-value in the GI dataset. To this end, for the pairs of
TFs that are predicted by mTRIM to work collabora-
tively, we adopted the GI dataset [25] for evaluation.
Figure 3 (a) and 3 (b) shows the Receiver Operating
Characteristic curve (ROC) of mTRIM, TRIM and
DREM on Harbison dataset and Reimand dataset
respectively. For Harbison dataset, the area under curve
(AUC) of mTRIM is 0.81, much higher than the AUC
of DREM (0.51) and TRIM (0.75). For Reimand dataset,
the AUC of mTRIM is 0.80, higher than DREM (0.52)
and TRIM (0.64). In addition, to explore whether the
performance of mTRIM is sensitive to parameter set-
tings, we altered its parameters systematically. For the
Harbison dataset, Figure S2 in Additional file 1 shows
the AUC values with different gene expression cutoffs,
GI cutoffs, and p-value cutoffs of AfuScore respectively.
Similarly, for Reimand dataset, Figure S2 in Additional
file 1 shows the varying of the AUC values using differ-
ent thresholds. These show that our method is robust
with the GI cutoff and p-value cutoff of AfuScore,
although its performance gradually decreases with the
increase of gene expression cutoffs.

Evaluation 3. Synthetic transcriptional regulatory
networks

A synthetic transcriptional regulatory network was gen-
erated to evaluate the performance of mTRIM in detect-
ing high-order multiple-TF regulatory interactions (see
Figure 4). The synthetic network has 28 nodes (11 TFs
and 17 target genes) and 58 edges, in which the solid
line represents a real transcriptional regulation and 12
(20.69%) dotted lines represent TF-DNA bindings but
no regulation. The dotted lines were added to the net-
work in order to test the precision of mTRIM. For the
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Figure 3 Evaluation of the 2-TF regulatory interactions using genetic interactions on (a) Harbison dataset and (b) Reimand dataset.

synthetic network, two time series gene expression data-
sets with 500 time-points were generated. In order to
test the robustness of mTRIM, we repeated the simula-
tion test twice with different rates of noises added to
the simulated gene expression data sets.
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Figure 4 A synthetic transcriptional regulatory network, in
which the solid lines represent transcriptional regulations and
the dotted lines represent TF-DNA bindings only (meaning
binding but not regulation).

A comparison between all the three algorithms (see
Figure 5) indicates that the performance of mTRIM is
constantly the best on precision, specificity and sensitivity
(equivalent to recall). Precisely, the precision of mTRIM
is 87.5%, while the precisions of DREM and TRIM are
62.5% and 66.67% respectively. The recall of mTRIM is
significantly higher than TRIM because it identified 4 out
of 5 regulatory interactions with more than two TFs,
while TRIM, because of the scalability issue, cannot find
any regulatory interactions with more than two TFs. It
also shows that mTRIM is less sensitive to the change of
the noise rates from 10% to 40% in the gene expression
data than the other two algorithms.

Case studies

In Figure 6a, a 2-TF regulatory interaction that controls
12 target genes were found in the Harbison dataset. The
yellow colored nodes are TFs and the green colored
nodes are their target genes. The red boxes of the
dotted lines represent the time points when the TFs col-
laborate with each other to regulate the target genes.
STE12 (which is activated by a MAP kinase signaling
cascade) activates genes involved in mating or pseudo-
hyphal/invasive growth pathways. DIG1 is the MAP
kinase-responsive inhibitor of STE12. The target genes
are enriched in “response to pheromone” (6 genes),
“growth” (3 genes) and so on. The collaboration
between STE12 and DIGI on cell growth was captured
by mTRIM successfully. Another interesting result
found in the same dataset is a 6-TF regulatory interac-
tion (Figure 6b). All the six TFs are well-characterized
in yeast but are considered to function in different path-
ways. Our finding connects the distinct biological pro-
cesses, revealing potential TF collaborations at the
transcription level.
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Conclusion

Revealing the mechanisms of the transcriptional regula-
tory programs in TRNs is essential for understanding
the complex control by which genes are expressed in
living cells. The inference of collaborative protein-DNA
functions helps paving the critical path for new drug
development. In this work, we identify the regulatory
interactions between TFs and target genes with mTRIM,
an integration of an EM-based Bayesian inference and a
new association rule mining approach built on a set of
basic constraints that relate gene expression patterns to
regulatory interactions. mTRIM is not limited by the
number of TFs. The experimental results show that
mTRIM is clearly better than the existing algorithms.
Since it is difficult to obtain the ground truth for algo-
rithm performance evaluation on real data, we generated
two sets of synthetic data and used them to validate the

results of our algorithm. In our future work, we will use
third-party biological evidences including multiple TF
knockouts, metabolic pathways, protein-protein interac-
tions, etc., for biological validation. In our future work,
we would like to extend this work by including extra
data in addition to wild-type gene expression datasets.
For example, since miRNA can degrade the genes
induced by certain TFs [32], we will consider miRNA-
target bindings and miRNA expressions, aiming to
understand how miRNAs and TFs collaborate to regu-
late target gene expressions.

Additional material

Additional file 1: Supplementary Materials for Awad et al. Figures
Sl, S2, Table SI, and S2. This file contains Figures SI, S2, Tables SI and
S2.



http://www.biomedcentral.com/content/supplementary/1752-0509-8-S1-S1-S1.pdf

Awad and Chen BMC Systems Biology 2014, 8(Suppl 1):S1
http://www.biomedcentral.com/1752-0509/8/51/S1

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JC conceived the project. Sa and JC designed the algorithm and
experiments. SA implemented the algorithm and finished the experiments.

Acknowledgements
This project has been funded by the Egyptian Government GM 845.

Declarations

The publication costs for this article were funded by the corresponding
author’s institution.

This article has been published as part of BMC Systems Biology Volume 8
Supplement 1, 2014: Selected articles from the Twelfth Asia Pacific
Bioinformatics Conference (APBC 2014): Systems Biology. The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcsystbiol/supplements/8/S1.

Authors’ details

'Department of Computer Science and Engineering, Michigan State
University, East Lansing, MI, USA. MSU-DOE Plant Research Laboratory,
Michigan State University, East Lansing, MI, USA.

Published: 24 January 2014

References

1. Qiu P: Recent advances in computational promoter analysis in
understanding the transcriptional regulatory network. Biochem Bioph Res
Co 2003, 309:495-501.

2. Maienschein-Cline M, Zhou J, White K, Sciammas R, Dinner A: Discovering
Transcription Factor Regulatory Targets Using Gene Expression and
Binding Data. Bioinformatics 2011, 28:206-213.

3. Yeang H, Jaakkola T: Modeling the combinatorial functions of multiple
transcription factors. J Comput Biol 2006, 13:463-480.

4. Emst J, Vainas O, Harbison C, Simon |, Bax-Joseph Z: Reconstructing
dynamic regulatory maps. Mol Syst Biol 2007, 3(74):1-13.

5. Segal E, Shapira M, Regev A, Peer D, Botstein D, Koller D, Friedman N:
Module networks: identifying regulatory modules and their condition-
specific regulators from gene expression data. Nat Genet 2003,
34:166-167.

6. Hagen D, McCaffrey G, Sprague G: Pheromone Response Elements Are
Necessary and Sufficient for Basal and Pheromone-Induced Transcription
of the FUS1 Gene of Saccharomyces cerevisiae. Method Mol Cell Biol 1991,
11(6):2952-2961.

7. Babur O, Demir E, Gonen M, Sander C, Dogrusoz U: Discovering
modulators of gene expression. Nucleic Acids Res 2010, 38:5648-5656.

8. Park P: ChIPseq: advantages and challenges of a maturing technology.
Nat Rev Genet 2009, 10(10):669-680.

9. Deplancke B, Dupuy D, Vidal M, Walhout A: A gateway-compatible yeast
one-hybrid system. Genome Res 2004, 14(10b):2093-2101.

10.  Deplancke B, Mukhopadhyay A, Ao W, et al: A gene-centered C. elegans
protein-DNA interaction network. Cell 2006, 125:1193-1205.

11. Ren B, Robert F, Wyrick J, et al: Genome-wide location and function of
DNA binding proteins. Science 2000, 290:2306-2309.

12. Reimand J, Vaquerizas J, Todd A, Vilo J, Luscombe N: Comprehensive
reanalysis of transcription factor knockout expression data in
Saccharomyces cerevisiae reveals many new targets. Nucleic Acids Res
2010, 38:4768-4777.

13. Hoth S, Morgante M, Sanchez J, et al: Genome-wide gene expression
profiling in Arabidopsis thaliana reveals new targets of abscisic acid and
largely impaired gene regulation in the abil-1 mutant. J Cell Sci 2006,
115:4891-4900.

14. Tong A, Boone C: Synthetic genetic array analysis in Saccharomyces
cerevisiae. Meth Mol Biol 2006, 313:171-191.

15. Harbison C, B G, Lee T, et al: Transcriptional regulatory code of a
eukaryotic genome. Nature 2004, 431:99-104.

16. Hu Z Killion P, lyer V: Genetic reconstruction of a functional
transcriptional regulatory network. Nat Genet 2007, 39:683-637.

17. Bar-Joseph Z, Gerber G, Lee T, et al: Computational discovery of gene
modules and regulatory networks. Nat Biotechnol 2003, 21:1337-1342.

Page 10 of 10

18. Balaji S, Babu M, lyer M, Luscombe M, Aravind L: Comprehensive analysis
of combinatorial regulation using the transcriptional regulatory network
of yeast. Mol Biol 2001, 360:213-227.

19. Awad S, Panchy N, Ng S, Chen J: Inferring the regulatory interaction
types of transcription factors in transcriptional regulatory networks.

J Bioinfo Comp Bio 2012, 10(5):1250012.

20. Duda R, Hart P, Stork D: Pattern Classification. John Wiley and Sonss;, 2 2001.

21. Thorne T, Stumpf M: Inference of temporally varying Bayesian Networks.
Bioinformatics 2012, 28(24):3298-3305.

22. Ihmels J, Friedlander G, et al: Revealing modular organization in the yeast
transcriptional network. Nat Genet 2002, 31:370-377.

23. Gygi S, Rochon Y, Franza B, Aebersold R: Correlation between protein and
mRNA abundance in yeast. Molecular and cellular biology 1999,
19(3):1720-1730.

24, Agrawal R, Srikant R: Fast algorithms for mining association rules. Proc of
VLDB 1994, 487-499.

25. Costanzo M, Baryshnikova A, Bellay J, et al: The Genetic Landscape of a
Cell. Science 2010, 327:425-431.

26. Lee T, Rinaldi N, Robert F, et al: Transcriptional Regulatory Networks in
Saccharomyces cerevisiae. Science 2002, 298:799-804.

27. FErb I, Nimwegen E: Statistical features of yeast's transcriptional regulatory
code. Proc of ISCB 2006, 1:111-118.

28. Maclsaac K, Wang T, Gordon B, Gifford D, Stormo G, Fraenkel E: An
improved map of conserved regulatory sites for Saccharomyces
cerevisiae. BMC Bioinformatics 2006, 7:113.

29. Eisen M, Spellman P, Brown P, Botstein D: Cluster analysis and display of
genome-wide expression patterns. P Natl Acad Sci USA 1998,
95:14863-14868.

30. Maere S, Heymans K, Kuiper M: BINGO a Cytoscape plugin to assess
overrepresentation of Gene Ontology categories in Biological Networks.
Bioninformatics 2005, 21:3448-3449.

31. Spellman P, Sherlock G, Zhang M, et al: Comprehensive Identification of
Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by
Microarray Hybridization. Mol Biol Cell 1998, 9:3273-3297.

32. Joung J, Hwang K; et al: Discovery of microRNA-mRNA modules via
population-based probabilistic learning. Bioinformatics 2007, 23:1141-1147.

doi:10.1186/1752-0509-8-51-51

Cite this article as: Awad and Chen: Inferring transcription factor
collaborations in gene regulatory networks. BMC Systems Biology 2014
8(Suppl 1)S1.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.biomedcentral.com/bmcsystbiol/supplements/8/S1
http://www.biomedcentral.com/bmcsystbiol/supplements/8/S1
http://www.ncbi.nlm.nih.gov/pubmed/22084256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22084256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22084256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20466809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20466809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19736561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15489331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15489331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16777607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16777607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15343339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15343339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17417638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17417638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23074260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12134151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12134151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10022859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10022859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16522208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16522208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16522208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17350973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17350973?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Concepts
	mTRIM Step 1. Inferring individual regulatory interactions
	mTRIM Step 2. Mining multiple-TF regulatory interactions

	Experimental results
	Data preparation
	Evaluation 1. Single TF knock-outs
	Evaluation 2. Genetic interaction
	Evaluation 3. Synthetic transcriptional regulatory networks
	Case studies

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

