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Abstract

complexes.

Background: The detection of associations between protein complexes and human inherited diseases is of great
importance in understanding mechanisms of diseases. Dysfunctions of a protein complex are usually defined by its
member disturbance and consequently result in certain diseases. Although individual disease proteins have been
widely predicted, computational methods are still absent for systematically investigating disease-related protein

Results: We propose a method, MAXCOM, for the prioritization of candidate protein complexes. MAXCOM
performs a maximum information flow algorithm to optimize relationships between a query disease and candidate
protein complexes through a heterogeneous network that is constructed by combining protein-protein
interactions and disease phenotypic similarities. Cross-validation experiments on 539 protein complexes show that
MAXCOM can rank 382 (70.87%) protein complexes at the top against protein complexes constructed at random.
Permutation experiments further confirm that MAXCOM is robust to the network structure and parameters
involved. We further analyze protein complexes ranked among top ten for breast cancer and demonstrate that the
SWI/SNF complex is potentially associated with breast cancer.

Conclusions: MAXCOM is an effective method for the discovery of disease-related protein complexes based on
network optimization. The high performance and robustness of this approach can facilitate not only pathologic
studies of diseases, but also the design of drugs targeting on multiple proteins.

Background

Protein complexes are essential cellular functional units
in which several proteins work as parts of assemblies.
The functionality of a protein complex is based on inter-
actions of its member proteins that are typically densely
connected in a protein-protein interaction (PPI) network,
reflecting the modular organization of the network. In
pathogenic conditions, dysfunctions of complex members
usually affect the entire function of the complex [1-3].
Although systematic genetic and epigenetic analyses in
human inherited diseases have revealed numerous SNPs
[4-9], miRNAs [10], long noncoding RNAs [11], indivi-
dual disease proteins [12] and epigenetic modifications
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[13], functional associations between diseases and protein
complexes are still lack of systematic investigations.
Protein complexes have been experimentally and com-
putationally proved to be associated with amounts of dis-
eases. For example, different mutations in SWI/SNF
chromatin remodelling complex were reported to cause
Coffin-Siris syndrome [14,15], Nicolaides-Baraitser syn-
drome [16], and cancers [17,18]. Aberration in mitochon-
drial complex-I NADH dehydrogenase activity could
profoundly enhance the aggressiveness of human breast
cancer cells, while therapeutic normalization of the NAD
+/NADH balance could inhibit metastasis and prevent dis-
ease progression [19]. mTOR complex 1 played a critical
role in hematopoiesis and Pten-loss-evoked leukemogen-
esis [20]. In recent years, several system-level maps of pro-
tein complexes have been constructed in yeast [21-23],
drosophila melnogaster [24] and human [25], presenting
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significant efforts towards comprehensive understanding
of protein complexes. Effective utilization of these large-
scale data has been validated useful in analyzing individual
disease proteins or related complexes. For example, Lage
et al. prioritized disease proteins based on a systematic
analysis of human protein complexes comprising gene
products implicated in many different categories of human
disease [26]. Vanunu et al. provided a global network-
based method for prioritizing disease proteins and infer-
ring protein complex associations with a disease of interest
[27]. Yang et al. proposed a technique for predicting dis-
ease proteins based on a constructed protein complex net-
work [28]. Although these studies, together with early
studies of individual disease proteins [29-36], have
achieved remarkable successes, large-scale predictions and
mechanistic explanations of disease-related complex still
remain an open question. Considering that functional
units are often protein complexes rather than individual
proteins, we highlight the perspective of disease-related
complexes rather than disease-related proteins to obtain
an up-level investigation that may be one step closer to
biological reality.

To this aim, we propose in this paper a computational
method, MAXCOM, to prioritize candidate protein com-
plexes. To optimize the relationship between a query dis-
ease and a protein complex, the maximum information
flow (MIF) between them is calculated through a hetero-
geneous network that is constructed by using protein-
protein interactions and disease phenotypic similarities.
MAXCOM then prioritizes all candidate complexes by
ranking the MIFs of them. We test, in a cross-validation
setting, the utility of MAXCOM in prioritizing protein
complex with at least one known gene. Results show that
MAXCOM can recall higher proportion of complexes at
top one against large randomly constructed negative con-
trols. We also demonstrate the power of MAXCOM by
studying the associations of breast cancer and SWI/SNF
complex. We believe that our method and predictions
provide a useful platform for initially investigating how
protein complexes link their actions to development and
homeostasis of human diseases.

Materials and methods

Workflow of MAXCOM

The prioritization of protein complexes is modelled as an
optimization problem, in which the objective is to find
the maximum information flow between a query disease
and a candidate complex through a heterogeneous net-
work. MAXCOM takes several steps to prioritize all can-
didate complexes to a query disease (Figure 1). First, a
heterogeneous network is constructed by the disease phe-
notypic similarities, disease-gene associations and PPI
interactions. Nodes of the network are defined as either
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diseases or proteins, while the capacities of edges are
weighted as the phenotypic similarities among diseases
or interactions among proteins. Second, in order to
describe the relationship of a query disease and a protein
complex, we add an extra sink with edges linked from
each members of the complex to the sink. Third, after
calculating the maximum information flow from the
query disease to this sink, we obtain the maximum infor-
mation flow (MIF) from the query disease through the
nodes of a complex (Figure 1A). For all candidate protein
complexes, maximum information flows are calculated,
and the complexes are then ranked (Figure 1B). In the
following parts, we describe the construction of heteroge-
neous network and the calculation of maximum informa-
tion flows of candidate complexes.

Construction of heterogeneous network

The heterogeneous network is composed of disease phe-
notypic similarities, disease-protein associations and pro-
tein-protein interactions. The phenotypic similarities
were downloaded from the literature [37], including pair-
wise similarities for 5,080 disease. The similarity is
ranged from O to 1, where a larger value means higher
phenotypic similar between a disease pair and vice versa.
The PPI network was extracted from the Human Protein
Reference Database (HPRD, released in February 2013)
[38], including 9,998 proteins and 41,049 interactions.
The disease-protein associations were extracted from the
Ensemble database by using the Biomart tool [39]. Focus-
ing on the 5,080 diseases and proteins that can be
mapped back to the HPRD database, we obtain a total of
1,962 associations between 1,548 diseases and 1,244 pro-
teins. When constructing the heterogeneous network, all
the 5,080 diseases and 9,998 proteins are taken as nodes.
Edges are composed of the 41,049 interactions between
proteins, the 1,962 disease-protein associations and the
edges of disease pairs with nonzero similarities. To filter
the small similarities that mean low confidences among
disease pairs, we introduce a parameter o to remove the
edges that similarities are less than « = 0.1, the mean of
all disease similarities. Existing studies have shown that
relationships between diseases have noises [37], and thus
a noise filtering process is helpful in improving the per-
formance of detecting disease genes [33]. Finally, we
obtain a heterogeneous network including 15,078 nodes
and to 5,782,818 edges.

To optimize the relationship of a query disease and a
complex, we modelled it as the MIF from the query dis-
ease node to the sink through all member proteins of the
complex (Figure 1A). Here the heterogeneous network is
served as a functional network that link diseases and pro-
teins. The MIF is served to measure the value of func-
tional relationship between a query disease and a
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Figure 1 Workflow of MAXCOM. A. A heterogeneous network is constructed by combining disease similarity network, disease-gene
associations and protein-protein interaction network (PPI). For a query disease and a set of candidate protein complexes, MAXCOM applies a
maximum flow algorithm to calculate the maximum information flow (MIF) from the query to each complex. MIF of ith complex is defined as

MIF(i) = Z| @l fs]ink/|c(i)|' where |C(1)‘ is the protein number of complex C(i) and fiink is the flow value of j-th edge from j-th
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candidate complex. Intuitively, if the query disease has
stronger functional relationship to a candidate complex,
the MIF between the disease and the complex will be lar-
ger than those the disease to other candidate complexes.
For this modelling, a capacity that means the upper
bound of connecting information flow is assigned to each
edge of the heterogeneous network. In detail, the capaci-
ties of edges among diseases are assigned as the same as
their phenotypic similarities. The capacities of edges
among proteins (protein interactions) are assigned as 1.
The capacities of edges among diseases and proteins (dis-
ease-protein associations) are assigned as infinite. We
also add edges from each protein member of a complex
to an additional sink node, and assign the capacities of
these edges as infinite. By the capacity definition, if two
nodes have a stronger functional relationship, the capa-
city of the edge between them is larger.

Calculation of maximum information flow

For the heterogeneous network G = (V, E, C), where V,
C > 0, C > 0 representing the nodes, edge and nonnega-
tive capacity on each edge respectively, the MIF from
the query node to the sink through all the proteins of
the complex is calculated by two steps. First, the MIF
from the query node to the additional sink is calculated
as follows.

Maximize : f (query) = Zf(query, v), (1)

veV

st Y flbw) =Y f(wv) =0,

vweV vweV

flv,w) < cap(v, w),

where the information flow f(v,w) is defined as the
flow value transmitted from node v to node w, and
cap(v, w) the capacity of the edge linked nodes v and w.

Second, the MIF from the query to i-th complex is

)|
defined as MIF(i) = ZJ_I(O'ﬁink/'C(i) L where |C(i)|is

the protein number of complex C(i) and fgink is the flow
value of j-th edge from j-th protein to the sink node. We
use the HR_PR algorithm [40] to solve the problem (1).
For all candidate complexes, the MIFs are then calculated
and ranked.

Validation method and evaluation criteria

Leave-one-out cross-validation experiments are adopted to
assess the capability of MAXCOM in identifying protein
complexes that are associated with human diseases. For
this purpose, we define a protein complex to be associated
with a disease if at least one member protein of the com-
plex has been annotated as associated with the disease.
After mapping on 5,080 diseases and 9,998 proteins, a
total of 539 disease-related protein complexes are col-
lected from the CORUM database (released in February
2013) [41]. In each validation run, a test protein complex
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(a positive control) is selected and all the associations
between the complex and diseases are deleted. The test
protein complex is then ranked against a collection of
negative control complexes. Two types of negative control
complexes are used in each run of validations. First, 99
random protein complexes are collected as random con-
trol protein complexes. For each complex, same number
proteins with the positive control are randomly selected
from 9,998 proteins. Second, for a given protein complex,
all the left 538 protein complexes are considered as nega-
tive controls that we named as real control protein com-
plexes for convenient.

Three criteria are used to quantify the performances
of MAXCOM. First, if a positive control complex is
ranked at the top in a validation run, it is considered as
a successful prediction. We calculate the top ranked
ratio (TOP) as the number of all successful predictions
divided by all validation runs. Second, we calculate the
average rank of all positive controls and normalize it by
the lengths of ranking lists to obtain a mean rank ratio
(MRR). Third, given a threshold of the relative rank, we
calculate the sensitivity (true positive rate) as the frac-
tion of test protein complexes ranked above the thresh-
old and the specificity (true negative rate) as the
fraction of control protein complexes ranked below the
threshold. A rank receiver operating characteristic curve
(ROC) is then drawn by varying the threshold value
from O to 1, and the area under this curve (AUC) is cal-
culated. Obviously, larger TOP and AUC, as well as
smaller MRR indicate higher performance.

Results

Performance of MAXCOM

To examine how well MAXCOM prioritizes candidate
protein complexes, we assessed its capability of uncovering
539 protein complexes with known disease proteins by
using the leave-one-out cross-validation experiments. For
each of these protein complexes, we first generated 99
randomly constructed complexes as negative controls. By
counting the number of test protein complexes with dif-
ferent ranking positions, we observed that 382 of all 539
test cases are ranked top one, achieving a TOP value of
70.87%. The mean rank ratio (MRR) was only 8.69% and a
total of 412 test cases were ranked in top 5, suggesting a
faster accumulation of top rankings (Figure 2A). The area
(AUC) under the rank receiver operating characteristic
curve was calculated as high as 91.33% (Figure 2B).

To simulate the real case in disease studies that user
may want pinpoint known complexes for further biolo-
gical validations, we performed a cross-validation on all
539 disease-related complexes. With a complex selected
as positive control, the left 538 complexes were taken as
negative controls. In this critical version, MAXCOM
also exhibited a faster accumulation of top rankings
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(Figure 2C). For example, it achieved a TOP value of
15.03, and a high proportion as 30.61% in top 5. Its
MRR and AUC were 37.71% and 84.25% (Figure 2D).
Although these criteria were all dropped, the decrease
was reasonable because the size of negative controls was
more than 5.43 (538/99) fold compared that used as
random control protein complexes. Thus, MAXCOM
also achieved acceptable performances in pinpointing
real protein complexes from a set of disease-related
complexes and was suitable for large-scale predictions.

Robustness to network structure

The robustness of MAXCOM in operating potential noise
in biological networks is of great important because much
noise is widely observed in existing biological data [42,43].
The noise may lead to many negative protein-protein
interactions in constructed network and affect the predict-
ing precision. To demonstrate this issue, we employed sev-
eral strategies to check the robustness of MAXCOM to
network structure on both type of control sets. First, we
randomly deleted 10% edges of the heterogeneous net-
work. On random control protein complexes, MAXCOM
achieved a TOP of 69.02%, an MRR of 10.02% and an
AUC of 90.12%. The decreases in these same validation
experiments were as small as 1.85% for TOP, 1.33% for
MRR and 1.21% for AUC. On real control protein com-
plexes, MAXCOM achieved a TOP of 12.62%, an MRR of
39.92% and an AUC of 80.42%. The decreases in these
same validation experiments were as small as 2.41% for
TOP, 2.21% for MRR and 3.83% for AUC.

Second, we randomly added 10% edges of the heteroge-
neous network. At this case, MAXCOM achieved a TOP
of 70.5%, an MRR of 9.83% and an AUC of 90.16% on
random control protein complexes. The decreases in
these same validation experiments were as small as 0.37%
for TOP, 1.14% for MRR and 1.17% for AUC. On real
control protein complexes, MAXCOM achieved a TOP
of 12.8%, an MRR of 38.56% and an AUC of 82.02%. The
decreases in these same validation experiments were as
small as 2.23% for TOP, 0.85% for MRR and 2.23% for
AUC (Figure 2B, D). These two permutation validations
suggested that MAXCOM was effective in dealing with
false positive edges and shows robustness to network
structures.

Third, validation experiments were also performed by
shuffling edges in the heterogeneous network but fixing
the degree distribution (i.e., the number of neighbours of
each node). For this permutated network, the AUC scores
were both reduced by approximately 50% on both control
sets, while the result for the random control protein com-
plexes was slightly higher as 57.34% (Figure 2B, D). This
validation further indicated that MAXCOM could exploit
the useful information in the heterogeneous network to
prioritize the disease-related protein complexes.
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Figure 2 Performance of MAXCOM. Histogram of ranks on random control protein complexes (A) and real control protein complexes (C). The
rank receiver operating characteristic (ROC) curves on random control protein complexes (B) and real control protein complexes (D). The results
were obtained by validating on normal network, 10% deleted or added networks, and randomly permutated network with same node
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Robustness to parameter

We also introduced a parameter « to filter out the
potential noise of disease similarities. In practice, thresh-
old parameter o played important functions not only in
filtering out low confidence values among diseases to
improve predicting precisions but also in making the
heterogeneous network sparse to speed up running
time. Here we changed it with a step as 0.05 to test its
effect on MAXCOM (Table 1). If no any disease edges
cut off (o = 0), the TOP, MRR and AUC were 69.94%,

9.05% and 90.91%, respectively. With the increase of «,
best performance was achieved at o = 0.1 as we had
shown in above paragraphs. With continue increase
of a, most of criteria came to decrease, especially the
TOP. Although these changes were observed, we
noticed that changed ratios of three criteria were ranged
only very slightly. For example, when a changed from
0.1 to 0.4, the TOP changed from 70.87% to 55.29%,
achieving a changed ratio of 21.98%. The MRR changed
from 8.69% to 7.46%, and the changed ratio was 14.15%.

Table 1 Robustness of MAXCOM with respect to parameter o.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
TOP 69.94% 70.13% 70.87% 69.39% 68.09% 66.23% 64.19% 58.81% 55.29%
MRR 9.05% 8.72% 8.69% 9.09% 9.49% 9.45% 8.34% 8.06% 7.46%
AUC 90.91% 91.14% 91.33% 90.85% 90.45% 90.33% 91.67% 91.78% 92.57%
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Meanwhile, the AUC changed from 91.33% to 92.57%,
achieving a little changed ratio of 1.36%. These results
showed that o was useful to improve the precision of
MAXCOM by filtering noise (compared the case of
o = 0), and confirmed that MAXCOM was robust to
this parameter changing.

The parameter o also affected the number of edges in
the heterogeneous network. When « = 0, there were
total 10,174,820 edges in the network. The number was
drastically decreased to 5,782,818 (o = 0.1) and 154,692
(o = 0.4). Thus, with the increase of o, MAXCOM ran
much faster in calculating. For example, when « = 0, the
average calculating time of each run was 2.86 seconds.
It was dropped to 1.57 and 0.18 seconds when « is
0.1 and 0.4 respectively. For summary, o was useful for
filtering low confidence values among diseases and ben-
eficial for improving performances and calculation time
of MAXCOM.

Prediction of protein complexes associated with breast
cancer

To demonstrate MAXCOM'’s ability in predicting novel
disease-related complexes, we performed a case study of
breast cancer (OMIM 114480), one of the most com-
monly occurring cancers. We systematically examined
the top ten complexes that were prioritized through 539
candidates (Table 2). There were 58 proteins in these
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ten complexes, including 6 (BRCA1, TP53, KRAS, ATM,
CDHI1, RAD51) of 32 disease proteins reported in
OMIM database [44]. We first preformed a functional
enrichment analysis of these 58 proteins by using
DAVID database [45,46]. Results showed that these pro-
teins were mostly enriched in chromosome organization
(p-value = 1.36e-15), chromatin modification/remodel-
ling/organization (p-value = 7.32e-11) and protein com-
plex biogenesis/assembly (p-value = 9.03e-10). This was
consistent with the functional characterizations of the
ten protein complexes that were manually annotated by
CORUM database [41] (Table 2). Except for known dis-
ease proteins of breast cancer that found in the 6 protein
complexes, many disease proteins that were associated
with many other types of diseases could be found, with
examples including E2F4, E2F5, HRAS, JUN, FOS. We
also found that proteins (CDH1, CTNNB1, SMAD3,
SMAD4, SMARCA4, SMARCC1, SMARCC?2) were com-
mon in several complexes and all these complexes were
connected by amounts of protein-protein interactions
(Figure 3), suggesting tight functional relationships
among these protein complexes. These results indicated
that these complexes might serve as a large functional
module involved in different stages of breast cancer.

We then analyzed, in detail, the PBAF complex (SW1/
SNF complex) since it did not include known disease
proteins of breast cancer according to OMIM database

Table 2 Predicted top ten protein complexes of breast cancer.

Complex Name Entrez ID Gene Symbol

Functional Characterization

RAF1-RAS complex,
EGF induced

RSmad complex

3265, 3845, 4893, 5894

4087, 4088, 4089, 6597,
6599, 6601, 51592, 8202,
1387, 57492

87, 9564, 999, 1499,

CREBBP, ARID1B
Polycysting-1

HRAS, KRAS, NRAS, RAF1

SMAD2, SMAD3, SMAD4, SMARCA4,
SMARCCT, SMARCC2, TRIM33, NCOA3,

ACTNT, BRART, CDH1, CTNNBT, JUP,

multiprotein complex

BASC complex (BRCA1-
associated genome
surveillance complex)
MSH2/6-BLM-p53-
RAD51 complex
Polycystin-1-E-cadherin-
beta-catenin-Flotillin-2
complex
SMAD3-SMAD4-cJun-
cFos complex
SMAD3/4-E2F4/5-p107-
DP1 complex

Axin-PP2A A-PP2A C-
GSK3-beta-beta-catenin
complex

PBAF complex (SWI/
SNF complex)

3728, 5310, 5747, 5829,
6714, 7094, 7414

5981, 5982, 5984, 4292,
4436, 2956, 673, 641,
472, 4361, 4683, 10111

7157, 4436, 2956, 5888,
641

999, 1499, 2319, 5310

RFC1, RFC2, RFC4, MLH1
BRCAT1, BLM, ATM, MRE1

2353, 4088, 4089, 3725

1874, 1875, 5933, 4088,
4089, 7027

8312, 1499, 2932, 5525

6597, 6598, 6599, 6601,
6602, 6605, 60, 71, 86,
51412, 196528, 55193

, MSH2, MSHe,

TP53, MSH2, MSH6, RAD51, BLM

CDH1, CTNNBT1, FLOT2, PKD1

FOS, SMAD3, SMAD4, JUN

E2F4, E2F5, RBL1, SMAD3, SMAD4, TFDP1

AXINT, CTNNB1, GSK3B, PPP2R5A
SMARCA4, SMARCB1, SMARCCT,

SMARCC2, SMARCD1, SMARCET, ACTB,
ACTG1, ACTL6A, ACTL6B, ARID2, PBRM1

Enzyme mediated signal transduction

Transcriptional control; TGF-beta-receptor signalling
pathway

Cell adhesion; epithelium

PKD1, PTK2, PXN, SRC, TLN1, VCL

DNA repair; DNA damage response
1A, NBN, RAD50

DNA repair; DNA damage response

Lipid binding; intercellular junction (gap junction/
adherens junction); epithelium

Transcription activation; DNA binding; TGF-beta-
receptor signalling pathway

Transcription repression; DNA binding TGF-beta-
receptor signalling pathway

Wnt signalling pathway

DNA conformation modification; transcription
activation; DNA binding; hormone mediated signal
transduction; ligand-dependent nuclear receptors;
organization of chromosome structure
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protein-protein interactions among them (blue lines).
.

Figure 3 Interactions of ten predicted protein complexes of breast cancer. The interactions are shown for 58 proteins of ten complexes. Six
known genes associated with breast cancer are noted in red (CDH1, KRAS, BRACT, ATM, RAD51, TP53). All these ten complexes are connected by

SWI/SNF Complex

(until Aug. 20, 2013) and was listed at last in our ten
analyzed complexes. SWI/SNF complex was a multi-
subunit chromatin-remodelling complex which mobi-
lizes nucleosomes and remodel chromatin, playing key
roles in control of lineage specification, gene expression
and repression, metastasis, epigenetic tumor suppres-
sion. We found numerous literatures reported that
SWI/SNF complex was associated a variety of cancers,
including breast cancer. As inactivating mutations in
several SWI/SNF subunits had recently been identified
at a high frequency in a variety of cancers, a widespread

role in tumour suppression had been proposed to SWI/
SNF complex [17,47,48]. Actually, SWI/SNF had been
demonstrated as the most frequently mutated chroma-
tin-regulatory complex in human cancer, exhibiting a
broad mutation pattern, similar to that of TP53 [18].
Here we predicted SWI/SNF in top positions as one of
potential protein complexes that were involved in breast
cancer. For summary, these proposed ten protein com-
plexes were potentially involved in basic biological func-
tions and agree well with current knowledge on breast
cancer.
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Discussion

With the explosion of large-scale “omics” data, compu-
tational methods of integrating these complex heteroge-
neous data can provide a more thorough and systemic
analysis for characterizing disease related factors. Here
we have proposed a network-based strategy to prioritize
candidate protein complexes by integrating disease phe-
notypic similarities and protein-protein interactions. As
analyzed in validation results, MAXCOM is useful in
tracing relationships of diseases and complexes through
the heterogeneous network. Compared with early works
for prioritizing individual disease proteins [12,29,30],
our work presents a computational tool to analysis dis-
ease related factors at an up functional level and close a
step to mechanisms underling diseases.

Although MAXCOM is proved useful, some methodolo-
gical improvements may be necessary in further research.
An important extension is how to describe the tissue spe-
cificity. Since different cells have specific cellular functions
such as regulation and expression [49], splicing and meh-
tylation [50], human PPIs and protein complexes in a tis-
sue-specific context have been observed [51]. By utilizing
these tissue-specific protein interactions, we may analyze
protein complexes towards tissue-specific diseases.
Another extension is to consider the “edge prioritization”
that suggested in early literatures [12,52]. Instead of only
prioritizing proteins or protein complexes in isolation,
more attentions should be also devoted to potential inter-
actions among top candidates. Here, we have shown that
the top ten ranked protein complexes are functional asso-
ciated, however a more comprehensive and systematic
analysis of these top ranked candidates is desired. In gen-
eral, this is especially important for following experimental
validations, since the correlations of top ranked protein
complexes may usually indicate a time and spatial cellular
relationships. Third, the noise filtering is another highlight
to be addressed. Considering that all the biological data
are far from complete and full of noise, it is extremely use-
ful to improve the precision by filtering noise before data
integration. There are two different ways that can be used
for this aim. The one is to filter low confidence data by
parameters as used in our study, the other is by integrating
more relevant types of biological information. For exam-
ple, the relationships among proteins can be described in
many types as co-expression, shared functional annota-
tions, co-occurrence in literature and co-regulation
[29,53-55]. These highly heterogeneous data contributed
not only to inferring stronger relationships through the
accumulation of evidence, but also providing broader cov-
erage than any single data source.

Finally, MAXCOM could potentially be applied to find
combinatorial protein targets and then help design network
drugs. Here a disease is considered as the perturbations of
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the complex intracellular and intercellular network that
links tissue and organ systems [56]. The ability of exploring
molecular complexity of a particular disease at protein
complex level will lead to the identification of the molecu-
lar relationships among distinct phenotypes. Thus, system-
atically predicting and analyzing disease-associated protein
complexes could be useful for investigation of mechanisms
underlying diseases, and could help to identify combina-
tional drug targets and biomarkers.
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