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Abstract

Background: Genome-wide association studies have identified many individual genes associated with complex
traits. However, pathway and network information have not been fully exploited in searches for genetic
determinants, and including this information may increase our understanding of the underlying biology of
common diseases.

Results: In this study, we propose a framework to address this problem in a principled way, with the underlying
hypothesis that complex disease operates through multiple connected genes. Associations inferred from GWAS are
translated into prior scores for vertices in a protein-protein interaction network, and these scores are propagated
through the network. Permutation is used to select genes that are guilty-by-association and thus consistently
obtain high scores after network propagation. We apply the approach to data of Crohn’s disease and call
candidate genes that have been reported by other independent GWAS, but not in the analysed data set. A
prediction model based on these candidate genes show good predictive power as measured by Area Under the
Receiver Operating Curve (AUC) in 10 fold cross-validations.

Conclusions: Our network propagation method applied to a genome-wide association study increases association
findings over other approaches.

Background
In recent years, genome-wide association studies
(GWAS) have become a common tool to discover the
genetic basis of complex diseases and have led to many
scientific discoveries [1]. Many single nucleotide poly-
morphisms (SNPs) have been identified in a variety of
diseases. The single marker analysis tests genetic associa-
tion of individual SNPs and identifies only the most signif-
icant SNPs below a stringent significance level, for
example, p <5 × 10−8, which is necessary to control the
false positive rate on a genome-wide level. However,
the identified SNPs only represent a small fraction of the
genetic variants to contribute to complex diseases, due to
small individual effect sizes. Markers that are truly but
weakly associated with disease often fail to be detected [2].
It is well understood that the stability of biological

systems is governed by many biomolecular interactions

and multi-gene effects should be taken into considera-
tion while mapping from genotypes to phenotypes.
Consider a crucial biological mechanism, where failure
of a small portion of the important genes can lead to
dys-function of the whole biological mechanism. This is
very likely to happen in case of complex disease, such as
Crohn’s Disease, and therefore multi-locus analysis show
increase of power when analyzing such data.
Pathway-based or gene set enrichment analysis has

become a potentially powerful approach in search of dis-
ease associated genes (for a recent review of pathway
analysis, see [3]). One of the most popular methods is
GSEA [4]. Using a modified Kolmogorov-Smirnov test, it
compares the p value distribution of genes in a pathway
with the rest of the genes. GSEA has successfully identi-
fied the IL-12/IL-23 pathway that is significantly asso-
ciated to Crohn’s disease [5]. However, there are some
disadvantages to the common pathway based analysis.
First, most of the studies choose the most significant* Correspondence: qianyuxx@birc.au.dk
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SNP from each gene as a representative, and therefore
systematic but small changes in a gene-set will be missed
if individual genes do not have any SNPs with strong
marginal association. Second, how robust the methods
are with regard to factors such as pathway annotations
and pathway size is not clear. Third, many methods treat
all genes equally despite that some genes (e.g., house-
keeping genes) appear in many pathways [6]. The addi-
tional information of genes in overlapping pathways
should not be ignored, as shown in a study where weight-
ing genes based on their appearance in the gene sets can
improve gene set ranking and boost sensitivity of the ana-
lysis [7].
Similar to pathway-based analysis, where biologically

relevant connections from public databases are utilised in
GWAS, network-based analysis has also become a popular
tool for the study of complex disease. In context of mole-
cular interaction networks, it has been found that about
one third of known disorders with multiple genes show
physical clustering of genes with the same phenotype and
these clusters are likely to represent disorder-specific func-
tional modules [8]. A concept of disease modules was
emerged as more studies show that proteins that are
involved in the same disease show a high propensity to
interact with each other [9,10]. If a few disease compo-
nents are identified, other disease-related components are
likely to be found in their network-based vicinity. For
example, various module search methods have been devel-
oped in search of disease associated modules [11,12].
However, a module consists of an arbitrary number of
genes, it often requires intensive simulations for multiple-
testing corrections.
Network Guilt by Association (GBA) is an approach

for identifying disease genes based on the observation
that similar phenotypes arise from functionally related
genes. Algorithms related to Google’s PageRank, such as
Iterative Ranking and Gaussian smoothing, are applied
in prioritizing candidate disease genes using network
information [13]. A typical workflow looks like this:
given a query disease, known causal genes of diseases
that are phenotypically similar to the query disease are
given a prior score in human PPI network, then the
prior scores are propagated and smoothed over network
such that each protein gets an association score. Genes
with high association scores are considered as candidate
associations.
In this study, we analyzed a GWAS in a GBA frame-

work. The network is overlaid with GWAS information,
that is, each gene is assigned a prior score based on the
gene level p value from GWAS, which represents our
prior knowledge of its association to the disease. After
propagation, the prior score has been smoothed over the
whole network and each gene gets a new association
score, denoted as the posterior score, with higher posterior

score representing stronger evidence for association. If a
gene has many neighbours that are associated with the dis-
ease, it is very likely that itself is also associated. A gene
with high posterior score can be called as candidate genes,
even though it has a low prior score and fails to be called
in standard GWAS due to stringent p value cut-off, chip
coverage or sampling bias.
A recent study applied similar ideas to prioritize candi-

date disease genes and demonstrated a boost in the power
to detect associated genes in GWAS [14]. Using a naive
Bayes framework on datasets of Crohn’s disease and Type
1 diabetes, the posterior score of each gene was obtained
by adding its own log odds from GWAS (as prior) and a
soft GBA score from neighbors. The study showed that
some genes with high posterior scores are actually vali-
dated as true associations in later studies, although they
do not have highest prior scores (e.g., lowest p values in
GWAS studies) and would possibly be ignored in two-
stage studies. However, there are some open questions in
this study. First, the posterior score of a gene depends not
only on its neighbors association of disease, but also on
how many neighbors it has, i.e, network topology. It is
appealing to mark a gene with high posterior score as
associated, neglecting the fact that a high posterior score
is merely due to a high degree (receiving information from
more neighbors). Second, there is no statistic control (e.g.,
false discovery rate) for the findings. If there is no signal in
the network, i.e, a completely random prior for all the
genes, this method still outputs the genes with highest
posterior scores.

Methods
In this section, we first describe the data we used and
the network propagation framework, then we build a
prediction model based on the GBA genes, and evaluate
the performance in cross-validation (CV).

Data Set
Prior information from GWAS. We analyzed the raw
anonymous genotype data of the Wellcome Trust Case
Control Consortium (WTCCC) study. The original cohort
includes 2005 Caucasian UK patients of Crohn’s disease
and 3004 controls genotyped on the Affymetrix 500K map-
ping array. The details are described in [15]. Genotypes
with posterior probability (or CHIAMO score) lower than
0.98 are considered as missing data. Markers are removed
if the percentage of missing data was larger than 5% or if
they are not in Hardy-Weinberg equilibrium (p > 0.0001
for control group). We further remove some individuals
with missing allele larger than 3% or of non-European
ancestry or with duplicated samples, as suggested by [15],
and are left with 1748 cases and 2938 controls. Finally we
map a SNP to a gene if it was located within the gene or
10kb immediately upstream or downstream.

Qian et al. BMC Systems Biology 2014, 8(Suppl 1):S6
http://www.biomedcentral.com/1752-0509/8/S1/S6

Page 2 of 7



Interaction network. The PPI network is built based
on the STRING database version 9.0 [16]. Only interac-
tions with a score larger than 700 are included, and it
results in 229599 interactions involving 15010 proteins.
We use proteins and genes interchangeably in the follow-
ing, because SNPs were first mapped to genes then
mapped to corresponding proteins. The GWAS dataset
only covers part of the genes in the network, for example,
11363 genes for Crohn’s disease. We discard all the ver-
tices that are not covered by GWAS, keeping only edges
between covered vertices. Isolated nodes are also removed,
in the end, we are left with a large connected network N .

Propagation of evidence
Consider a PPI network as an undirected graph
G = (V, E, w), where nodes V are a set of proteins,
edges E are links between proteins if interaction exists,
w is the weight of an edge. For a node v ∈ V, denote
its total number of neighbors by degree(v) and its
direct neighbors in G by N (v). Let Y : V → R≥0 repre-
sent a function of prior evidence, i.e., assign high score
to a node v if we a priori (from GWAS) believe that it
is associated to the disease. F : V → R≥0 denotes a
function of posterior evidence, i.e., F(v) represents the
posterior evidence of association after propagating the
information of its neighbor nodes. The main three
steps of network propagating are, (1) obtaining prior
information from GWAS, (2) calculating and normalis-
ing posterior scores by network propagation (with
choice of tuning parameters), (3) selecting genes with
highest posterior score as candidates.
Gene-level prior scores. The p value of a gene is

defined as the minimum single marker test p value of
its SNPs, as widely used in pathway analysis. The prior
score of gene i defined as yi = F−1 (1 − pi/2) and F is
the Cumulative Distribution Function of normal distri-
bution. Therefore, under the null hypothesis of no asso-
ciation, yi ∼ N + (0, 1). According to [17], minimum
p values performs best in most scenarios, we also tried
Fisher’s combined probability test, however, it gives
lower internal consistency of gene ranks for random
subset of the data.
Calculating posterior scores by propagation. The

posterior score F is computed as

F(v) = α[
∑

u∈N(v)

F(u)w′
v,u] + (1 − α)Y(v)

where the parameter a∈ (0, 1) weights the relative
importance of information received from neighbors, and
w′
v,u = wv,u/

√
d(v) × d(u) denotes the weight of edges,

with d(v) the degree of node v. The above formula can
be expressed in linear form F = aW’F + (1 − a)Y, which
is equivalent to

F = (I − αW ′)−1(1 − α)Y (1)

It can be proved that W’ is similar to a stochastic
matrix, which has eigenvalues in [−1, 1] (according to
the PerronFrobenius theorem). Since a∈ (0, 1), the
eigenvalues of (I − aW’)−1 exists. Though the linear
equation can be solved analytically, it is difficult to com-
pute the inverse of a large matrix with |V| × |V| dimen-
sion, and we choose a iterative propagation method to
solve the system. At iteration t, we compute

Ft = αW ′Ft−1 + (1 − α)Y (2)

Tuning parameters. There are two tuning parameters
in the model, aand T. T denotes the number of itera-
tions of propagation. We study two extreme scenarios,
T = 1 and T = ∞. When T = 1, each node only receives
information from its direct neighbors. Posterior score F
is calculated from equation (2). When T = ∞, equation
(2) reaches equilibrium after many iterations and the
information is smoothed over the network, therefore
each node also gains information from its indirect
neighbors through iterations. F scores will converge as
shown in equation (1). In practice, equilibrium is often
achieved within 20 iterations.
a, also known as the damping parameter in the litera-

ture, denotes how much information a node receives from
neighbors. Higher aindicates less weight on its own prior
information. Previous applications of similar algorithms of
ranking SNPs or genes recommend a∈ [0.5, 0, 95] [13,18].
We explored a∈ (0.2, 0.4, 0.6, 0.8, 0.9) in the experiments.
A good choice of ashould give better internal consistency
of gene rank by posterior score, which can be measured by
Kendall Tau rank correlation [19].
We randomly choose half of the case and control

samples and rank genes based on posterior scores. Low
consistency is obtained for a ∈ (0.2, 0.4) and it agrees
with a previous study that a should be more than 0.5
[18]. Highest consistency is obtained when a∈ (0.8, 0.9),
thus we choose the mean a= 0.85 in the main analysis,
unless otherwise specified.

Identifying associated genes
As shown in Equation (2), a gene can have a high posterior
score under two conditions: (1) it has a high degree in the
network and receives more information from its neighbors
than the other low degree genes, (2) most of its neighbors
are associated with the disease and itself is GBA. Therefore
ranking a gene based on posterior score has some issues
when the first condition is dominant, we may include too
many false positives in the candidate gene set and have a
potential power loss for genes with lower degrees in the
network.
Here we suggest a framework, that uses permutations

to identify GBA genes and eliminates potential false
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positives. The pseudocode is shown in the following.
Input parameters include: significant threshold and
number of permutations, K.
example input: Sig. Thresh.=0.01, K=10000;
// GWAS prior
prior scores based on p values of Cochran-Armitage

trend test in GWAS data;
propagate prior scores by equation (2);
normalize posterior scores for all genes so that the

sum is 1;
record posterior score for genei as Si0;
// permutation
for k in 1 to K; do
permute case and control labels, calculate prior scores

from p values;
propagate prior scores by equation (2);
normalize posterior scores for all genes so that the

sum is 1;
record posterior score for genei as Sik;
done
// find candidate GBA genes
for genei in network; do
the p value of the posterior score of genei is∑K
k=1 I(S

i
k > Si0)

K
genei is candidate association if the p value of its pos-

terior score is smaller than Sig. Thresh.
done

Prediction model and ROC
The GBA candidate genes are important nodes in the
network, because many of their neighboring genes are
associated with disease. To measure how the GBA
genes collectively contribute to the disease, we used
them to build prediction models and evaluate the per-
formance in 10-fold cross-validation (CV). The predic-
tion models based on 90% of the cases and controls
were tested on the remaining 10% data, and it was
repeated 10 times with different 90% and 10% of the
cohorts.
A logistic regression model with all the SNPs as cov-

ariates is fitted by the R package glmnet [20]. Though
the GBA framework only chose the most significant
SNP to represent the gene, we used all the SNPs
located within 10Kb boundary of the candidate genes.
glmnet applies cyclical coordinate descent to solve elas-
tic-net penalized regression models, which are mix-
tures of two penalties: l1 (the lasso) and l2 (ridge
regression), and it generates models with relatively few
predictors. To evaluate the performance of the predic-
tive model, we calculated the average Area Under the
receiver operating characteristic Curves (AUC) [21] for
all 10 trials.

Results and discussion
Problems with association by rank
Network propagation for prioritizing associated genes
has been applied in several studies when there is func-
tional similarity between a given gene and the known
disease gene. The selected few known disease associated
genes give prior information for the network, after pro-
pagation, each gene gets a posterior score, which repre-
sents its association to the disease.
Implementation of similar ideas in a GWAS showed

boosting in identification of disease-associated genes
[14]. However, in such an application, genes of high
degree often have high posterior scores due to propaga-
tion. If we simply take the genes with highest posterior
score as candidates, we may end up including too many
false positives in the candidate gene list. In Additional
file 1: Table S1, where N0 refers to network with the
GWAS prior and Nk≠0 to networks with randomized
prior, one can see that the top ranked genes in N0 are
also often ranked top in Nk≠0. Although the detailed
implementation of our study and the one by [14] is dif-
ferent, it reveals the necessity of utilizing such network
methods in a more cautious way. Moreover, most of the
top ranked genes in N0 have high network degree, with
average degree of 195.4, while the PPI used in our stu-
dies has an average degree of 24.5, it again confirms our
concern that genes of high degree tend to be ranked on
top in the network.

Candidate genes
Identified candidate genes
The study by [14] listed the top-ranked 150 genes, to
make the results comparable, we also made a list of 150
top-ranked genes with T = 1, they are ranked by the
p value of their posterior score obtained from permuta-
tion. As shown in Additional file 1: Table S2, one can
see that many genes with significant p value from
GWAS are also called in our study. This is not surpris-
ing since the prior scores from GWAS contribute to the
posterior scores. Moreover, our method also identified
some genes that are not called by standard methods in
this data set, but reported in other independent GWAS.
The number of genes that are validated by other studies
and reported in GWAS catalog [22] is shown in Figure 1.
There are 7 genes identified as association candidates in
our study, which failed to be called by GWAS p value
ranking, they are PTPN22, IRF1, PTGER4, IL12B,
IL18R1, FASLG and JAK2. Except IL12B and JAK2, the
other 5 genes also failed to be called by [14]. These can-
didate genes all have a higher rank of posterior scores in
the network of GWAS prior, compared to network with
random prior, as shown in Additional file 1: Table S2.
For example, gene JAK2 (MIM 147796) has a gene level
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p value of 0.0523, but its rank in the network increases
from average of 104 in Nk≠0 to 54 in N0. IL18R1 (MIM
604494) has a GWAS p value of 0.003, and its rank of
posterior score is 3342 in Nk≠0 and 1109 in N0. This gene
would be missed by both single marker test as well as
ranking genes by posterior score.
There are 4 genes, C13orf31, MST1, RTEL1 and HLA-

DQA2, that were listed on top 150 by [14] and failed to
be called in our study. The reason we failed to call them
is because these genes are not present in the STRING
database we used. Therefore a more complete PPI data-
base integrated from diverse sources is needed, as was
done by [14].
Based on the number of significant genes that are

reported by other independent GWAS or meta-analyses,
there seems to be no big advantages of our results com-
pared with the one by [14]. However, these studies are
designed to discover different signals in the network.
Our method focus more on genes with abundant guilty
neighbors, thus it has higher power to discover local sig-
nals even with low degree genes but less power to call
high degree genes. However, there are also two other
factors in the approaches that may contribute to the dif-
ference in performance. First, the detailed implementa-
tion is different, [14] rank genes by posterior log odds,
and choose a best prior log odds such that the number of
validated genes is maximized. Second, the reported genes
in GWAS catalog might have a bias to genes that have
significant p value in certain type of study (eg., certain

type of chips). Nevertheless, our study showed potential
power of GBA framework to boost GWAS signals.
Genomic prediction model
We further investigated whether the candidate genes
collectively contribute to the disease and evaluated the
extent to which predictions were driven by these candi-
date genes. A previous study conducted pathway analy-
sis on the same data set [23] and built a logistic
regression model of 277 genes with a variable selection
algorithm. The average AUC was 0.6 in 10-fold CV with
all the SNPs within 10kb boundary of the selected
genes, and it dropped to 0.56 after excluding all SNPs
with p value <5 × 10−7. Using GBA candidate genes, we
had higher average AUC in 10-fold CV, the average is
0.705 (T = 1) and 0.730 (T=∞) in models including all
the SNPs that are mapped to candidate genes, and 0.687
(T = 1) and 0.715 (T=∞) after removing SNPs with
p value <5 × 10−7. The numbers are shown in Table 1,
one can see that the increased AUC is not due to the
number of genes we used to build the model, on the
contrary, we used fewer genes for the prediction model,
with 130 (T = 1) and 184 (T=∞) genes respectively.
We also built prediction models with the same num-

ber of genes that are ranked on top (based on posterior
scores), which would be called candidate genes in the
study of [14]. As shown in Table 1, there is a AUC drop
with models of top ranked genes. The reason might be
that the candidate genes in our study are GBA genes
and collectively contribute to disease, while top ranked
genes can be special in the network topology but with
no association to the disease.

Boosting signal from IL12 pathway genes
Many studies of pathway analysis have uncovered signif-
icant associations between Crohn’s disease and the
IL12/23 signaling pathway [5,24]. 19 of 20 genes in IL12
pathway are included in our network analysis, most of
them have a posterior score (rank) increase in N0,
shown in Additional file 1: Table S3. As propagation
redistributes the information of the network, standard
pathway enrichment analysis based on posterior scores
might have an advantage over the one based on direct
GWAS results.

Conclusions
Combining GWAS data with function databases is very
appealing as it provides more explanatory power for the
list of candidate genes. While pathway methods have
shown success in many applications, they also have lim-
itations. For example, genes involved in multiple path-
ways might introduce bias in different pathways, different
definitions of the same pathway in different knowledge
bases can affect performance assessment in terms of
power and true positive/negative rate. [3].

Figure 1 Number of reported genes. Overlap of validated genes
among top 150 genes for each method, all of them map SNPs to
genes within 10kb boundary. Validated genes denote genes that
are reported as candidate in later GWAS studies. Method GWAS
means ranking genes by minimum p value.
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The methods of combining GWAS and PPI networks
mainly fall into two categories, (1) dense module search
algorithms in search of significantly enriched subnetworks
[11,12,25], (2) propagation algorithms related to Google’s
PageRank [13,14] in search of genes that have top ranks in
the network. However, while methods in group (1) require
intensive randomization of network topology for accessing
module significance, and often encounter multiple testing
problem in searching of modules of various sizes in high
dimension space, methods in group (2) fail to distinguish
signals from GWAS and signals from network, and there-
fore tend to have a high false positive rate, especially in
case of biased PPI database.
Our study extends the idea of network propagation with

GWAS information, such that information from various
resources can be utilized. The performance of this method
can be improved in various ways. Integration of diverse
data sources, as suggested in [14], will improve the ability
to prioritize disease genes. Mapping multiple SNPs to a
single gene is the simplest way of obtaining genelevel sta-
tistics, yet some collapsing-based and kernelbased meth-
ods are worth trying for gene-level statistics [26]. There
are also potential extensions of this study. For example,
most of the 20 major genes in IL12 pathway, identified as
associated in Crohn’s Disease, have increased posterior
score in the network of GWAS prior, it implies that net-
work propagation method redistributes the information in
the network where the true associations get enriched
information. Therefore pathway analysis based on poster-
ior scores may have more power than the standard path-
way analysis. Many methods that detect interaction and
epistasis, such as Support Vector Machine [27] and Logic
Regression [28] are not applicable in genome-wide scale
due to high dimensions, a reduced search space such as
interactions among GBA genes might yield some results.

Additional material

Additional file 1: Genes with highest posterior scores. Table S1 lists
genes with highest posterior scores in the network, with parameter of
T = 1. Candidate gene set of top 150 genes. Table S2 lists the top 150
candidate GBA genes in our study, which are used for comparison with

other methods. Genes in IL12 pathway. Table S3 lists 19 genes in IL12
pathway, most of them have an increased posterior score in the network
of GWAS prior.
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