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Abstract

Biological networks obtained by high-throughput profiling or human curation are typically noisy. For functional
module identification, single network clustering algorithms may not yield accurate and robust results. In order to
borrow information across multiple sources to alleviate such problems due to data quality, we propose a new joint
network clustering algorithm ASModel in this paper. We construct an integrated network to combine network
topological information based on protein-protein interaction (PPI) datasets and homological information
introduced by constituent similarity between proteins across networks. A novel random walk strategy on the
integrated network is developed for joint network clustering and an optimization problem is formulated by
searching for low conductance sets defined on the derived transition matrix of the random walk, which fuses both
topology and homology information. The optimization problem of joint clustering is solved by a derived spectral
clustering algorithm. Network clustering using several state-of-the-art algorithms has been implemented to both
PPI networks within the same species (two yeast PPl networks and two human PPl networks) and those from
different species (a yeast PPl network and a human PPl network). Experimental results demonstrate that ASModel
outperforms the existing single network clustering algorithms as well as another recent joint clustering algorithm
in terms of complex prediction and Gene Ontology (GO) enrichment analysis.

Introduction

Over the past decade, one goal of systems biology is to
understand how different molecules work together to
maintain cellular functionalities [1,2]. It is now a common
belief that many complex diseases including cancer are due
to systems impairments caused by not only single genetic
mutations but also disruption of molecular interactions
under different situations, which have been conjectured to
be the probable sources of disease heterogeneity as well as
treatment response heterogeneity [3-5]. Hence, by analyz-
ing large-scale gene expression profiles and protein-protein
interaction (PPI) data, computational methods may help us
to have a better understanding of biological pathways and
cellular organization and thereafter their relationships to
diseases as well as potential drug responses [1,2]. One way
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to investigate these large-scale data is to analyze them in
the framework of network analysis [2]. In this paper, we
focus on the analysis of PPI networks. We are interested in
network clustering to divide the given network into small
parts, which can be considered as potential functional
modules or pathways [6-8] since biological functions are
carried by groups of genes and proteins in a coordinated
way [9,10].

There are many existing algorithms for clustering single
PPI networks. Normalized cut (NCut) method [11] aims
to partition the network based on a novel global criterion,
which focuses on the contrast between the total dissimilar-
ity across different clusters and the total similarity within
clusters based on network topology. The formulation of
NCaut is equivalent to finding low conductance sets on the
transition matrix of the Markov random walk on the net-
work to analyze [12,13]. Markov CLustering algorithm
(MCL) [14] detects clusters based on stochastic flow simu-
lation, which has been proven to be effective at clustering
biological networks. Recently, an enhanced version of
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MCL-Regularized MCL (RMCL) [15,16]-has been pro-
posed to penalize large clusters at each iteration of MCL
to obtain more balanced clusters and it has been shown to
have better performance to identify clusters with potential
functional specificity.

However, it is well known that the current public PPI
datasets are quite noisy and there exist both false positive
and false negative interactions due to different technical
reasons [17]. Therefore, clustering simply based on one
network constructed from a single data source may not be
able to yield robust and accurate results. We may need to
appropriately integrate multiple information sources to
repress the noise in existing PPI datasets by borrowing
strengths from each other. AlignNemo [18] is one of such
recent efforts, which detects network clusters on an align-
ment network of two given PPI networks. AlignNemo
takes into account not only the network topology from
two PPI networks but also the homology information
between proteins across two networks. However, based on
the reported experiments and our empirical findings,
AlignNemo has low clustering coverage because the align-
ment network is constructed based on only similar pro-
teins by their sequence similarity and those proteins that
do not appear in the alignment network are never consid-
ered for clustering.

In this paper, we propose a joint clustering algorithm
based on a new Markov random walk on an integrated
network, which is constructed by integrating protein-
protein interactions in given PPI networks as well as
homological interactions introduced by sequence similar-
ity between proteins across networks. A novel alternative
random walk strategy is proposed on the integrated net-
work with the transition matrix integrating both topology
and homology information. We formulate the joint clus-
tering problem as searching for low conductance sets
defined by this transition matrix. We then derive an
approximate spectral solution algorithm for joint network
clustering.

The organization of the rest of the paper is as follows:
In section 2, we introduce the construction of the inte-
grated network, the new random walk strategy, our final
optimization problem formulation and the spectral algo-
rithm for joint clustering. Section 3 contains experimen-
tal results on clustering two PPI networks within the
same species (two yeast PPI networks and two human
PPI networks, respectively) as well as those from differ-
ent species (one yeast and one human PPI networks).
Our experimental results demonstrate that our joint
clustering algorithm, which we call it ASModel, outper-
forms the state-of-the-art single network clustering algo-
rithms as well as AlignNemo [18] in terms of both
protein complex prediction and Gene Ontology (GO)
enrichment analysis [19]. Finally, we draw our conclu-
sions in section 4.
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Methodology

Terminology

Let G =(U,D) and H =(V,E) be two PPI networks,
where I/ and V are node sets representing N; and N,
proteins in two networks, respectively; and D and £
denote edges corresponding to respective protein-pro-
tein interactions. We assume that G and 7 are con-
nected networks, whose topology structures can be
mathematically captured by their corresponding adja-
cency matrices A; and Aj:

1 (ui,uj) eD, i#j

M) = {0 otherwise. As(irj) = { o eise, (1)

0 otherwise.

where u;, u; € I/ and v;, v; € V and we first ignore
self-loops in PPI networks. Suppose some of the pro-
teins in I/ and V are known a priori to be similar to
each other by some criteria, such as their constituent or
functional similarity. For example, we compute protein
sequence similarity based on the normalized BLAST bit
score [20] in this paper so that the latter performance
evaluation in our experiments based on curated func-
tional annotations is as unbiased as possible. In a simi-
larity matrix S;,, each element S;,(u;, v;) records the
similarity between proteins u; € {/ and v; € V:

BLAST(ui, vj)

S Ui, vj) =
12 (wi, vj) \/BLAST(ui/ uj) x \/BLAST(V]‘, v;)

2)

where BLAST(u;, v;) stands for the bit score of
sequence similarity between proteins #; and v; by
BLAST [20]. Based on (2), we note that S;5(u;, v)) is in
the range [0, 1].

Integrated network

In order to jointly cluster two PPI networks, we first
define a new integrated network M = (W, &r, Ey). The
set of nodes Win this integrated network is the union of
proteins in two PPI networks (W =U UV).The inte-
grated network M has two types of interactions, where
Er represents the union of the sets of protein-protein
interactions within the PPI networks (= DU E) and
&y are new “interactions” across two PPI networks
introduced by the homological similarity S;,. One exam-
ple of an integrated network is illustrated in Figure 1A.
In this example, )V contains all the nodes in blue and
red colors from two respective networks. The solid
edges indicate the interactions in & and the dashed
edges represent the interactions in &y.

The integrated network combines both the topology
information within two PPI networks and the homology
information across two PPI networks. Therefore, M can
be considered as the integration of two networks
Mr = (W, Er)and My = (W, En), which share the same
set of nodes W. M is the network carrying the topology
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Figure 1 Illustration of our proposed joint clustering algorithm. A. Construction of the integrated network. B. Random walk strategy.
C. Equivalence between a directed network (transition matrix P ) and a symmetric undirected network (transition matrix p).

information within two PPI networks, whose adjacency
matrix can be represented as follows:

(A0
A= [ 0 A2i|N><N ®

where N = N; + Ny. Myis the network containing the
homology information across two networks, whose adja-
cency matrix can be represented as

0 512]
S= . (4)
|:871“2 0 NxN

The examples of Mt and My are also illustrated in
Figure 1A.

Random walk strategy on the integrated network

As shown in the previous section, the integrated network
contains both topology and homology information repre-
sented in two sets of edges. In order to bring strengths
from each other to improve the clustering performance
in individual networks, we propose a random walk strat-
egy on the integrated network AM to integrate all infor-
mation sources. To make use of both topology and
homology information, we require the random walker
must walk through topological and homological interac-
tions (£ and £g) in an alternative order. However, as
shown in Figure 1B, the random walker can either first
walk by M then on the network My or first walk
on My then on M. For the first type of random walk
illustrated in Figure 1B, the transition matrix P,5 can be
calculated as

Py =Py x Pg (5)

where Py = D;'A and P5 = Dglg. The matrix Dy is a
diagonal matrix with the degree of each node on its
diagonal elements. § = S + Iy is the adjacency matrix
of network My with self-loops indicating self similarity
of proteins. Dg is the corresponding diagonal matrix

with Dg(i, 1) = st(irj), where i, j € {1, 2, ..., N} are

new node indices in the integrated network and
S(i,j) > 0 when i, j indicate proteins from different PPI
networks. Again, S(i,i) = 1 for self similarity. Further-
more, we find that P, is the transition matrix of the
random walk on M and Pj is the transition matrix of
the random walk on My including self-loops.

For the second type of random walk illustrated in
Figure 1B, we can similarly compute the transition
matrix

Pgi = Ps x P} (6)

where Pg = D;'S and P; = D;A. Here, Ds is a diago-
nal matrix with Ds(i, i) = Zi S(i.j). Here, 4 is the adja-

cency matrix of Mr with self-loops to allow for the
possibility of random walker staying at the current node.
Dj is the corresponding diagonal matrix with the node
degree in A on its diagonal. Pg is the transition matrix
of the random walk on My and Pj is the transition
matrix of the random walk on M7 including self-loops.

We further assume that the probability of taking the
first type of random walk should be the same as going
with the second type of random walk. Therefore, our
final transition matrix for the new random walk strategy
can be represented by

1 1
P= 2PA§+ ZPSA (7)

Searching for low conductance sets based on P

In My, proteins with topological interactions & are
likely to participate in similar cellular functions. Also,
proteins with larger homological interactions £y in My
are more probable to be functionally similar. Because
the random walk on the integrated network considers
both types of interactions, each element P (i, j) of the
corresponding transition matrix can be understood as
the probability that proteins i and j have similar func-
tions as these proteins are more likely to reach each
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other with a larger P (i, j). Based on this, we can make
use of the concept of the conductance defined on the
Markov chain to identify clusters based on P [11,21] by
searching for low conductance sets.

Similarly as done in [11,21], we can formulate the
optimization problem for joint network clustering:

k
min Z ®p(Cp, Cr)

k
st JG=w anG=0vh#l  (8)
h=1 h=1

where ®p(Cy,, Cp,) is the defined conductance of node
subset Cj, to the rest of the network Cj; and k is the
number of desired subsets as final network clusters. The
conductance ®p(Cy, C;) can be computed as

Ziech,jeéh 7iP(i, j)
Ziech i

where 7 is the stationary distribution of the corre-
sponding Markov random walk on the integrated net-
work and pTy = 7.

The goal now is to find k low conductance sets
defined by P. As in [21], we find that if we consider P as
the transition matrix for a directed graph and try to find
k low conductance sets based on (8), it is in fact equiva-
lent to find k low conductance sets on an undirected
graph with another transition matrix p:

q)P(Chl (_:h) = ’ Ch U Ch = Wr (9)

- aP+P'x
P= . (10)
2
Due to the equivalence, our optimization formulation

for finding k low conductance sets can be formulated

finally as
. X'Px
max race
XTDpX (11)
s.t. X1y = 1N, xi € {0, 1},

where Dj is a diagonal matrix with Dp(i, i) = Z P(i.j);
X is a N x k assignment matrix whose elemént Xip
denotes whether node i belongs to cluster ¢; 1; and 15
are all one vectors with k and N elements, respectively.
Here, equations (8) and (11) have been proven to be
equivalent previously in [21]. We can derive a spectral
method to solve the above problem based on [12]. The
directed network with P and its equivalent undirected
network with p are illustrated in Figure 1C.

Joint Clustering Algorithm (ASModel)

Our joint clustering algorithm can be summarized into
three steps which are illustrated in Figure 1. The first
step is to construct the integrated network M. The sec-
ond step is to compute the transition matrix P based on
the alternative random walk strategy in (7). The final
step is to find low conductance sets on the equivalent

Page 4 of 13

network and apply the spectral method to solve the
optimization problem. Algorithm 1 provides the pseudo
code for ASModel.

Algorithm 1. ASModel for Joint Network Clustering

Input: Adjacency matrices A; and A,, Sequence simi-
larity matrix S;,, and the number of desired clusters k

Output: Cluster assignment matrix X

1. Construct the integrated network M and compute
A and S;

2. Compute the transition matrix P based on the ran-
dom walk strategy using (7);

3. Obtain the equivalent adjacency matrix p which has
the same low conductance sets as P;

4. Using the spectral algorithm to find k low conduc-
tance sets by p from (11) [12].

Experiments

Algorithms, data, and metrics

We compare our joint clustering algorithm ASModel to
NCut [11], MCL [14], RMCL [15,16], and AlignNemo
[18]. Among the selected algorithms for performance
comparison, AlignNemo [18] is a recently proposed pro-
tein complex detection algorithm, which also takes into
account the homology and topology information from two
PPI networks. NCut is equivalent to searching for low
conductance sets by the transition matrix defined directly
based on the given single network. Therefore, comparing
with NCut aims to show that finding low conductance sets
on the integrated network by our new ASModel is super-
ior to separately finding similar low conductance sets on
individual networks. MCL and RMCL are two state-of-
the-art algorithms which have been proven effective on
analyzing biological networks. Comparing with them can
further demonstrate that our joint clustering algorithm
ASModel can achieve better performances than clustering
single networks separately. Both NCut and ASModel have
one input parameter, which is the number of clusters k.
We sample k in [100, 3000] with an interval of 100 and
report the best results. MCL also has one parameter, the
inflation number. We similarly search for the best per-
forming value from 1.2 to 5.0 with an interval of 0.1. For
RMCL, we adopt the parameters suggested in [15,16].
AlignNemo is a heuristic algorithm without any tuning
parameters [18] and we directly implement the provided
algorithm in our experiments.

In addition to evaluating joint clustering by ASModel
using synthetic networks, we evaluate the performances
of ASModel, NCut, MCL, RMCL, and AlignNemo on
public PPI datasets for S. cerevisiae (budding yeast) and
H. sapiens (human). For S. cerevisiae, SceDIP and
SceBGS are two extracted PPI networks from the Data-
base of Interacting Proteins (DIP) [22] and BioGRID
[23], respectively. For H. sapiens, HsaHPRD and Hsa-
PIPs are corresponding PPI networks derived from
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Human Protein Reference Database (HPRD) [24] and
the PIPs dataset [25]. The details of each PPI network
are given in Table 1.

In order to access the performance of the competing
algorithms, we first implement complex prediction to
assess the quality of clustering results by evaluating the
agreement of the clusters found by each method with
curated protein complex standards. SGD [26] and
CORUM [27] complexes are considered as the golden
standards for complex prediction for yeast and human
PPI networks, respectively. We then implement the GO
enrichment analysis for further validation on function
predicting performance from clustering results. In order
to focus on more specific cellular functions, we use spe-
cific GO terms with information content (/C) larger or
equal to 2, filtered out from all three domains: biological
process, molecular function, and cellular component.
The information content of a GO term g is defined as:

IC(g) = —log (1g |/ rootl),

where |g| and |root| are the number of proteins in GO
term g and the number of proteins in its corresponding
GO category. The information of reference complex
datasets and GO terms is also provided in Table 1.

We adopt the widely used F-measure [28] to evaluate
the performance for complex prediction. F-measure is
the harmonic mean of precision and recall: F = 2 x pre-
cision x recall/(precision + recall), where precision and
recall are defined as follows:

(12)

{Ci € CINA(C;, R) > 0.25,3R; € R}|

(13
ICI 1

precision =

I{R; € RINA(C;, Rj) > 0.25,3C; € C}|

, (14
R (14)

recall =
where C = {Cy, C,, ..., Ci} are the identified clusters by
different algorithms and R = {R;, R,, ..., R;} denote the
corresponding reference complex sets. The neighbor

affinity NA (CiR)) = \cli
between the predicted complex C; and the reference
complex R;.

To evaluate the performance of GO enrichment analy-
sis, we compute the p-value and the number of enriched

GO terms from clustering results. Suppose that the

measures the overlap

Table 1 Information of four real-world PPl networks.

Network #. nodes #. edges SGD CORUM |Go|
SceDIP 4980 22076 305 - 956
SceBGS 5640 59748 306 - 1005
HsaHPRD 9269 36917 - 1294 4755
HsaPIPs 5226 37024 - 1193 4560
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whole network has N proteins with M proteins anno-
tated with one GO term and the detected cluster has n
proteins with m proteins annotated with the same GO
term. The p-value of the cluster with respect to that GO
term can be calculated as [29]

£ D

We choose the lowest p-value of all enriched GO
terms in the derived cluster as its final p-value. A GO
term is enriched when the p-value of any cluster corre-
sponding to this GO term is less than 1le-3.

(15)

Synthetic networks

We first evaluate and compare the clustering performance
of our proposed ASModel with the performances of run-
ning random walk on individual networks as well as run-
ning the random walk directly on integrated networks
with both interactions within networks and similarity
across networks. The goal of this set of experiments is to
demonstrate that not only joint clustering performs better
than clustering individual networks by NCut, but also our
proposed ASModel can achieve better performance than
the normal random walk on the integrated work using the
same set of integrated information.

We first generate two noise-free individual networks.
The first network has 4 modules, each of which has 24
nodes. The second network also has 4 modules, each of
which has 36 nodes. The edge density in each modules of
both individual networks are 0.5. We further assign the
nodes in the corresponding pairs of modules across two
networks as potential “orthologous” node pairs. In this set
of experiments, we set the similarity density of nodes
within the corresponding modules to 0.2, meaning that
20% node pairs among all possible node pairs within the
corresponding modules are randomly assigned to be simi-
lar to each other. We further add noise to both the inter-
actions within individual networks and the node similarity
across networks by randomly permuting a certain percen-
tage of edges (both interaction and similarity) by Maslov-
Sneppen procedure [30], which enables the performance
evaluation at different noise levels. As we have the ground
truth of modular structures in synthetic networks, we use
the normalized mutual information (NMI) [31] as the eva-
luation criterion. We have generated 30 pairs of synthetic
networks for each noise level and the average NMI values
and their standard deviations of clustering results from
three different random walk schema are shown in Figure 2
for the performance comparison. For joint clustering algo-
rithms, we find that when the noise level is low, ASModel
and normal random walk are competitive with each other.
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Figure 2 Performance comparison on synthetic networks for random walk algorithms.

However, with the increasing noise level, ASModel clearly
outperforms normal random walk. Comparing ASModel
with single network clustering algorithm NCut, we observe
that ASModel is also superior to NCut, indicating that
joint clustering does achieve better clustering performance
than clustering individual networks separately.

Joint clustering of PPl networks within the same species
In this section, we first jointly cluster two PPI networks
from the same species to demonstrate the effectiveness of
our ASModel. Through applying ASModel, we expect that
each PPI network can borrow strengths from the other
PPI network to enhance the clustering performance.

Joint clustering of the SceDIP and SceBGS PPl networks
Complex prediction For the SceDIP and SceBGS net-
works, we report the performance of ASModel, NCut,
MCL, RMCL, and AlignNemo on complex prediction in
terms of the number of matched reference complexes and
F-measure. The detailed information such as the number
of clusters (cluster size > 2) and the coverage is listed in
Table 2. Figures 3A and 3B show the comparison results

for the number of matched reference complexes and
F-measure, respectively. As illustrated in Figure 3, ASMo-
del detects the largest number of matched reference com-
plexes and achieves the highest F-measure for both
networks, which is substantially better than the results
obtained by individual clustering using all the other single
network clustering algorithms. Although AlignNemo also
uses both topology and homology information, it is inter-
esting to observe that it does not detect any matched
reference complexes in this set of experiments, which in
fact is different from the reported results in [18] though
different networks were analyzed.

One important reason that we have seen different
results for protein complex prediction by AlignNemo is
that we here use a more strict evaluation criterion to
consider that a reference complex R; is recovered by the
identified cluster C; by clustering algorithms only when
N A(C;, R; ) > 0.25. In the original paper of AlignNemo
[18], a reference complex is considered to be recovered if
at least two of its proteins overlap with a detected cluster,
which may introduce the evaluation bias. Imagine that if

Table 2 The information of the derived clusters by all competing algorithms

PPI Method NCut MCL RMCL ASModel ASModel ASModel
(DIP+BGS) (HPRD+PIPs) (DIP+HPRD)
SceDIP #. clusters 525 659 814 737 - 702
coverage 2572 3630 3725 4537 - 4425
SceBGS #. clusters 414 338 772 704 - -
coverage 4879 3544 5210 5169 - -
HsaHPRD #. clusters 981 1239 1508 - 1113 1231
coverage 6534 7800 6879 - 8631 8729
HsaPIPs #. clusters 491 576 581 - 560 -
coverage 4542 4134 3966 - 4358 -
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Figure 3 Performance comparison of competing algorithms for complex prediction in both yeast PPl networks. A. Comparison on the
number of matched reference complexes. B. Comparison on the F-measure.

one cluster contains 10 proteins, with every two belong-
ing to a different reference complex. This evaluation
criterion will conclude that five different complexes are
recovered by the algorithm but the clustering results may
not necessarily be desired. Our obtained results may indi-
cate that the random walk strategy in our ASModel bet-
ter integrates available information across networks than
the heuristic strategy adopted in AlignNemo to discover
biologically more meaningful clusters.

GO enrichment analysis GO enrichment analysis has
been done based on the detected clusters by ASModel,
NCut, MCL, RMCL, and AlignNemo. For each cluster, it
may be enriched in multiple GO terms and we choose
the lowest p-value as the p-value for the cluster as
explained earlier. We first sort the p-values of all clusters
in an ascending order and then draw the corresponding
monotonically decreasing -log(p-value) curves for all the
algorithms in Figure 4. As shown in Figure 4A, for the
SceDIP PPI network, the curve of ASModel is on top of
all the other competing algorithms, which indicates that
the clusters detected by joint clustering ASModel are
more consistent to the curated GO terms and hence cap-
ture the cellular functionalities better. For the SceBGS
PPI network from Figure 4B, we find that the curve of
RMCL is on top of other algorithms for around the top
80 most significantly enriched clusters. However, when
we check more derived clusters, the curve of ASModel is
again on top of the other algorithms. Hence, overall,
especially when we consider the total number of enriched
GO terms shown in Figure 5, functional consistency of
the detected clusters is improved by our joint clustering
algorithm ASModel as ASModel can identify more

enriched GO terms to unearth more biologically mean-
ingful clusters with more significant p-values overall.

In summary, from both complex prediction and GO
enrichment analysis, ASModel can achieve more biologi-
cally meaningful results. These promising results imply
that joint clustering can improve the clustering perfor-
mance for every individual PPI network when we inte-
grate information from them appropriately.

Joint clustering of the HsaHPRD and HsaPIPs networks
Complex prediction Similarly, the results of complex
prediction from all the competing algorithms on two
human PPI networks are shown in Figure 6. For the
HsaHPRD network, we find that RMCL and ASModel
detect competitive numbers of reference complexes and
achieve competitive F-measures. When we check the
HsaPIPs network, Figure 6 shows that ASModel identifies
much more matched reference complexes and obtain
substantially better F-measure than all the other algo-
rithms. AlignNemo again does not detect any matched
reference complexes based on the neighbor affinity
metric. The performance of ASModel demonstrates that
the clustering of HsaPIPs network does benefit from the
information in the HsaHPRD network to achieve the bet-
ter complex prediction performance. However, the per-
formance on the HsaHPRD network is not influenced
much, probably due to the incompleteness of the Hsa-
PIPs dataset.

GO enrichment analysis We compare ASModel to
NCut, MCL, RMCL, and AlignNemo on GO enrich-
ment analysis by drawing similar -log(p-value) curves
of the top ranked clusters based on their enrichment
significance. From Figure 7, we observe that for both
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Figure 4 Performance comparison of competing algorithms for GO enrichment analysis. A. GO enrichment comparison on the SceDIP

SceBGS PPI network

human PPI networks, the curves of ASModel are on
top of all the competing algorithms. Furthermore, as
shown in Figure 8, we find that ASModel also detects
the largest number of enriched GO terms on both net-
works. The overall performance of GO enrichment
analysis further validates that joint clustering signifi-
cantly enhances the clustering performance for each
PPI network.

From these two experiments of joint clustering PPI net-
works from the same species, we note that ASModel can

make full use of topology and homology information to
improve the clustering performance for each PPI
network.

Joint clustering of PPl networks from different species
Joint clustering of PPI networks within the same species
has been proven to yield promising results. In order to
show that ASModel can also improve the clustering per-
formance for PPI networks from different species, we
have done the following experiment.
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Figure 5 Comparison on the number of enriched GO terms for all the competing algorithms in two yeast networks.
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Figure 6 Performance comparison of competing algorithms for complex prediction in both human PPI networks. A. Comparison on the
number of matched reference complexes. B. Comparison on the F-measure.

Joint clustering with SceDIP and HsaHPRD PPI networks

Complex prediction We first report the performance for
protein complex prediction. For the SceDIP network, we
compare the results of joint clustering of the SceDIP and
HsaHPRD networks by ASModel, joint clustering of the
SceDIP and SceBGS networks by ASModel, as well as
results obtained from AignNemo and other single net-
work clustering algorithms. We observe in Figure 9 that
joint clustering of the SceDIP and SceBGS networks
yields the best F-measure and the largest number of
matched reference complexes. However, joint clustering
of the SceDIP and HsaHPRD networks achieves the

second best F-measure and detects competitive numbers
of matched reference complexes as RMCL.

For the HsaHPRD network, we compare the results of
ASModel obtained from joint clustering of the HsaHPRD
and HsaPIPs networks as well as joint clustering of the
HsaHPRD and SceDIP PPI networks, AlignNemo, NCut,
MCL, and RMCL. The comparison for the number of
matched reference complexes and F-measure is given in
Figure 9. From the figure, we find that RMCL gets the best
performance in terms of these two metrics. ASModel
achieves the competitive performance when joint clustering
two human networks as shown before. ASModel for two
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Figure 8 Comparison on the number of enriched GO terms for all the competing algorithms in two human networks.

human networks provides better results than jointly analyz-
ing two networks for yeast and human. From this set of
experiments, we find that joint clustering two networks
within the same species works better than analyzing net-
works for different species. We in fact expect this because
networks within the same species have more shared infor-
mation, which can be utilized to supplement each other to
improve clustering performance. Otherwise, for two net-
works for different species, joint clustering may not help as
much since they may have different cellular constitution
and organization due to evolutionary differences.

GO Enrichment analysis We further illustrate the per-
formance comparison for clustering the SceDIP network

in Figure 10A. We note that the curve of ASModel for
the SceDIP and SceBGS networks is on top of the curve
of ASModel for the SceDIP and HsaHPRD PPI net-
works. Furthermore, both curves from ASModel are on
top of all the other algorithms. With respect to the
HsaHPRD PPI networks, we have the same observation
that ASModel analyzing PPI networks within the same
species is on top of ASModel analyzing networks from
different species. Both of them are on top of the others.
This further convinces us that joint clustering does
improve the clustering performance. In addition, the
more information that two PPI networks share, the
more enhancement can be achieved by joint clustering.
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Figure 9 Performance comparison of competing algorithms for complex prediction in the SceDIP and HsaHPRD network. A.
Comparison on the number of matched reference complexes. B. Comparison on the F-measure. ASModel (Different Species) indicates the results
obtained by joint clustering of the SceDIP and HsaHPRD PPI networks. ASModel (Same Species) indicates the results obtained from joint
clustering of the SceDIP and SceBGS networks for yeast and joint clustering of the HsaHPRD and HsaPIPs PPl networks for human, respectively.
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From the comparison of the number of enriched GO
terms as shown in Figure 11, we have the same conclu-
sion. ASModel analyzing networks within the same spe-
cies detects the largest number of enriched GO terms.
For analyzing networks from different species, ASModel
identifies the second largest number of enriched GO
terms among all competing algorithms.

From these experiments, no matter analyzing two PPI
networks from the same species or from two different
species, our joint clustering algorithm ASModel can
achieve better results than analyzing these networks
separately using single network clustering algorithms.
Furthermore, we find that joint clustering using two PPI
networks from the same species achieves more significant
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Figure 11 Comparison on the number of enriched GO terms for all the competing algorithms in the Sce DIP and HsaHPRD networks.
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performance improvement than using two PPI networks
form different species, which coincides with our intuition
that we can find more robust and accurate clustering
results if we use networks from the same species or spe-
cies that are phylogenetically close so that the conserva-
tion across networks helps to derive more confident
clustering results.

Conclusions and future work

In this paper, we have proposed a joint network cluster-
ing algorithm ASModel based on a new alternative ran-
dom walk strategy. The experimental results based on
both complex prediction and GO enrichment analysis
demonstrate that using ASModel to joint clustering two
PPI networks can achieve better clustering results than
single network clustering algorithms and AlignNemo.
Furthermore, from comparing with the performances of
joint clustering PPI networks within the same species
(section 3.2) and those from different species (section
3.3), we find that the more information the PPI net-
works in the integrated network share, the better the
clustering results can be achieved. For our future work,
we are collaborating with biologists to explore the
potential opportunities using our ASModel to identify
biologically meaningful clusters in different species. By
carefully investigating recovered clusters, we may have a
better understanding of protein functionalities, cellular
organization, as well as the underlying signal transduc-
tion mechanisms for deriving future systematic interven-
tion strategies.
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