Reverter et al. BMC Systems Biology 2014, 8(Suppl 2):56
http://www.biomedcentral.com/1752-0509/8/52/S6

BMC
Systems Biology

Kernel-PCA data integration with enhanced

interpretability

Ferran Reverter, Esteban Vegas , Josep M Oller

From High-Throughput Omics and Data Integration Workshop

Barcelona, Spain. 13-15 February 2013

Abstract

Background: Nowadays, combining the different sources of information to improve the biological knowledge
available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data
types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the
right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give
a complete representation of the available data for a given statistical task.

Results: We analyze the integration of data from several sources of information using kernel PCA, from the point
of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot
the representation of the input variables that belong to any dataset. In particular, for each input variable or linear
combination of input variables, we can represent the direction of maximum growth locally, which allows us to
identify those samples with higher/lower values of the variables analyzed.

Conclusions: The integration of different datasets and the simultaneous representation of samples and variables
together give us a better understanding of biological knowledge.

Background
With the recent rapid advancements in high-throughput
technologies, such as next generation sequencing, array
comparative hybridization and mass spectrometry, data-
bases are increasing in both the amount and the com-
plexity of the data they contain. One of the main goals of
mining this type of data is to visualize the relationships
between biological variables that are involved [1]. For
instance, visualizing gene expression guides the process
of finding genes with similar expression patterns. How-
ever, due to the number of genes involved, it is more
effective to display the data by means of a low-dimen-
sional plot. Here we focus on the problem of reducing
dimensionality and the interpretability of the resulting
data representations.

Principal component analysis (PCA) has a very long
history and is known to be a very powerful tool in the
linear case. PCA is used as a visualization tool for the

* Correspondence: evegas@ub.edu
Department of Statistics, University of Barcelona, Diagonal, 643, 08028
Barcelona, Spain

analysis of microarray data [2] and [3]. However, the
sample space that many research problems deal with is
considered nonlinear in nature; for example, the sample
space of microarray data. One reason for this nonlinear-
ity might be that the interactions of the genes are not
completely understood. Many biological pathways are
still not fully understood. So, it is quite naive to assume
that genes are connected in a linear fashion. Following
this line of thought, research into reducing the non-
linear dimensionality for microarray gene expression
data has increased. Finding methods that can handle
such data is of great importance if we are to glean as
much information as possible from them.

Kernel representation offers an alternative to nonlinear
functions by projecting the data into a high-dimensional
feature space, which increases the computational power
of linear learning machines [4] and [5]. Kernel methods
enable us to construct different nonlinear versions of any
algorithm which can be expressed solely in terms of dot
products; this is known as the kernel trick. Kernel
machines can be used to implement several learning
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algorithms but the interpretability of the resultant output
representations may be cumbersome, because input vari-
ables are only handled implicitly [6].

Nowadays, combining multiple sources of data to
improve the biological knowledge available is a challen-
ging task in bioinformatics. Data analysis of different
sources of information is not simply a matter of adding
the analysis of each separate dataset; instead it consists of
the simultaneous analysis of multiple variables in the dif-
ferent datasets [7].

Some of the most powerful methods for integrating
heterogeneous data types are kernel-based methods [8]
and [9]. We can describe kernel-based data integration
approaches as using two basic steps. Firstly, the right ker-
nel is chosen for each data set. Secondly, the kernels
from the different data sources are combined to give a
complete representation of the available data for a given
statistical task. Basic mathematical operations such as
multiplication, addition, and exponentiation preserve
properties of kernel matrices and hence produce valid
kernels. The simplest approach is to use positive linear
combinations of the different kernels.

In this work, we analyze the integration of data from
several sources of information using kernel PCA, from the
point of view of reducing dimensionality and extending
previous results [10]. Moreover, we improve kernel PCA
interpretability by adding to the plot the representation of
the input variables that belong to any dataset. In particu-
lar, for each input variable or linear combination of input
variables, we can represent the direction of maximum
growth locally, which allows us to identify those samples
with higher/lower values of the variables analyzed. There-
fore the integration of different datasets and the simulta-
neous representation of samples and variables together
give us a better understanding of biological knowledge.
This paper starts by briefly reviewing the notion of kernel
PCA (Section 2). Section 3 contains our main results: a set
of procedures to enhance the interpretability of kernel
PCA when multiple datasets are analyzed simultaneously.
We then present our results and apply them in parallel to
analyze a nutrigenomic study in mouse [11].

Results and discussion
Kernel methods enable us to construct different non-
linear versions of any algorithm which can be expressed
solely in terms of dot products, this is the case of kernel
PCA. Kernel PCA can be used to reduce dimensionality,
thereby improving on linear PCA, but the interpretabil-
ity of the output representations may be cumbersome
because the input variables are only handled implicitly.
In this section, we propose a set of procedures to
improve the interpretability of kernel PCA. The proce-
dures are related to the following aspects:
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+ Representation of input variables.

« Data integration and representation of input
variables.

+ Representation of linear combinations of input
variables.

+ Revealing the interpretability of input variables.

To illustrate these procedures we use an example
from metabolomics and genomics. The datasets come
from a nutrigenomic study in mouse [11]. Forty mice
were studied and two sets of variables were acquired:
expressions of 120 genes measured in liver cells; and
concentrations (in percentages) of 21 hepatic fatty acids
(FAs) measured by gas chromatography. Biological units
(mice) are cross-classified according to two factors: gen-
otype, which can be wild-type (WT) or PPARa.-deficient
mice (PPAR); and diet, with 5 classes of diet in accor-
dance with the FA composition.

The oils used for the experimental diet preparation
were: corn and rapeseed oils (50:50), as the reference diet
(ref); hydrogenated coconut oil, as a saturated FA diet
(coc); sunflower oil, as an w6 FA-rich diet (sun); linseed
oil, as an w3 FA-rich diet (1in); and corn, rapeseed and
fish oils (42.5:42.5:15), as the £ish diet. In the study, it
cannot be assumed that variations in one set of variables
cause variations in the other; we do not know a priori if
changes in gene expression imply changes in FA concen-
trations or vice versa. Indeed, the nuclear receptor
PPARa, which acts as a ligand-induced transcriptional
regulator, is known to be activated by various FAs and to
regulate the expression of several genes involved in FA
metabolism. It should be noted that the main observa-
tions discussed in [11], which were extracted separately
from the two datasets by both classical multidimensional
tools (hierarchical clustering and PCA) and standard test
procedures, are also highlighted by kernel PCA graphical
representations.

Representation of input variables

In order to achieve interpretability we add supplemen-
tary information into kernel PCA representations. We
have developed a procedure to represent any given
input variable on the subspace spanned by the eigenvec-
tors of C (see Methods).

We can consider that our observations are realizations
of the random vector X = (X3, .., X,,). Then, to represent
the prominence of the input variable X; in kernel PCA,
we take a set of points of the form: y = a + se; € R”,
where e, = (0, ..., 1, ..., 0) € R”, s € R, and the k-th
component is equal to 1 and the others are 0. Then, we
can compute the projections of the image of these
points, ¢ (y), onto the subspace spanned by the eigen-
vectors of C. Taking into account equation (8), the
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induced curve expressed in matrix form is given by the
row vector:

1 1 8
ok, , = (ZST — mlan) <1m — mlmlfn) v,

where Z is in the form of (7).

In addition, we can represent directions of maximum
growth of o%(s) with respect the variable X by project-
ing the tangent vector at s = 0. In matrix form, we have:

do® dZST 1 <
= L,— 1,1 V, 1
dS 5=0 dS 5=0 ( " m " m) ( )
With:
dzl|  (dz! dzm| \'
ds |y \ ds | " ds |/’

and, using the chain rule:

dzZ:
ds

_ K (y, xi)

2)
s=0 ayk

y=a

In particular, let us consider the Gaussian radial basis
function kernel: k(x, z) = exp(-c ||x - z||?), with ¢ > 0 a
free parameter. Using the notation above, we have:

K(y,xi) = exp(—c|ly —xi[ ") = exp (‘CZ (= x")2> :

t=1

For the set of points of the form y = a + se, € R™

az! K (y, x;
d55|s=o = g/k 1)|y=a = —2cK(a, x;)(ar — xi).

In addition, if a = x3 (a training point) then:

dzi

s = —2cK(xg, X;) (X — Xik)-
s=0

To illustrate our procedure we introduce a toy exam-
ple. We have generated a dataset which has 18 points in
6-dimensional space. Coordinates of the points are
selected in order to distinguish 3 groups clearly sepa-
rated. The group 1 has 6 points such that the sum of X;
and X, coordinates is equal to 15 for each point. More-
over, in this group, there are 3 points such that the sum
of X3, X4 and X5 is 0, and is equal to 6 for each the
another 3 points. The group 2 has 6 points such that the
sum of X3, X, and X5 coordinates is equal to 0 for each
point. Besides, in this group, there are 3 points such that
the sum of X; and X, is 0, and is equal to -4 for each the
another 3 points. Finally, the group 3 has 6 points such
that the sum of X; and X, coordinates is equal to O for
each point. Moreover, in this group, there are 3 points
such that the sum of X3, X, and X; is 15, and is equal to
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24 for each the another 3 points. All coordinates were
perturbed with weak gaussian noise in order to introduce
a small amount of variability inside each group. At each
group the variable X is assigned randomly according to
a Gaussian of mean zero and standard deviation 0.5. The
configuration of the points is such that we expect that in
reduction of dimension only the first dimensions are
necessary to reveal the arrangement of the three groups.
It can be seen in Figure 1 where the two leading compo-
nents of kernel PCA are represented. We can see the
group 1 (represented by triangles up and circles) on the
negative part of the first principal axe, group 2 (repre-
sented by plus signs and by cross) in the central part and
the group 3 (represented by diamonds and triangles
down) on the positive part.

Figure 1 shows samples and the variables from X; to
X5 at each sample. Variables are represented by vectors
that indicate the direction of maximum growth in each
variable. In fact, we can see that the vectors point to
those groups characterized by higher values in each vari-
able. For instance, the variables X; and X, point to the
group 1, and the variables X3, X4, and X5 point to the
group 3.

Figure 2 shows the variable X, at each sample, we can
observe that this variable is poorly represented and has
no preferred direction towards any group.

A natural extension of the above procedure is the
representation of linear combinations of input variables.
Details can be found in section 3.2. With the aim to
show this property we displayed in Figure 3 the samples
and the linear combinations X; + X, and X5 + X, + X5
at each sample. Linear combinations are represented by
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Figure 1 Kernel PCA analyzing the toy example. Variables are
represented by vectors that indicate the direction of maximum
growth in each variable.
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Figure 2 Kernel PCA analyzing the toy example. Variable X; is
poorly represented and the direction of maximum growth of this
variable shows no trend to any group.

vectors that point to the direction of maximum growth
in each of the linear combinations. We can observe that
at each sample vectors point to those groups with
higher values in each of linear combinations. For exam-
ple, vectors representing X; + X, point to group 1, and
vectors representing X3 + X, + X5 point to group 3.
Analyzing the nutrigenomic dataset

We illustrate the representation of variables by analyzing
the dataset in [11]. We apply kernel PCA and represen-
tation of variables to the genomic data and FA data.

2nd Principal Component
0
|

1st Principal Component

Figure 3 Kernel PCA analyzing the toy example. Linear
combinations of variables are represented by vectors that indicate
the direction of maximum growth in each of the linear
combinations.
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Firstly, we compute kernel PCA by analyzing only gene
expression level data. Figure 4 shows the two leading
axes of kernel PCA. We can observe that the genotypes
are clearly separated (WT samples are represented in
black and PPAR samples in red). Diet representation is:
ref diet is represented by the letter x; coc diet by cir-
cles; sun diet by diamonds; 1in diet by plus signs; and
fish diet by triangles). Figure 4 shows the AOX (blue
vector) and CARI (green vector) genes. Vectors indicate
the direction of maximum growth of the gene expres-
sion at each sample point. Thus, we can observe that
AOX increases towards WT and CARI towards PPAR.
These results are in agreement with those found in [11]
and [12]. Figure 5 and Figure 6 show the profiles of the
medians of the expression of AOX and CARI grouped
by genotype. We can observe that these profiles agree
with the kernel PCA representation.

Secondly, to compare results, we compute kernel PCA
analyzing only FA levels. In Figure 7 we can observe
that the sample points are separated by genotype, but
we can also observe that the samples with coc diet (a
diet with hydrogenated coconut oil as a saturated FA
diet) form a cluster. Figure 7 shows C20.2w.6 (green
vector) and C16.0 (blue vector) FAs. It reveals higher
levels of C20.2w.6 towards PPARa-deficient clustered
samples (red) and that levels of C16.0 are higher
towards the WT cluster of samples (black).

These results are also in agreement with those found
in [11] and [12]. Figure 8 and Figure 9 show the profiles
of the medians of the concentrations of C16.0 and
C20.2w FAs, grouped by genotype. We can observe that
these profiles agree with the kernel PCA representation.
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Figure 4 Kernel PCA of gene expression. The genes AOX (blue
vector) and CART (green vector) are represented at each sample
point. WT samples are represented in black and PPAR samples in
red. Diet representation is: (ref) diet by the letter x; (coc) diet by
circles; (sun) diet by diamonds; (lin) diet by plus signs; and (fish) diet
by triangles.
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Figure 5 AOX gene profile. Profile of the median gene expression
of the AOX gene.

Data integration and representation of input variables
The kernel formalism allows us to combine heteroge-
neous datasets for data fusion. Basic algebraic operations
such as addition, multiplication and exponentiation pre-
serve the key properties of symmetry and positive semi-
definiteness, and thus allow a simple but powerful
algebra of kernels. If k; and k, are kernels defined
respectively on X; x X} and X, x A5, then their direct
sum:

(k1 ® k2)(x1,%2,X'1,X2) = k1 (x1,X'1) = ka(X2,X'2)

is a kernel on (X; x &) x (X} x A)). Here,
X1, %] € Xy and xp, X, € X

This construction can be useful if the different parts
of the input have different meanings and should there-
fore be dealt with differently. In that case, we can split
the inputs into two parts, X; and X,, and use two differ-
ent kernels for these parts. This is the case when we are
integrating two separate datasets. In consequence, our
procedure can easily be extended to data fusion. Firstly,
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Figure 7 Kernel PCA of fatty acid concentrations. The fatty acids
C16.0 (blue vector) and C20.2w.6 (green vector) are represented at each
sample point. WT samples are represented in black and PPAR samples in
red. Diet representation is: (ref) diet by the letter x; (coc) diet by circles;
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Figure 6 CAR1 gene profile. Profile of the median gene
expression of the CART gene.

(sun) diet by diamonds; (lin) diet by plus signs; and (fish) diet by triangles.

we reduce the dimension of the entire data (x;;, Xy,), i =
1, ..., m, by applying kernel PCA with the kernel K given
by k; @ ky. Secondly, to find the coordinates of a test
point:

y=(y1:Y2)
we proceed by analogy with (8), so that (7) becomes:
Z= (K (yl’xli’YZ'XZi))m x1 - (kl (yl’xli) + kz (YZ’Xzi))m x1°

When we integrate two datasets, we can represent any
given input variable that belongs to one of the datasets.
Let us suppose that we wish to represent the variable X,lz
that belongs to the dataset / = 1, 2. Then (2) becomes:

azy|  _ Ki(y,xu)
ds | Vi

yi=a
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Figure 8 C16.0 fatty acid profile. Profile of the median
concentrations of the C16.0 fatty acid.
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Figure 9 C20.2w.6 fatty acid profile. Profile of the median
concentrations of the C20.2w.6 fatty acid.

Then, formula (1) allows us to display variables that
belong to any of the datasets over the kernel PCA repre-
sentation of samples, simultaneously.

Analyzing the nutrigenomic dataset

Continuing with the same nutrigenomic study, we com-
pute kernel PCA by analyzing both datasets simulta-
neously; that is, gene expressions and FA concentrations.
We observe that the genotypes are clearly separated (WT
is represented in black and PPAR in red) and also mice
with the coc diet form a cluster of both genotypes; see
Figure 10. Also, Figure 10 shows AOX (black vector) and
CAR1 (green vector) genes, and C20.2w.6 (blue vector)
and C16.0 (red vector) FAs. It reveals higher expression of
CARI and higher concentrations of C20.2w.6 towards the
PPAR cluster. In contrast, AOX gene expression and con-
centrations of C16.0 are higher towards the WT cluster.
These results are in agreement with those found in the
individual kernel PCAs above.

Representation of linear combinations of input variables
A natural extension of the above procedure is the
representation of linear combinations of input vari-
ables. This may be useful for representing gene mod-
ules or gene networks. Let us suppose that we wish to
represent the linear combination: Xj, + X, +--- + X},
where ky, ko,...k; €{1, 2, ..., n}, with ki = kj, i,j =1, ..., L
Then, when K is the Gaussian radial basis function
kernel, (2) becomes:

dzi Lok (v, xi)
ds |s=0 = ; am |y=a-

Then, formula (1) allows us to represent any linear
combination of input variables.
Analyzing the nutrigenomic dataset
To illustrate this procedure we have analyzed the genes
GSTpi2, CYP3A1ll and CYP2c29. These genes are

Kernel PCA
Genes + Fatty acids Integration

%”‘ fff%%z

v P i

1st Principal Component

Figure 10 Kernel PCA analyzing gene expression and fatty acid
concentrations simultaneously. The genes AOX (black vector) and
CART1 (green vector) and fatty acids C20.2w.6 (blue vector) and
C16.0 (red vector) are represented at each sample point. The WT
samples are represented in black and the PPAR samples in red. Diet
representation is: (ref) diet by the letter x; (coc) diet by circles; (sun)

diet by diamonds; (lin) diet by plus signs; and (fish) diet by triangles.

involved in the functioning of detoxification [12]. We
perform kernel PCA analyzing both dataset simulta-
neous and represent the sum of the expressions of the
genes GSTpi2, CYP3A1l and CYP2c29. Figure 11 shows
sample points and the vector corresponding to the sum
of the three gene expressions is attached to each point.
The vector indicates the direction of maximum growth
of the sum of the expressions. We observe that the sum
of the expressions increases towards the £ish diet. This
is in agreement with the findings in [12].

Revealing the interpretability of input variables

Our procedure for representing input variables on the
two-dimensional subspace expanded by the two main
eigenvectors of C, displays the variables as vectors
whose direction is the direction of maximum growth of
the variable at a given point; in particular, at the sample
points.

So, if we set a direction in this plane, given by a vector
w, we can search for input variables whose representa-
tion on the kernel PCA plane are correlated with this
direction. Let us suppose that we observe clusters of
samples in the kernel PCA representation; then an inter-
esting direction can be given by the vector defined by
any two cluster centroids.

Once we have selected a vector w, we denote w; as
the parallel vector of w attached to the image given by
kernel PCA of the sample point x;, i = 1, ..., m. For
any variable X;, we now compute its vector representa-

tion in kernel PCA using formula (1); we denote this
k
vector as . Therefore, for each sample point,

S 1s=0
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Figure 11 Representation of linear combinations of input
variables. The sum of the expression of the genes: GSTpi2,
CYP3A11 and CYP2c29 is represented. These genes are associated
with detoxification. Wild type samples are represented in black and
PPAR samples in red. Diet representation is: (ref) diet by the letter x;
(coc) diet by circles; (sun) diet by diamonds; (lin) diet by plus signs;
and (fish) diet by triangles.

X; i = 1, ..., m, we have two vectors, one corresponding

to the direction w;, and other corresponding to the X
k

ds

strength of the correlation between X; and w, we aver-
age the cosine of the angles between each pair of vec-
tors, that is:

1M do
Ry = m ;cos (wi,( s |s_0)xi) .

Finally, we order all the variables according to R; and
we can select those with higher values and also those
with lower values. Thus, in this way, for each sample
cluster, we can find the correlated variables with higher
and lower values. Knowledge of such variables can
improve the biological interpretability of the results.

A natural extension of this procedure is to take as w
the vector corresponding to one of the input variables.
Then, if we know that a certain input variable is useful
for interpreting the kernel PCA representation, we can
search for other input variables whose representation on
the kernel PCA plane are correlated with this feature. If
we are integrating multiple datasets, we can search for
correlated variables in each dataset.

Analyzing the nutrigenomic dataset

To illustrate this procedure. We have selected a preferred
direction in the kernel PCA plane. Figure 12 shows this
direction (green vector). This direction represents vari-
ables that are less expressed in samples with the coc diet
than in those with other diets. Tables 1 and 2 summarize

representation, ( ) . After this, to measure the
=0/ x;
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Figure 12 Kernel PCA analyzing gene expression and fatty acid
concentrations simultaneously. The green vector represents
variables that are expressed less in samples with the coc diet. It is
defined by two cluster centroids: the left-hand cluster is the coc

diet; and the right-hand cluster is comprised of the other diets.

the genes and FAs that are most correlated with the
selected direction.

In Table 1, we can observe that FAs with negative corre-
lation, such as C16.10.7, C20.3w.9 and C18.1w.7, repre-
sent FAs with higher concentrations in samples with the
coc diet. In contrast, FAs that are positively correlated,
such as C22.4w.6, C18.2w.6, C18.3w.3 and C22.5w.6,
represent FAs with higher concentrations in samples with
other types of diet. Furthermore, in Table 2, we can
observe that genes with negative correlation at the top of
the table, such as S14, ACC2 and LPL, are more highly
expressed in samples with the coc diet, whereas genes at
the bottom of the table, that are positively correlated, are
less expressed in the coc diet samples. These results are
in agreement with those found in [12].

Conclusions

With the rapidly increasing amount of genomic, proteo-
mic, and other high-throughput data that is available,
the importance of data integration has increased signifi-
cantly recently. Biologists, medical scientists, and clini-
cians are also interested in integrating the high-
throughput data that has recently become available with
previously existing clinical, laboratory and biological
information.

Kernel methods, in particular kernel PCA, constitute a
powerfully methodology because they allow us to reduce
dimensionality and integrate multiple datasets, simulta-
neously. Moreover, in this paper we have introduced a
set of procedures to improve the interpretability of ker-
nel PCA representations. The procedures are related to
the following aspects: 1) representation of variables; 2)
linear combination of representations of variables; 3)
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Table 1 Fatty acids: correlation with the preferred
direction.

FA mean sd

Cl6lw.7 -0.927 0.100
C203w.9 -0917 0336
C181w.7 -0.907 0270
C14.0 -0.898 0131
C183w.6 -0.862 0372
C181w.9 -0.695 0.132
Cl16.1w.9 -0.480 0.224
C16.0 -0.295 0.265
C20.1w.9 0.176 0401
C225w.3 0.198 0.346
C203w.3 0.235 0383
C205w.3 0.300 0219
C203w.6 0.386 0227
C180 0.392 0171
226w.3 0453 0.151
C202w.6 0.601 0.306
C204w.6 0.664 0.360
C224w.6 0.684 0.367
C182w.6 0.718 0.290
C183w.3 0.727 0482
C225w.6 0.731 0.499

Fatty acids. Mean and standard deviation of the Rk measure of the strength of
correlation with the preferred direction.

Table 2 Genes: correlation with the preferred direction.

gene mean sd

S14 -0.998 0.002
ACC2 -0.997 0.004
LPL -0.997 0.005
ap2 -0.996 0.006
NGFiB -0.996 0.005
i.FABP -0.995 0.007
COX1 -0.993 0.012
CIDEA -0.993 0.012
MDR1 -0.991 0016
Lpin -0.991 0.007
MTHFR -0.991 0.012
Lpin1 -0.989 0.009
i.BAT -0.988 0.014
PPARg -0.986 0.025
ACAT2 -0.984 0.013
CYP2b10 -0.978 0.022
hABC1 -0.976 0.021
ACC1 -0.975 0.012
SPIT.1 0.353 0.042
GSTpi2 0.587 0.038

Gene codes. Mean and standard deviation of the R, measure of the strength
of correlation with the preferred direction.
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data integration and representation of variables; and 4)
revealing the interpretability of input variables. Our pro-
cedure is a kernel-based exploratory tool for data
mining that enables us to extract nonlinear features
while representing variables.

Methods
Given a sample space X, a real valued positive
definite kernel k on X is a map k: X x X > R

such that k(x,y) = k(y, x), Z:r;zl aietjk(xi, x7) > 0 for all

meN,o; e Rx;e Xi=1,...,m and kernel is zero is
attained if all the coefficients o; are zero. A kernel can
be interpreted as a similarity measure of the samples
and allow us to identify each x ¢ Xwith a real function
given by

p: X >RY={f: X > R}
x> x)(-) = k(- x)

which is an element of a dot product vector space that
will be called feature space [5]. It consists of all func-
tions

fC) =) aik(, x)

i=1

for any me Nandxy,...,xp € X, a1,..., a0, € R It

has the reproducing property
<k(, x).f>=f(x)

Implying {p(x), ¢(¥)) = (k(-,x), k(-, )} = k(x,y). After
completion we can turn our feature space into a Hilbert
space #; [5]. The space #; is the reproducing kernel Hil-
bert space (RKHS) induced by the kernel function k.

Given any ¢ and any set of observations x, ..., %, the
Gram or kernel matrix of k with respect xy, ..., x,, is the m
x m matrix K with elements K = (¢(x;), ¢(x;)) = k(xi, x;).
Let us define

S

¢~m§mm
then, the points

¢(xi) = ¢(xi) — ¢ ®3)
will be centered. Let  be denote the kernel matrix of

centered points, f(g = (&(x,), é(x,)>, Because we do not

have the centered data (3), we cannot compute g expli-
citly, however we can express it in terms of its noncen-
tered counterpart K [5]. Using the vector 1,, = (1, ..., 17
we get the more compact expression
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1

_ 1 1
K=K-— mmml}1 — m1m1,TnK + o (1P K1,)1,,1%.

In . the covariance matrix takes the form

m

Z %;) ¢(x]

5

We have to find eigenvalues ) > 0 and nonzero eigen-
vectors V € H,;,\{0} satisfying

CV =V (4)
To find the solutions of (4) we solve the dual eigenva-
lue problem

K& = mi@, (5)

with @ being the expansion coefficients of an eigenvec-
tor (in ) in terms of the centered points (3)

m
V=Y &p(x) (©6)
i=1
The solution &*,k = 1, ..., r, are normalized by normal-
izing the correspondmg vector Vv in 4, which trans-
lates into A (&k, &k> =1
Consider a test point y. To find its coordinates we
compute projections of centered ¢-images of y onto the

eigenvectors of the covariance matrix of the centered
points,

(60).V) = (o) - 6.7

& o) — @ o(xi) — )

'Pnﬂé

il
—

& (e, o(x)) —

'Pnﬂé

il
—

(@ 9(x) = {0 9)+ (@, 9))

'Pnﬂﬁ

il
—

5 1 &
i {Knm) = ) Y Kson)
s=1

1 & 1 &
- m ;K(les) + m2 ;K(xsrxt)}-
Introducing the vector
Z= (K (y’xi))mxl : (7)

Then,

(<¢(y),\"/‘>) —va— 17KV — (zT WV (1;1<1m)1;\7

1 | 1 -
T T T
=7 (1 = m1m1m>V— m1m1< (1,,1 - mlmlm)V (8)
1 1 .
- (ZT - ml;K) (1,,, - m1m1;> v,

where V is a m x r matrix whose columns are the

eigenvectors ' V.
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