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Abstract

binding dataset and TF knockout effect dataset.

Background: Biologists are puzzled by the extremely low percentage (3%) of the binding targets of a yeast
transcription factor (TF) affected when the TF is knocked out, a phenomenon observed by comparing the TF

Results: This study gives a plausible biological explanation of this counterintuitive phenomenon. Our analyses find
that TFs with high functional redundancy show significantly lower percentage than do TFs with low functional
redundancy. This suggests that functional redundancy may lead to one TF compensating for another, thus masking
the TF knockout effect on the binding targets of the knocked-out TF. In addition, we show that seven classes of
genes (lowly expressed genes, TATA box-less genes, genes containing a nucleosome-free region immediately
upstream of the transcriptional start site (TSS), genes with low transcriptional plasticity, genes with a low number of
bound TFs, genes with a low number of TFBSs, and genes with a short average distance of TFBSs to the TSS) are
insensitive to the knockout of their promoter-binding TFs, providing clues for finding other biological explanations of
the surprisingly low percentage of the binding targets of a TF affected when the TF is knocked out.

Conclusions: This study shows that one property of TFs (functional redundancy) and seven properties of genes
(expression level, TATA box, nucleosome, transcriptional plasticity, the number of bound TFs, the number of TFBSs,
and the average distance of TFBSs to the TSS) may be useful for explaining a counterintuitive phenomenon: most
binding targets of a yeast transcription factor are not affected when the transcription factor is knocked out.

Background

The binding of transcription factors (TFs) to the promo-
ters of their target genes is one of the most important
mechanisms for transcriptional regulation of gene
expression. Therefore, knowing the binding targets of
TFs is helpful for understanding how cells respond to
stimuli by regulating the gene expression repertoire. In
2004, Harbison et al. [1] performed ChIP-chip experi-
ments to determine the binding targets of 203 yeast TFs
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in the rich media condition. Since then, many computa-
tional methods have used this TF binding dataset to
reconstruct yeast transcriptional regulatory networks
[2-5]. These methods are all based on one assumption:
most, if not all, binding targets of a TF are regulated by
this TF. This assumption is supported by three compu-
tational studies which estimate about 60% of the binding
targets of a TF are indeed the regulatory targets of this
TF [6-8].

However, this assumption was challenged by an
experimental study conducted by Hu et al. in 2007 [9].
They performed microarray experiments to identify the
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differentially expressed genes in each of 263 TF knock-
out strains in the rich media condition. Then they com-
pared the set of genes bound by a TF (retrieved from
Harbison et al.’s study [1]) with the set of genes differen-
tially expressed when this TF is knocked out (retrieved
from their own study [9]). Surprisingly, they found that
only 3% of the binding targets of a TF are affected by the
knockout of this TF. That is, only 3% of the binding tar-
gets of a TF are indeed regulated by this TF.

Biologists are puzzled by this extremely low percen-
tage and researchers have tried to explain this counter-
intuitive phenomenon. Several computational studies
showed that by cleaning the noises in the TF binding
dataset and applying advanced statistical analysis tools
for the identification of differentially expressed genes in
the TF knockout effect dataset, the percentage can only
be improved to 6%, indicating that data analysis issue is
not the main reason that causes this extremely low per-
centage [9-14]. Therefore, researchers started to find
biological explanations for the low percentage. Two
computational studies have shown that co-expression,
protein sequence homology and shared protein-protein
interactions may lead to one TF compensating for
another, thus masking the TF knockout effect on the
binding targets of the knocked-out TF [10,15]. In this
study, our goal is to find out other plausible biological
explanations for the surprisingly low percentage. Our
analyses suggest that one TF property (functional redun-
dancy) may lead to one TF compensating for another,
thus masking the TF knockout effect on the binding tar-
gets of the knocked-out TF. In addition, we show that
seven gene properties (low expression level, lacking a
TATA box, containing a nucleosome-free region imme-
diately upstream of the transcriptional start site (TSS),
low transcriptional plasticity, a low number of bound
TFs, a low number of TFBSs, and a short average distance
of TFBSs to the TSS) are associated with a gene being
insensitive to the knockout of its promoter-binding TFs.

Methods

TF binding dataset and TF knockout effect dataset

The TF binding dataset was downloaded from Harbison
et al’s study [1]. They performed ChIP-chip experiments
to determine the significantly (determined by the p-value
threshold) bound genes of 203 yeast TFs in the rich
media condition. The TF knockout effect dataset was
downloaded from Hu et al.’s study [9]. They performed
microarray experiments to identify the significantly
(determined by the p-value threshold) differentially
expressed genes in each of 263 TF knockout strains
grown in the rich media condition, the same growth con-
dition used in the ChIP-chip experiments conducted by
Harbison et al. [1]. A previous study showed that using
the p-value threshold of 0.005 yields the highest overlap
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between the TF binding dataset and TF knockout effect
dataset [10], so we adopted 0.005 as the p-value threshold
in this study. Of the 203 TFs in the TF binding dataset,
173 were also in the TF knockout effect dataset. There-
fore, the binding and knockout effect data of these 173
TFs were used in this study, which contained 11374 TF-
gene binding relationships and 11986 TF-gene knockout
effects among 173 TFs and 4065 genes. Then we com-
pared the set of genes bound by a TF with the set of
genes differentially expressed when this TF is knocked
out. Similar to previous studies [9-14], on average only
4% (453/11374) of the TF-gene binding relationships had
the TF-gene knockout effects. That is, only 4% of the TF
binding dataset was overlapped with the TF knockout
effect dataset.

Calculation of the functional redundancy of each TF

The procedure of calculating the functional redundancy
of TF t is as follows. First, calculate the functional simi-
larity (FS) between TF ¢ and TF g using the Jaccard
similarity coefficient

AN A

Fst, = 7
(t.q) 1A U Ay

where A (or A,) is the set of functional annotation
terms assigned to TF ¢ (or TF g) according Gene Ontol-
ogy database [16] and MIPS functional catalogue data-
base [17] and |A, n A,| is the number of common
functional annotation terms of TF ¢ and TF 4. Note that
0 < FS(t, q) < 1. FS(¢, q) = 1 when TF ¢ and TF ¢ have
completely the same set of functional annotation terms
and FS(t, g) = 0 when TF ¢ and TF g have completely
different sets of functional annotation terms. Then the
functional redundancy (FR) of TF ¢ is defined as

FR(1) = max FS(t,q). 1)

Note that 0 < FR(¢) < 1. TF ¢ would have high func-
tional redundancy if there exists another TF g whose
functions are highly similar to the functions of TF .

Overlap percentage (OP) calculation

Following Gitter et al.’s approach [10], the percentage
of the TF binding dataset that is overlapped with the
TF knockout effect dataset for M (a set of TFs with
some property, e.g. high functional redundancy) is
calculated as

2 1Gp(1) N Gk (1)

_ teM
o= s G @

teM

where Gg(t) is the set of genes significantly bound by
TF t, Gi(t) is the set of genes significantly affected by
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the knockout of TF ¢, and |Gg(t)
genes significantly bound by TF ¢.

Similarly, the percentage of the TF binding dataset
that is overlapped with the TF knockout effect dataset
for N (a set of genes with some property, e.g. high
expression levels) is calculated as

2 1Ts(8) N Tk(g)l

geN
OP =

2. 1Ts(8)l
geN

| is the number of

3)

where Tg(g) is the set of TFs which significantly bind
to gene g and Ti(g) the set of TFs which significantly
affect the expression of gene g when they are knocked
out.

Results and discussion

The overlap percentage varies among different TFs and
different genes

Although on average only 4% of the TF binding dataset
is overlapped with the TF knockout effect dataset, the
percentage actually varies among different TFs and dif-
ferent genes. As shown in Figure 1, the percentage for
different TFs varies between 0% and 36% and the per-
centage for different genes varies between 0% and 100%
(see Additional file 1 for details). Identifying biological
features that are associated with the overlap percentage
may lead to biological explanations of the surprisingly
low percentage of the binding targets of a TF affected
when this TF is knocked out.

Functional redundancy of TFs explains why most binding
targets of a transcription factor are not affected when the
transcription factor is knocked out

In order to test whether functional redundancy may lead
to one TF compensating for another, thus masking the
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TF knockout effect on the binding targets of the
knocked-out TF, let us define two sets of TFs. The first
is the set of TFs with high functional redundancy, which
is defined as those TFs whose functional redundancy
calculated using Equation (1) are among the top X%
(X =10, 20, 30, 40 or 50) of the 173 TFs under study.
The other is the set of TFs with low functional redun-
dancy, which is defined as those TFs whose functional
redundancy are among the bottom X% of the 173 TFs
under study. As shown in Figure 2, TFs with high func-
tional redundancy show significantly lower overlap per-
centage (calculated using Equation (2)) than do TFs
with low functional redundancy, suggesting that func-
tional redundancy may explain why most binding targets
of a TF are not affected when the TF is knocked out.
Note that our result is robust against different choices
(10, 20, 30, 40 or 50) of X and different sources (MIPS
or GO) of functional annotation terms being used.

Lowly expressed genes have lower overlap percentage

Since both ChIP-chip and TF knockout experiments
were performed on the yeast cells grown in the rich
media condition, we speculate that lowly expressed
genes in the rich media condition have lower percentage
of the TF binding dataset overlapped with the TF
knockout effect dataset than do highly expressed genes.
To test our speculation, let us define two sets of genes.
The first is the set of lowly expressed genes, which is
defined as those genes whose expression levels are
among the bottom X% (X = 10, 20, 30, 40 or 50) of the
4065 genes under study. The other is the set of highly
expressed genes, which is defined as those genes whose
expression levels are among the top X% of the 4065
genes under study (see Additional file 2 for details). The
gene expression data in the rich media condition was
downloaded from Holstege et al.’’s study [18] and
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Figure 2 Functional redundancy explains the low overlap percentage. The set of TFs with high/low functional redundancy is defined as
those TFs whose functional redundancy are among the top/bottom X% of the 173 TFs under study. By using the one-sided two-sample
proportion test [28], we find that TFs with high functional redundancy show significantly (p-value << 0.001) lower overlap percentage than do
TFs with low functional redundancy, suggesting that functional redundancy may explain why most binding targets of a TF are not affected
when the TF is knocked out. Note that our result is robust against different choices (10, 20, 30, 40 or 50) of X and different sources ((@)MIPS [17],
(b) GO:BP [16] or (c) GO:MF [16]) of functional annotation terms being used. The red line indicates the overlap percentage (4%) for all 173 TFs
under study.

Nagalakshmi et al.’s study [19]. As shown in Figures 3a
and 3b, lowly expressed genes show significantly lower
overlap percentage (calculated using Equation (3)) com-
pared with highly expressed genes, suggesting that low
expression level is associated with a gene being insensitive

to the knockout of its promoter-binding TFs. Note that
our result is robust against different choices (10, 20, 30,
40 or 50) of X and different sources (Holstege et al.’s study
or Nagalakshmi et al.’s study) of gene expression data
being used.
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Figure 3 High expression level and ribosomal genes are associated with high overlap percentage. The set of lowly/highly expressed genes
is defined as those genes whose expression levels are among the bottom/top X% of the 4065 genes under study. By using the one-sided two-
sample proportion test [28], we find that lowly expressed genes show significantly (p-value << 0.001) lower overlap percentage compared with
highly expressed genes, suggesting that low expression level is associated with a gene being insensitive to the knockout of its promoter-binding
TFs. Note that our result is robust against different choices (10, 20, 30, 40 or 50) of X and different sources ((a) Holstege et al.'s study [18] or (b)
Nagalakshmi et al.'s study [19]) of gene expression data being used. The red line indicates the overlap percentage (4%) for all 4065 genes under
study. In addition, ribosomal genes show significantly (using the one-sided two-sample proportion test) higher overlap percentage compared with
the rest of 4065 genes under study. This result further supports our finding that highly expressed genes show significantly higher overlap
percentage. Note that our result is robust against different sources ((c) KEGG [20] or (d) MIPS [17]) of the list of ribosomal genes being used.

Ribosomal genes are known to be highly transcribed in  genes under study. To test this assertion, we down-
the rich media condition. If our finding is biologically = loaded two lists of ribosomal genes from KEGG ribo-
meaningful, we expect that ribosomal genes have higher ~some pathway: sce03010 [20] and MIPS functional
overlap percentage compared with the rest of the 4065  category: 12.01.01 ribosomal proteins [17]. As expected,
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ribosomal genes show significantly higher overlap per-
centage (calculated using Equation (3)) compared with
the rest of the 4065 genes under study (see Figures 3c
and 3d), thus further strengthen our finding. Note that
our result is robust against different sources (KEGG or
MIPS) of the list of ribosomal genes being used.

TATA box-less genes have lower overlap percentage

It is known that TATA box-less and TATA box-contain-
ing genes are distinctly regulated [21]. TATA box-less
genes tend to be housekeeping genes, have a sharply
peaked TF binding site (TFBS) distribution and are con-
stitutively expressed, while TATA box-containing genes
are usually associated with environmental stress
responses, dispersed TFBS distribution and variably
expressed under different conditions [21-25]. It is inter-
esting to know whether these two classes of genes differ
in their overlap percentage. The lists of TATA box-less
genes and TATA box-containing genes were downloaded
from Basehoar et al.’s study [21]. Depending on how
stringent the criterion for defining a TATA box is, three
possible lists of TATA box-containing genes were
defined by Basehoar et al. [21]. As shown in Figure 4,
TATA box-less genes show significantly lower overlap
percentage (calculated using Equation (3)) compared
with TATA box-containing genes, suggesting that lacking
a TATA box is associated with a gene being insensitive to
the knockout of its promoter-binding TFs. Note that our
result is robust against different criteria of defining
TATA box-containing genes.

Genes containing a nucleosome-free region (NFR) have
lower overlap percentage

In yeast, the capacity to modulate gene expression upon
changing conditions (i.e., transcriptional plasticity) corre-
lates with the organization of their promoter nucleo-
somes [26]. Genes containing an NFR immediately

Page 6 of 9

upstream of the transcriptional start site (TSS) are char-
acterized by low transcriptional plasticity, while genes
lacking an NFR immediately upstream of the TSS are
characterized by high transcriptional plasticity. It is inter-
esting to know whether these two classes of genes differ
in their overlap percentage. The lists of genes containing
and lacking an NFR were both downloaded from Tirosh
and Baikai’s study [26]. As shown in Figure 5a, genes
containing an NFR show significantly lower overlap per-
centage (calculated using Equation (3)) compared with
genes lacking an NFR, suggesting that containing an NFR
immediately upstream of the TSS is associated with a
gene being insensitive to the knockout of its promoter-
binding TFs.

It is known that genes lacking an NFR are subjected
to greater regulation by specific chromatin remodelling
factors than are genes containing an NFR [26]. If our
finding is biologically meaningful, we expect that TFs
involved in chromatin remodelling have higher overlap
percentage compared with the rest of the 173 TFs under
study. To test this assertion, we downloaded the list of
TFs involved in chromatin remodelling from Ozonov
and van Nimwegen’s study [27]. As expected, TFs
involved in chromatin remodelling show significantly
higher overlap percentage (calculated using Equation
(2)) compared with the rest of the 173 TFs under study
(see Figure 5b), thus further strengthen our finding.

Genes with low transcriptional plasticity have lower
overlap percentage

We have shown that two classes of genes (TATA box-
less genes and genes containing an NFR) have lower
overlap percentage. Since both classes of genes are
known to have low transcriptional plasticity [21,26], this
prompts us to speculate that genes with low transcrip-
tional plasticity have lower percentage of the TF binding
dataset overlapped with the TF knockout effect dataset
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Figure 4 Lacking a TATA box is associated with a gene being insensitive to the knockout of its promoter-binding TFs. By using the
one-sided two-sample proportion test [28], we find that TATA box-less genes show significantly (p-value << 0.001) lower overlap percentage
compared with TATA box-containing genes, suggesting that lacking a TATA box is associated with a gene being insensitive to the knockout of
its promoter-binding TFs. Note that our result is robust against three different criteria ((a), (b), and (c)) for defining TATA box-containing genes
being used (see Basehoar et al.'s study [21] for more details). The red line indicates the overlap percentage (4%) for all 4065 genes under study.
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Figure 5 NFR, chromatin remodelling TFs and transcriptional plasticity are associated with the overlap percentage. (a) By using the
one-sided two-sample proportion test [28], we find that genes containing an nucleosome free region (NFR) show significantly (p-value << 0.001)
lower overlap percentage compared with genes lacking an NFR, suggesting that containing an NFR immediately upstream of the TSS is
associated with a gene being insensitive to the knockout of its promoter-binding TFs. The red line indicates the overlap percentage (4%) for all
4065 genes under study. (b) TFs involved in chromatin remodelling show significantly (using the one-sided two-sample proportion test) higher
overlap percentage compared with the rest of the 173 TFs under study. This result further supports our finding that genes lacking an NFR show

significantly higher overlap percentage. (c) Low transcriptional plasticity is associated with a gene being insensitive to the knockout of its
promoter-binding TFs. The set of genes with low/high transcriptional plasticity is defined as those genes whose transcriptional plasticity are
among the bottom/top X% of the 4065 genes under study. By using the one-sided two-sample proportion test, we find that genes with low
transcriptional plasticity show significantly (p-value << 0.001) lower overlap percentage than do genes with high transcriptional plasticity,
suggesting that low transcriptional plasticity is associated with a gene being insensitive to the knockout of its promoter-binding TFs. Note that
our result is robust against different choices (10, 20, 30, 40 or 50) of X being used.

than do genes with high transcriptional plasticity. To test
our speculation, let us define two sets of genes. The first
is the set of genes with low transcriptional plasticity,
which is defined as those genes whose transcriptional
plasticity are among the bottom X% of the 4065 genes
under study. The other is the set of genes with high tran-
scriptional plasticity, which is defined as those genes
whose transcriptional plasticity are among the top X% of
the 4065 genes under study (see Additional file 2 for
details). The transcriptional plasticity each gene in the
yeast genome was downloaded from Lin et al.’s study
[22]. As shown in Figure 5c¢, genes with low transcrip-
tional plasticity show significantly lower overlap percen-
tage (calculated using Equation (3)) than do genes with

high transcriptional plasticity, suggesting that low tran-
scriptional plasticity is associated with a gene being
insensitive to the knockout of its promoter-binding TFs.
Note that our result is robust against different choices
(10, 20, 30, 40 or 50) of X being used.

Several gene properties are not associated with the
overlap percentage

In the previous sections, we show that four gene proper-
ties (expression level, TATA box, nucleosome, and tran-
scriptional plasticity) are associated with the overlap
percentage. Actually, five other gene properties are also
tested but do not have statistically significant association
with the overlap percentage. These five gene properties
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include the 5’UTR length, 3’'UTR length, gene essentiality,
number of physical interaction partners and number of
genetic interaction partners.

More analyses motivated by Cusanovich et al’s study

In Cusanovich et al.’s paper [29], they reported that
functional TF binding is enriched in the regulatory
regions with a larger number of bound TFs and more
binding sites. Moreover, functional TF binding tends to
occur further from the TSS (i.e. in the enhancer
regions). Motivated by their findings, we perform extra
analyses and have the following three observations: (i)
a low number of bound TFs in a gene, (ii) a low num-
ber of TFBSs in a gene, and (iii) a short average dis-
tance of TFBSs to the TSS in a gene are all associated
with a gene being insensitive to the knockout of its
promoter-binding TFs (see Additional file 3 for details).

Conclusions

This study gives a plausible biological explanation of a
counterintuitive phenomenon: most binding targets of a
yeast transcription factor are not affected when the tran-
scription factor is knocked out. Our analyses find that
TFs with high functional redundancy show significantly
lower percentage than do TFs with low functional
redundancy. This suggests that functional redundancy
may lead to one TF compensating for another, thus
masking the TF knockout effect on the binding targets
of the knocked-out TF. In addition, identifying biologi-
cal features that are associated with the overlap percen-
tage may provide clues for finding other biological
explanations. We show that seven gene properties (low
expression level, lacking a TATA box, containing a
nucleosome-free region immediately upstream of the
transcriptional start site, low transcriptional plasticity, a
low number of bound TFs, a low number of TFBSs, and
a short average distance of TFBSs to the TSS) are asso-
ciated with a gene being insensitive to the knockout of
its promoter-binding TFs.

Additional material

Additional file 1: The details of the 4065 genes under study. For
each of the 4065 genes under study, its Tg(g), Tk(g) and Tg(g)NTk(g) are
provided.

Additional file 2: The details of the top/bottom X% of the
expression level and transcriptional plasticity. For each top/bottom X
% case, their gene names, Tg(g), Tk(g), and Tg(g)NTk(g) are provided.

Additional file 3: The details of the analyses motivated by
Cusanovich et al’s study.
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