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Abstract

Background: Biomedical studies need assistance from automated tools and easily accessible data to address the
problem of the rapidly accumulating literature. Text-mining tools and curated databases have been developed to
address such needs and they can be applied to improve the understanding of molecular pathogenesis of complex
diseases like thyroid cancer.

Results: We have developed a system, PWTEES, which extracts pathway interactions from the literature utilizing an
existing event extraction tool (TEES) and pathway named entity recognition (PathNER). We then applied the system
on a thyroid cancer corpus and systematically extracted molecular interactions involving either genes or pathways.
With the extracted information, we constructed a molecular interaction network taking genes and pathways as
nodes. Using curated pathway information and network topological analyses, we highlight key genes and
pathways involved in thyroid carcinogenesis.

Conclusions: Mining events involving genes and pathways from the literature and integrating curated pathway
knowledge can help improve the understanding of molecular interactions of complex diseases. The system
developed for this study can be applied in studies other than thyroid cancer. The source code is freely available
online at https://github.com/chengkun-wu/PWTEES.

Introduction
Biomedical literature is a primary knowledge source for
life science research, which facilitates the information
and knowledge exchange through various biomedical
studies. PubMed, the largest collection of biomedical lit-
erature, now contains over 24 million records [1]. In the
past two decades, the annual increasing rate for the
total citation count is around 4% [1].
This massive amount of available literature and its

unstructured nature make it virtually impossible for
researchers to keep track of all published results manually.
Consequently, (semi-) automated methods and systems

are needed to assist in the extraction of information and
the reconstruction of knowledge. Text mining (TM) sys-
tems enable systematic collection of “scattered pieces” of
information recorded in the biomedical literature [2,3].
This is particularly important for understanding biology at
the systems level rather than “isolated parts of a cell or
organism” [4]. Several TM systems have been developed,
including named entity recognition (NER) and event
extraction (EE) tools. NER tools can recognise mentions of
key biological “named entities” in the literature, such as
genes/proteins [5,6], diseases [7], species [8], pathways [9],
etc. EE tools address the problem of extracting events,
which represent specific relationships among entities.
Typical molecular events include gene expression, gene
regulation, binding, phosphorylation, transcription, protein
catabolism and localization [10].
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Curated databases constitute another important source
of knowledge for biomedical studies. For instance, the
2014 Nucleic Acids Research online Molecular Biology
Database Collection lists 1552 databases for molecular
biology [11]. Specifically, a number of curated databases
have been developed to represent the state-of-the-art
knowledge of biological pathways, including the KEGG
pathways [12], Reactome [13], WikiPathways [14] and
Pathway Interaction Database (PID) [15]. Other data-
bases like Pathway Commons [16] and Consensus-
PathDB [17] incorporate and integrate information from
multiple primary databases.
In this paper we present a methodology for construct-

ing a comprehensive molecular interaction map of a dis-
ease by integrating the results of text mining with
curated data for biological pathways. While current sys-
tems mainly focus on events involving genes and proteins
only, our networks include both genes and pathways as
nodes, where edges correspond to different interactions
between them. Pathways in particular represent biologi-
cal function organized temporally, and are therefore an
important actor in interaction networks. We collect data
about pathway interactions from the literature by
expanding a state-of-the-art system for event extraction,
the Turku Event Extraction System (TEES) [18]. The
extended system, PWTEES (Pathway TEES), uses both
genes and pathways as a type of entities involved in
events.
To demonstrate the potential of combining gene and

pathway interactions, we use thyroid cancer as a case
study. Thyroid cancer is the most common endocrine
malignancy [19] and its incidence has increased signifi-
cantly over the past decades [20]. It is predicted that
thyroid cancer will become the fourth most common
cancer by 2030 [21]. We present a comprehensive mole-
cular interaction network for thyroid cancer (576 nodes
and 3136 edges), and discuss its properties using stan-
dard network metrics.

Related work
Several efforts in mining complex and specific molecular
events have been proposed [10,22,23]. In general, event
extraction aims to locate the occurrence of an event,
determine the type of event and assign its arguments.
Systematically mined events can be used in various
applications like semantic search engines, automatic
database construction [24], and curation of biomedical
knowledge [25,26].
A typical event extraction system will need to have

multiple components: NER modules, parsing (to detect
sentence grammatical structure and dependencies, in
preparation for the relation detection), and relation
extraction (determine the event type, participants of the
event, etc.). Example event extraction systems include

EventMine [27] and TEES [18,28]. TEES was reported
as one of the best performing systems in the BioNLP’13
Shared Task challenge, with an accuracy of 50.75%.
The system utilises results from a gene/protein NER
(BANNER [6]) and a dependency parser to empower
machine-learning based event detection. The event
detection begins with trigger detection aiming at locat-
ing keywords that give hints about an event presence.
Edge detection then determines the participants of
detected event using a multi-class classifier that can
determine argument types. In the final step, rules are
employed to ensure that only one event node is asso-
ciated with a trigger keyword.
Several datasets have been produced by applying event

extraction tools to biomedical literature (e.g. BioContext
[29], EVEX [22]). EVEX, for example, is an event data-
base created by applying TEES on 21.9 million PubMed
abstracts and 460,000 PubMed Central open access full-
text articles. It contains 40 million bimolecular events
and provides a web search interface for fast access to
stored data [30].
While most of the current work focuses on gene/pro-

tein events, pathways have not yet been integrated into
event extraction systems. Still, as an important concept,
biological pathways have been frequently mentioned in
the literature. Consider, for instance, the following
sentence
Notch pathway is activated by MAPK signalling and

influences papillary thyroid cancer proliferation. (PMID:
23544172)
This sentence expresses a relationship between two

pathways (Notch pathway and MAPK signalling). How-
ever, existing EE tools would only detect events related
to genes, and will ignore pathways. Even more, from the
above sentence they might extract that the Notch gene
is activated by MAPK, which is incorrect given that the
interplay is between two pathways rather than two
genes.
This example highlights the importance of introducing

pathways in event extraction. In our previous work, we
have described PathNER [9], a NER tool for pathway
mention recognition. PathNER uses soft dictionary
matching and rule-based methods, and has achieved an
F1-score of 84% on a gold standard corpus. In this
paper we integrate PathNER into TEES to support
extraction of events that contain pathways.
In the area of cancer research, OncoSearch, for exam-

ple, aims to detect gene expression changes in cancer-
related MEDLINE abstracts [31]. It searches MEDLINE
sentences for changes in gene expression levels and can-
cer status, and predicts gene roles (biomarker, oncogene,
tumour suppressor gene, etc.). OncoSearch relies on
BANNER for gene NER and TEES for gene expression
identification.
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As a case study to illustrate the potential of the proposed
methods, we use thyroid cancer. In recent years, advances
in the understanding of molecular pathogenesis of thyroid
cancer have inspired novel biologically targeted therapies
to further improve disease outcomes [32]. For instance,
vandetanib, a tyrosine kinase inhibitor targeting the RET,
vascular endothelial growth factor receptor (VEGFR), and
epidermal growth factor receptor (EGFR), has been
approved by FDA as a drug for medullary thyroid cancer.
More potential targeted drugs are under investigation or
being tested in clinical trials [33]. We have used text
mining to construct a molecular profiling (related genes
and pathways) of thyroid cancer, classified by commonly
seen subtypes [34]. This has provided a systematic basis
for the molecular understanding of thyroid cancer. How-
ever, details of the regulation patterns for those genes and
pathways and involved interactions were not considered,
and text mining methods have been highlighted as an
important technology to address the problem of cancer
gene and pathway prioritization [35].

Methods
We present here the steps needed to extract molecular
events that involve genes/proteins and pathways, and
use such data to construct an interaction network (see
Figure 1). In particular, we describe PWTEES, an exten-
sion of TEES that includes pathways as named entities
that are involved in molecular events.

Recognizing gene and pathway mentions
We use BANNER for gene/protein name recognition and
PathNER for pathways. The annotations from BANNER
and PathNER are then post-processed to find overlaps.
This is necessary because gene/protein names are fre-
quently nested in pathway names [9]. In such cases, two
overlapped mentions (one gene/protein mention and one
pathway mention) are merged into one pathway mention
by using the union of text boundaries.

Entity normalization
Since BANNER does not provide normalization of
recognised protein/gene names, we used GenNorm [36]
to produce a mapping between mentions recognised by
BANNER and Entrez Gene IDs. For pathway entities,
genes contained in pathways were retrieved from the
ConsensusPathDB database, 2013 edition [37]. As Con-
sensusPathDB integrates multiple pathway databases,
there might be multiple different representations for the
same pathway name. For instance, “Wnt signaling path-
way” has multiple versions in KEGG pathways [12],
WikiPathways [14], Pathway Interaction Database (PID)
[15], and BioCarta (http://cgap.nci.nih.gov/Pathways/
BioCarta_Pathways). In such cases, a union of all repre-
sentations was performed.

Event extraction
We used TEES to extract events. The original version of
TEES only works with proteins/genes. We hypothesise that
pathways appear in a similar context as genes/proteins
when it comes to molecular events. A natural idea is thus
to reuse the TEES machine learning based pipeline and its
models. We did this by “disguising” pathway mentions
recognised by PathNER as genes/proteins, with the same
annotations to those produced by BANNER. In this
extended version of TEES (PWTEES) we use the GE11
model that was used in the BioNLP’13 Shared Task chal-
lenge, which achieved an F1 score of 50.74% and was
ranked second just after the 50.97% F1 score of the EVEX
based method (based on TEES).
Not all types of molecular events can involve pathways.

For instance, pathways cannot take part in gene expres-
sion, transcription, protein catabolism, phosphorylation,
localisation and binding. Therefore, for pathway-involved
events, we only consider regulation, positive regulation
and negative regulation.
Events with gene/protein mentions that could not be

normalized were discarded. Those mentions are likely

Figure 1 Event extraction pipeline of PWTEES.
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false positives from BANNER. Similarly, events with
pathway mentions that could not be mapped to Consen-
susPathDB were removed. Those mentions are likely
false positives from PathNER or they might not have
been curated yet by the databases incorporated in
ConsensusPathDB.

Construction of interaction networks
Events usually involve arguments, including themes and
causes. A theme is the entity being regulated in the event.
A cause is the entity that regulates themes in the event.
We are mostly interested in regulatory events that
involve one theme and one cause, as well as binding
events that involve multiple themes, as those events can
provide explicit information about the interaction con-
text for genes/pathways mentioned in literature. Note
that directionality of events is ignored here.
Some events might take other events as theme or

cause; in such cases, the nested events are expanded
recursively to get all participating entities (either
genes/proteins or pathway entities). For instance, in
the sentence “...HIPK2 deficiency might be responsible
for such paradoxical Gal-3 overexpression in WDTC.”
(PMID: 21698151), a positive regulation event is
detected, where the theme and cause are both events
(see Table 1).
Events are represented as an interaction pair in the

format of “<Cause, Theme>“. Specifically for binding
events, if more than two themes are involved, e.g.,
<Theme1, Theme2, Theme3>, then resulting interac-
tions will contain multiple pairs: <Theme1, Theme2>,
<Theme1, Theme3>, and <Theme2, Theme3>.
We then construct a molecular interaction network,

where the nodes are genes and pathways, and the edges
are added in the following way:
1) Text-mined results: all interactions detected by

PWTEES are added to the edge set.
2) Curated data: we integrate curated molecular

knowledge about pathways into the network as follows:
if a gene node A is contained in a pathway C (as speci-
fied by ConsensusPathDB), then a new edge <A, C> is
added to the edge set.

Data and large-scale processing
The corpus used in this study contains 38,572 abstracts
from MEDLINE, as described in [34]. It was constructed
by the PubMed query “(((thyroid neoplasms[majr] AND
human[mh] AND english[la]) OR thyroid[ti]) AND
(cancer OR carcinoma OR malignant OR malignancy))”,
as suggested by the National Cancer Institute (http://
www.cancer.gov/types/thyroid). The results were limited
to human studies in English.
It is a computationally time consuming process to per-

form event extraction on such a large collection of docu-
ments. To improve efficiency, we employed parallel
processing. We implemented the whole pipeline of
PWTEES on the world’s fastest supercomputer Tianhe-2
built by the National University of Defense Technology
(http://top500.org/featured/top-systems/tianhe-2-milkyway-
2-national-university-of-defense/). We carried out tests
with 1,000 randomly selected abstracts from MEDLINE:
the processing time was less than 3 minutes using 200 pro-
cesses (initialization of the pipeline takes about two minutes
for each process), as depicted in Figure 2. Using a larger
pool of compute nodes (6,000 concurrent processes),
we were able to finish the processing of the whole thyroid
cancer corpus within 3 minutes.

Results and discussion
Evaluation of PWTEES
For molecular events that do not involve pathways,
PWTEES is equivalent to TEES, which has already
been thoroughly evaluated [38]. Here we therefore
focus on evaluating the performance of PWTEES on
pathway events specifically. To note, in this study,
pathway events are defined recursively. An event that
takes a pathway as a theme or cause is a pathway
event; an event that takes another pathway event as its
theme and cause is also a pathway event. A pathway
event is considered correct only if the event and the
arguments are both correct.

Table 1. Example structure of a nested event

Theme T_Theme Gal-3

T_Cause -

T_Trigger Overexpression

Cause C_Theme HIPK2

C_Cause -

C_Trigger deficiency

Trigger responsible

Example sentence “...HIPK2 deficiency might be responsible for such
paradoxical Gal-3 overexpression in WDTC.” (PMID: 21698151)

Figure 2 Effects of parallel processing on processing time.
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We evaluated PWTEES in two ways: firstly, we ran-
domly sampled 100 reported pathway events (named as
P_TEST) to evaluate the precision of PWTEES on path-
way event detection; secondly, to estimate recall, we
constructed a set of 100 <pathway, gene/protein> pairs
(named as PR_TEST), which were randomly sampled
from all possible <pathway, gene/protein> pairs satisfy-
ing the following two conditions: (1) the entities in one
pair appear in the same document; (2) their distance is
smaller than 100 characters (an empirically selected
threshold). The PR_TEST set is used to estimate the
recall of PWTEES (named as pseudo-recall herein),
given by:

pr =
TP

TP + FN

where TP is the number of true positives by PWTEES
in the PR_TEST; FN is the number of false negatives by
PWTEES in the PR_TEST. We could not calculate the
genuine recall, which would require random sampling
from the whole possible space of events. This is mainly
because the density of pathway events is much lower
than that of gene/protein events, which could require a
large number of samples in order to get sufficient true
pathway events to reflect the true recall of PWTEES.
The details of the performance evaluation are listed in

Table 2. The precision calculated on the P_TEST is 72%
and the pseudo-recall calculated from PR_TEST is 50%.
This gives a rough estimated F1-score of 59%.
We analysed several typical types of error in the path-

way events reported by PWTEES, as listed in Table 3.
Typical errors include wrong assignment of arguments,
wrong event types, and missed arguments. False nega-
tives of the gene NER component can cause a miss of
an important argument, as demonstrated in example #3
in Table 3 in which BANNER could not detect G691S
(RET Exon 11 polymorphism). Some of the errors were
also present in TEES. For instance, in example #4 in
Table 3, PWTEES reports a pathway event with the
theme to be a simple phosphorylation event. For this
example, the theme of the phosphorylation should be
nucleoproteins while the cause should be MAPK.
We also noticed several PathNER errors. In example

#2 in Table 3, Dkk-1 inhibits “the survival and migration
of human PTC cells by regulating Wnt/b-catenin signal-
ing and E-cadherin expression”. However, PathNER

reports “Wnt/b-catenin signaling” and “Wnt/b-catenin
signaling and E-cadherin expression” at the same time,
which was not correct as pathway mentions should not
overlap. In the same example, the event type was incor-
rect, which could be possibly caused by the complex
structure of the sentence and the presence of multiple
event trigger keywords ("inhibited”, “regulation”, and
“expression”).
In order to estimate the impact of removing some of

the recognised gene names when they are part of path-
way names, we compared the PWTEES results on the
two test sets (P_TEST and PR_TEST) against the EVEX
data. Example events that have been reported differently
by EVEX and PWTEES are listed in Table 4. We note
that some documents processed by PWTEES were not
included in EVEX (denoted as ‘N/A’ in example #1 in
Table 4). For other examples, we can see that introdu-
cing pathway entities does affect event extraction signifi-
cantly. For instance, in example #3, EVEX only reports
the occurrence of two genes (CD40 and Fas), while
PWTEES highlights that CD40 can inhibit Fas-mediated
apoptosis. We can further see cases where the biological
semantics is better represented, like in example #4. The
emphasis of the sentence in example #4 is placed on the
importance of the “Ras/ERK1/2/ELK-1 and STAT3 path-
ways”. This is well captured by PWTEES. On the con-
trary, EVEX reports a sub-event of the up-regulation of
c-fos promoter, thus missing the main finding expressed
in the original sentence. In addition, if a gene name is
embedded in a pathway name, TEES will only pick up
the gene mention. This will result in a loss of informa-
tion as a pathway mention refers to a different and
more complex entity. Consider, for example, a pathway
event extracted by PWTEES depicted in Figure 3. Here,
TEES reports an event of “Downregulation of uPAR”
and three gene names including FAK, PI3K and Akt.
However, “FAK/PI3K/Akt signaling” is a single (pathway)
name. PWTEES takes this correctly into account and
reports the following event:
Theme: FAK/PI3K/Akt signaling
Cause: Downregulation of uPAR
Type: Negative regulation

Application of PWTEES to the thyroid cancer corpus
With the parallel processing mentioned previously, we
ran PWTEES on the whole thyroid cancer corpus. The
number of unique interactions detected is listed in
Table 5. To note, here pathway interactions only require
either theme or cause to be a pathway. The table also
lists the size of the EVEX-Human-TC-REL dataset we
used for comparison. This dataset was retrieved from
the EVEX human interaction dataset based on the thyr-
oid cancer corpus (http://evexdb.org/download/network-
format/Metazoa/Homo_sapiens.tar.gz).

Table 2. Performance evaluation of PWTEES

Dataset TP FP TN FN P PR

P_TEST 72 28 - - 72% -

PR_TEST 10 3 77 10 - 50%

TP: true positives; FP: false positives, TN: true negatives; FN: false negatives; P:
precision; PR: pseudo-recall.
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Table 3. Examples of pathway event errors

PMID Sentence PWTEES Comment

8875985 ...directed the expression of either the A2a adenosine receptor
that constitutively activates the cAMP pathway, or the E7 protein

T: cAMP cascade
C: E7 protein
ET: Positive regulation

The cause should be A2a adenosine
receptor. Wrong assignment of argument.

23261982 Dkk-1 inhibited the survival and migration of human PTC cells
by regulating Wnt/b-catenin signaling and E-cadherin expression.

T: expression of Wnt/
beta-catenin signaling
and E-cadherin
C: Wnt/beta-catenin
signaling pathway
ET: Regulation

Cause should be Dkk-1 and event type is
inhibition. Wrong assignment of argument

and event type.

21690267 ...the same patient allele carries both K666E and G691S variants,
the latter known to increase downstream RET signaling,

T: RET downstream
signaling
C:
ET: Positive regulation

Cause should be G691S variants. Missed
argument

15059947 ...the MAPK (ERK1/2) signaling pathway causes serine
phosphorylation by MAPK of several nucleoproteins

T:{T:MAPK; Site: serine;
ET: Phosphorylation}
C: MAPK (ERK1/2)
signaling pathway
ET: Positive Regulation

In the nested theme event, MAPK should
be the cause, not the theme.

16940797 ZD 6474 has shown promising activity in preclinical models
against RET kinase, and its contemporary inhibition of vascular

endothelial growth factor and epidermal growth factor pathways

T: VEGF and EGF
pathways
C:
ET: Negative Regulation

Cause should be ZD6474 (drug).

T - Theme, C - Cause, ET - Event Type

Table 4. EVEX and PWTEES differences on example sentences

Example sentence PMID EVEX PWTEES

Mutated BRAF, generates a constitutive activation of the mitogen-activated protein
kinases (MAPK) signaling pathway

22863493 N/A T: Activation of MAPK pathway
C: BRAF
ET: Positive regulation

PLD synergistically functions to activate the STAT3 signaling by interacting directly
with the thyroid oncogenic kinase RET/PTC.

18498667 T1: PLD
T2: RET/PTC
ET: Binding

T: PLD
C: STAT3 signaling
ET: Positive regulation

CD40 stimulation inhibits cell growth and Fas-mediated apoptosis in a thyroid cancer
cell line.

10223618 Gene/Protein:
CD40, Fas

T: Fas-medicated apoptosis
C: CD40 stimulation
ET: Negative regulation

.. and that integration of the Ras/ERK1/2/ELK-1 and STAT3 pathways was required for
up-regulation of the c-fos promoter by FMTC-RET

17209045 T: c-fos
promoter
C: FMTC-RET
ET: Positive
regulation

T: up-regulation of the c-fos
promoter by FMTC-RET
C: Ras/ERK1/2/ELK-1 and STAT3
pathways
ET: Positive regulation

T - Theme, C - Cause, ET - Event Type

Figure 3 Visualisation of a pathway event extracted by PWTEES. Sentence: “Downregulation of uPAR inhibits migration, invasion,
proliferation, FAK/PI3K/Akt signaling” (PMID: 21191179)).
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To explore whether adding pathway information could
provide a more comprehensive genetic space, we checked
the genes involved in those interactions and compared
those to the thyroid cancer related genes (TC-genes)
extracted in our previous study [34]. A total number of
2,833 genes were included in TC-genes. Those genes
were extracted via gene NER and normalization, and
were shown to provide a more comprehensive coverage
of genes related to thyroid cancer with respect that cur-
rent manually curated datasets. For comparison, we also
introduced other sets of genes:
· EVEX-genes: genes that participate in the EVEX

interactions.
· PWTEES-NON-PW-genes: genes explicitly involved

in non-pathway PWTEES interactions;
· PWTEES-PW-genes: genes involved in pathway

PWTEES interactions and all genes in mentioned
pathways;
· TC-genes: genes linked to thyroid cancer [34];
The result is depicted in Figure 4. The majority (83%)

of the genes involved in non-pathway interactions are in
the TC-genes dataset, that is, most genes in PWTEES-
PW-genes are indeed linked to thyroid cancer. However,
many genes in the TC-genes were not found in non-
pathway interactions (87%), which reflects that without
pathway details, many relevant genes would be missed.
Finally, 40.8% of the TC-genes are involved in pathway

events. The EVEX-genes cover only a small portion of
TC-genes (282/2833, ~10 %). This highlights the impor-
tance of incorporating detailed pathway information
when constructing a comprehensive molecular context.

Molecular interaction networks
We constructed two networks as undirected graphs from
the interactions mentioned above. The MERGE-PW net-
work takes both genes and pathways as nodes, con-
structed as described in the Methods section. It contains
576 nodes and 3136 edges (see Additional file 1). The
NON-PW network is based on gene/protein interactions
and binding pairs (only containing genes). It contains 444
nodes and 628 edges (see Additional file 2).
We performed a topological analysis using the Net-

workAnalyzer plugin in Cytoscape [39]. A number of
commonly used network statistics are listed in Table 6.
We can see that, in general, MERGE-PW is better con-
nected than NON-PW, as the number of connected
components for MERGE-PW is twice as small as that of
NON-PW.
In MERGE-PW, the top 10 hubs are all pathways, as

listed in Table 7. We also listed the top 10 gene nodes
with the highest degrees of both networks in Table 8. For
both the NON-PW and MERGE-PW networks, all top-
10 hub genes are highly ranked in the TC-genes by docu-
ment-level frequency. However, we can observe that
some genes are more connected in the MERGE-PW net-
work than in NON-PW. For instance, HRAS (ID: 3265),
one of the most common mutated genes for thyroid can-
cer [40], does not have many neighbors in NON-PW
(with a degree of 10), but it has the sixth highest degree
among all gene nodes in MERGE-PW. Similarly, MYC
(ID: 4609) was highly ranked in the TC-genes but it has
only one neighbor in NON-PW. This highlights the
importance of integrated pathway data.
We also analysed bottlenecks using the cyto-Hubba

plugin for Cytoscape [41]. Bottlenecks are nodes with
high betweeness centrality, which is measured by the
number of shortest paths passing through a node [42].
Table 9 shows the top 10 bottlenecks in the MERGE-PW
network. These include apoptosis, which is important in

Table 5. Unique interactions detected in the thyroid
cancer corpus

Type Amount Form

Genes/Proteins interactions 519 <Cause, Theme>

Binding pairs 145 <Theme1, Theme2>

Pathway interactions 313 <Cause, Theme>

EVEX-Human-TC-REL 599 <Source, Target>

Figure 4 Venn diagram for genes in different interaction sets.

Table 6. Network statistics of NON-PW and MERGE-PW

Network parameter NON-PW MERGE-PW

Clustering coefficient 0.117 0.150

Connected components 38 16

Network diameter 12 9

Characteristic path length 4.458 3.462

Average number of neighbours 2.710 7.170

Network density 0.006 0.012

Multi-edge node pairs 25 488
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all types of cancer. Another pathway bottleneck is “Epi-
dermal growth factor receptor 1 signalling”, which has
been identified as a therapeutic target for cancer [43].
Two gene bottlenecks that are not in the top 10 hubs are
PIK3R2 (ID: 5296) and TNF-alpha (ID: 7124). PIK3R2 is
a regulatory component of PI3K, a major member of the
PI3K/Akt pathway, one of the top hubs in the MERGE-
PW network (see Table 9). TNF-alpha encodes a multi-
functional cytokine that has been implicated in many dis-
eases including cancer [44].

Conclusions
In this paper we presented an approach to enrich the
molecular context of diseases by applying large-scale
text mining of events involving genes and pathways. We
extended a state-of-the-art text mining system by intro-
ducing pathway NER to identify interactions involving
both genes/proteins and pathways. We then applied the
expanded system on a corpus of thyroid cancer and gen-
erated interactions involving both genes and pathways.
We were able to demonstrate that integrating informa-
tion about pathways can provide additional molecular

insights, highlighting a few key genes and pathways. To
facilitate further exploration of thyroid cancer carcino-
genesis, the whole MERGE-PW network is given in
Additional file 1.
The PWTEES system is however not specific to thyr-

oid cancer: it can be applied to studies of other complex
diseases. In future work, we aim to run PWTEES on the
whole MEDLINE and PMC Open Access set to generate
a large scale dataset that can provide a searchable dis-
ease-sensitive interface for interaction events involving
pathways.
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