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Abstract

expression data.

In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their
regulators’ activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes.
We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene

Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM
algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and
where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities
of deregulation in a given sample for each gene. We assess the performance of our method by numerical
experiments on simulations and on a bladder cancer data set.

Background

Various mechanisms affect gene expression in tumoral
cells, including copy number alterations, mutations,
modifications in the regulation network between the
genes. A simple strategy to identify genes affected by
these phenomena is to perform differential expression
analysis. Results can then be extended to the scale of
pathways using enrichment analysis [1] or functional
class scoring [2]. However, such a strategy is blind to
small variations in gene expression, especially as multi-
ple testing correction applies. Moreover, it does not take
interdependence between genes into account and can
mark an expression change as abnormal when actually it
is induced by a change in the regulators’ activity. To
overcome these drawbacks, an alternative strategy is to
identify the affected genes by pointing important
changes in the gene regulatory network (GRN) of the
tumoral cell. Such an approach furthermore corresponds
to the modelisation of phenomena altering regulation, as
for instance mutations in regulatory regions [3].
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The first step towards this is to procure a GRN. It can
be obtained from curated databases or, in order to obtain
tissue or condition-specific networks, reconstructed from
expression data. In the latter case, the inference can be
done by relying either on discrete or continuous models.
In the discrete framework, gene expression profiles are
discretized into binary or ternary valued variables (under-
expressed/normal/over-expressed). The regulation struc-
ture is then given by a list of truth tables [4]. This
approach allows in particular to take coregulation into
account, that is to require the activity of a whole set of co-
activators or co-inhibitors to activate or inhibit the target
[5,6]. In the continuous case, inference can be done in a
regression framework, where the expression of each target
gene is explained by all its potential regulator genes. An
edge is drawn between two genes if the corresponding
regression coefficient is significantly different from zero,
which can be deciphered by performing variable selection
in the regression model. A popular choice for this task is
to rely on sparsity-inducing penalties like the Lasso and its
by-products [7,8]. In particular, some variants allow to
account for co-regulation by favoring predefined groups of
regulators acting together in a sign-coherent way [9].
Other forms of penalties encourage a predefined hierarchy
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between the predictors [10], i.e. the regulator genes in the
case at hand.

To unravel deregulated genes by means of GRN, a
first possibility is to infer several networks indepen-
dently (one for each tissue) and to compare them. How-
ever, due to the noisy nature of transcriptomic data and
the large number of features compared to the sample
size, most of the differences found in the networks
inferred independently may not be linked with underly-
ing biological processes. Methods have therefore been
developed to infer several networks jointly to share simi-
larities between the different tissues and penalize the
presence of an edge in only one of them. Such methods
exist for both time series [11] or steady-state [12] data.

A second possibility is to assess the adequacy of gene
expression in tumoral samples to a reference GRN, in
order to exhibit the more striking discrepancies - i.e. the
regulations which are not fulfilled by the data. In this
perspective, [13] use an heuristic in a Boolean frame-
work to update the regulatory structure by minimizing
the discrepancies between the reference GRN and a new
data set. A similar approach is depicted in [14] to pre-
dict the discrepancies and the unobserved genes of the
network. More methods analyzing the coherence
between known signaling pathways and gene data sets
can be found in the review [15]. Still, they focus on
checking the validity of the network rather than high-
lighting genes with an abnormal behavior.

At the pathway level rather than the gene level, it is
possible to look for sample- specific regulation abnorm-
alities by using SPIA [16]. PARADIGM ([17] generalizes
SPIA on heterogeneous data (DNA copies, mRNA and
protein data). Moreover, it determines a score of activity
for each gene of a pathway for each sample of the data
set, and the use of hidden variables allows to compute
this score even if some of the genes of the pathway are
not measured. The method is however not network-
wide in the sense that each gene has a deregulation
score by pathway it belongs to, and pathways are treated
independently. Moreover, as the pathways are extracted
from curated databases, the regulations taken into
account are not tissue-specific.

The aim of this paper is to develop a methodology to
provide a network-wide deregulation score for each
gene and each sample by taking the whole regulation
network into account. For this purpose, we introduce a
model based on a regulatory process in which genes are
allowed to be deregulated, i.e. not respond to their regu-
lators as expected. An EM strategy is proposed for para-
meter inference, where the hidden variables correspond
to the status (under/over/normally expressed) of the
genes. The E-step is solved thanks to a message passing
algorithm. At the end of the day, the procedure provides
posterior probabilities of deregulation in a given sample
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for each target gene. We assess the performance of our
method for detecting deregulations on simulated data.
We also illustrate its interest on a bladder cancer data
set, where we study the deregulations according to two
reference GRN obtained by two state-of-the-art network
inference procedures on a consensus expression data set.

Methods

The model

Our model draws inspiration from LICORN [5], a model
originally developed for network inference purposes.
LICORN considers a regulation structure in which genes
are either regulators (transcription factors - TFs) or target
genes. The expressions are discretized and each gene g is
characterized by a ternary value S, € {-1, 0, +1} encoding
its expression status - under-, normally, or over-expressed.
The regulation of each target gene g is governed by a set
of co-activators A(g) and co-inhibitors I(g) among the TFs.
Those sets are endowed with some “collective status”

described by variables Sg and Sé, assuming that regulation

works in a cooperative way: hence, the collective state of a
set of regulators is over- (resp. under-) represented if and
only if all elements in the set share the same status. Finally,

the status S, of the target gene g is deduced from S; and

Sé by following Truth Table 1.

In order to detect deregulated target genes given a reg-
ulatory network and gene expression profiles, we apply
two major modifications to the LICORN model: first, we
avoid discretization of the data by considering all the
ternary variables introduced so far as hidden random
variables. The expression X, of a gene g is assumed to fol-
low a normal distribution with parameters that depend
on the hidden status, i.e., X, |S; = s ~ N (4, 0;). Second,
we introduce for each gene an indicator variable D, for
deregulation, such that D, = 1 with probability E. Renam-

ing the result of the truth table by S, the final status of

the target is then deduced from the values of D, and Sg :
Sg = S‘I; lf Dg = 0,
1.
Vs # SE,P(Sg=5) = , ifDg= 1

For completeness, we must specify the distribution of
the hidden states S, for each TF: we assume independent
multinomial distributions with parameters o = (o_, o, ).

The model is summarized for one target gene in
Figure 1. For the sake of conciseness, the vector 6
entails all parameters of the models, that is, the means
and standard deviations of the Gaussians, the vector &
of proportions and the deregulation rate E. The data set
contains # samples, r TFs and ¢ target genes. We denote
by Z the n x (r + 5t) matrix of all hidden states and by
X the n x (r + £) matrix of all expression variables.
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Table 1. LICORN truth table
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Activator state

Inhibitor state - 0
- 0 +
0 - 0
+ i j i

How the target gene behaves (unless it is deregulated) according to its co-activators’ state A and co-inhibitors’ state /.

Note that the dependencies among variables are acyc-
lic, implying that the likelihood can be decomposed in a
product.

(X, 210) = [To(Sjla) <[ To(st18;- ) x [To(sis;- ) x [Tp(sf1st 82 x [To(Dile) x [To(sist i) x [Tp(XlSk ,0)

For sake of readability, the indices of the products are
omitted in the above formula. However, it should be
clear when the product runs over target genes, regulator
genes or all of them.

Estimation algorithm

As usual with latent variable models, the likelihood is
intractable as the number of potential states of the hid-
den variables grows exponentially with the number of
variables. Therefore, we adopt an EM-like strategy [18]
by iterating the following steps, starting from an initial
guess 6° of the model parameters:

Xy X13 Xy oo Xog
< <3 R <
“x e . : f
‘. \ i '
| | | s
A . A g
/ 29
(SorT - (S (80 -+ (Sag)-
z) - Sy () - (Do) -
| N
N\ !
| \ |
. .
B/ A
iy S
= €
(S& =k
b? (Deo)
‘\ —
|
1
r/s.ﬁ )
NG
S
LI
Xﬁ(]
Figure 1 The model for one target gene regulated by two co-
inhibitors and three co-activators. The circled variables are
hidden. A dashed edge indicates that the distribution of the
variable depends on the corresponding parameter.

E-step: Fix 6 and compute the conditional probability
distribution of the hidden variables, given the observed
expression values: ¢(Z) = P(Z|X, )

M-step: Fix g

> q(2) logP(X, 2| )

Step E. The first issue at stake in the E-step is to deal with
the number of potential states for the hidden variables of all
the genes. Fortunately, we only need their marginal distribu-
tions in the M step, as will be shown in the corresponding
section. Still, we need a way to compute these marginals
without having to compute the joint distribution first.

To handle this issue, we rely on Belief Propagation
[19] - a.k.a message-passing algorithm - to perform the
E step, since the probability distribution arising from
our model is easily represented as a factor graph.
Indeed, consider a set of discrete values for all variables

S;, Sjg, SZ and D, . Conditionally on X, the probability
for the discrete variables to match the given value is

proportional to the product of the following factors:
1. o, for each regulator gene g € R;

and find @ that maximizes

2. Eif Dy =1, and 1-E if Dy = 0, for each target
gene g € T;

1 exp _(Xz w’ for each gene g € G (regulator or

o a?

target), where 4 and o are the mean expression and
standard deviation associated to state Sy ;

4. a factor equal to one if S correctly represents the
collective state of g’s activators, and zero otherwise;

5. a factor equal to one if S; correctly represents the
collective state of ¢’s inhibitors, and zero otherwise;

6. a factor equal to one if SR is the entry in Table 1

corresponding to S and Sg, and zero otherwise;
7. a factor equal to one if either D, = 0 and S, = S or

Dy =1and S, # Sg, and zero otherwise.

This factorization translates into the factor graph
depicted in Figure 2 (a graph whose nodes are the vari-
ables and the above factors, each factor being connected
to the variables it depends on). We use the SumProduct
Belief Propagation algorithm, implemented in the Dimple
library [20] to compute approximated marginals of every
hidden variable, given the regulation network, the para-
meter set, and the expression values. In the case where
multiple samples are given, this can be done separately for
each one since the samples are considered as independent.



Picchetti et al. BMC Systems Biology 2015, 9(Suppl 6):56
http://www.biomedcentral.com/1752-0509/9/56/S6

(3)
Tw) Tw T n Tu '\' 2
Sy St 529\)- - (534

Figure 2 A partial view of the factor graph. The factor graph
corresponding to Figure 1. The rectangles correspond to the factors,
and are numbered according to the text. The algorithm iteratively
updates the distribution of the circled variables.

Step M. In this step we keep the probability distribution
q fixed and look for the parameters # that maximize

> 4(2) log P(X,Z|0)
VA

Since P(X,Z|f) is a product of simple factors, its
logarithm is the sum of these factors. Also, note that
boolean factors (4-7) can be omitted since they have no
effect on the sum: whenever ¢(Z) # 0, these factors
must be equal to 1 hence the logarithm is 0.

Calling G the set of genes, R € G the set of regulators
and T © G the set of target genes, we are left to maxi-
mize the sum over all samples of

Z Z q(2)logas,

geR Z
1—¢
+ZZq(Z)(DglogE+(l—Dg)log 5 )
geT Z
—(x¢ = ps,)’
+ZZq(Z)( 6202 % — logas,
8eG Z Sg

Page 4 of 8

These three terms depend on separate parameters and
can be maximized separately. Moreover, we only require
the marginals of variables S, and D, for this task, and
not the full distribution g. Denoting by I the set of sam-
ples, it is straightforward to show that the former sum
is maximized for the following parameters:

as o> > q(Sig=—1), a0 x . > q(Sig=0), arx > > q(Sig=+1),

iel geR iel geR iel geR

ex > > qDig=1), (1-€) x> > q(Dig=0),
iel geT iel geT
- > Zg q(Sig = $)Xig 2o > Zg q(Sig = 5) (s — Xi)?
DI INTCPED B 3 d(Sig =9)

Complexity analysis
Step M only involves computing a few sums of size
[number of genes]x[number of samples] and is not
time-consuming. Step E performs for each sample a
fixed number of passes of Belief Propagation in the fac-
tor graph. Each pass consists in updating every node
with information from its neighbors. The complexity of
updating a factor grows exponentially with its degree,
therefore it is important to limit the number of variables
of each factor. It is done by replacing the factors corre-
sponding to the types (4) and (5) in Figure 2 by tree-like
structures with many factors having 3 variables each.
With this approach the graph has approximately N =
2E + G nodes, where E is the number of regulator-target
edges in the regulation network, and G the number of
genes. A personal computer performs a few million
node updates per second, thus step E will run in ¢ sec-
onds if N x[number of passes]x[number of samples] is
not much greater than ¢ millions.

Regulatory network inference from expression data
To apply our methodology to real data, we use two dif-
ferent inference methods.

LICORN. The first one, named hLICORN, corresponds
to the LICORN model and is available in the CoRegNet
Bioconductor package [6]. In a first step, it efficiently
searches the discretized gene expression matrix for sets
of co-activators and co-repressors by frequent items
search techniques and locally selects combinations of
co-repressors and co-activators as candidate subnet-
works. In a second step, it determines for each gene the
best sets among those candidates by running a regres-
sion. hLICORN was shown to be suitable for cooperative
regulation detection [5,6].

Cooperative-Lasso + Stability Selection. The second
inference procedure applies in a continuous setup. It
consists in two steps: first, a selection step performed
with a sparse procedure; and second, a resampling step
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whose purpose is to stabilize the selection for more
robustness in the reconstructed network. Here are some
details.

Step 1: selection. For each target gene, a sparse penalized
regression method is used to select the set of relevant co-
activators and co-inhibitors among all possible transcrip-
tion factors. When no special structure is assumed in the
network, this task can be performed with the Lasso penalty,
as it was successfully applied for network inference in [8].
Here, however, we are looking for sets of regulators that
work group-wise, either as co-activators or co-inhibitors.
To favor such a structure, we build on the penalty pro-
posed in [12,9] that encourages selection of predefined
groups of variables sharing the same sign (thus being either
co-activators or co-inhibitors). This regularization scheme
is known as the “cooperative-Lasso”. It was originally
designed to work with a set of groups that form a partition
over the set of regulators. Here, we extend this method to
a structure that defines a hierarchy (or tree) on the set of
regulators R . We denote by H ={H;, ..., Hg} this
structure, with 7}, the kth (non-empty) node of the
hierarchy.

Technically, the optimization problem solved for
selecting regulators of gene g is the following penalized
regression problem

’

3(8) = in ! X, — X807 )K @)"
B = argmin ) || ¢ — Xrf || +AY, (ﬂm) ) +
LB eRIRI k=1

(#2) |,

with X, the expression profile of gene g and Xy the
expression profiles of the regulators. The parameter
A >0 tunes the amount of regularization, and thus the
number of regulators associated with gene g; v* and v~
are the positive, respectively the negative elements of a
vector v, and V#, the restriction of v to the elements in
node H;, of the hierarchy. Hence, this penalty favors
selection of sign-coherent groups of variables, like

N
(/’)7(‘2;() , standing for the estimated co-activators of

gene g in node H, of the hierarchy, or (ﬂ;ﬂk>_, the cor-

responding co-inhibitors.

Step2: Stabilization. We fit a sparse model as
described above for each target gene, regressing on the
same set of regulators R. The hierarchy 4 that we used
is obtained by performing hierarchical clustering with
average linkage on a distance based upon the correlation
between expression profiles. We use the same A for each
gene, which is chosen large enough in order to select at
least one set of regulators for all target genes. To select
the final edges in the network, we rely on the stability
selection procedure of [21], which was successfully
applied to the reconstruction of robust regulatory net-
works in the case of a simple Lasso penalty [7], and is
known to be less sensitive than selecting one 4 per gene
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(e.g. by cross-validation). This technique consists in
refitting the regression model on many subsamples
obtained by drawing randomly n/2 observations from
the original data set. We replicate 10,000 times this
operation and obtain an estimated probability of selec-
tion for each edge. We fix the threshold in order to
select a number of edges similar to LICORN, which cor-
responds to edges with a probability of selection greater
than 0.65.

Results and discussion

Classification performances on simulated data sets

In our experiments, the score g(D;, = 1) is used to
determine if gene g is deregulated or not in sample i.
Performances are evaluated with Precision-Recall (PR)
curves, which are known to be more informative than
ROC curves or accuracy [22] when considering classifi-
cation problem with very imbalanced data sets.

We generate expression data sets according to the
model described earlier and feed them to the EM algo-
rithm to evaluate its performance. To study the impact
of each parameter, we try several values of this para-
meter while all others remain fixed to their default
value. Ten data sets are generated and processed in
each setting, resulting in 10 PR curves. We thus obtain
clouds of curves, measuring both the variability for a
given parameter set and the influence of the varying
parameter.

We unsurprisingly note that o has dramatic effect (see
Figure 3). As a rule of thumb to distinguish two states
from one another, the associated standard deviations
must be smaller than the difference between their mean
expressions.

Meanwhile, large values of E mechanically result in
better PR: the more the deregulated genes, the more the
true positives among all positives (Figure 4).

On the contrary, all other parameter have little effect
on the performance and we thus postpone the asso-
ciated PR curves to the Additional File 1. Those para-
meters are g, o, the number of passes in the Belief
Propagation algorithm (as long as it is greater than five),
the number of genes and the sample size (as long as
their product is of several hundreds).

Managing the False Discovery Rate

Consider couples (i, g) whose deregulation score g(D;, =
1) = s: this score being a posterior probability, the
expected proportion of true (respectively false) positives
is s (respectively 1 - s). Similarly, if K pairs pass the
threshold, the expected number of true positives among
them is the sum of their scores, denoted by S. The false
discovery rate (FDR) may be estimated by (K - S)/K. In
practice, aiming for a particular FDR, one can start with
a threshold of 1 and lower it gradually: as more pairs
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get selected, the ratio (K - S)/K gradually increases. All
one has to do is stop when it reaches the intended FDR.
The concordance between the intended FDR and the
actual proportion of false positives is illustrated on
simulated data sets in the Additional File 1.

Tests on real data

We applied our method to the bladder cancer data set
available in the R-package CoRegNet [6]. Expression
data from patients with different status was pooled to
infer gene co-regulatory networks with two independent
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procedures, namely ZLICORN and the hierarchical
Cooperative-Lasso. The inferred networks reflect the
regulation trends over the whole set of 184 samples.
Our EM algorithm is then run using the same expres-
sion data, but since samples are now treated individu-
ally, the results reflect how each sample violates the
regulatory rules generally followed by the others.

On real data, the true deregulation status is unreach-
able. Hence, we match our result with Copy Number
Alteration (CNA) data collected from the same samples,
in order to support that our method correctly identifies
deregulated gene-sample pairs. We do not expect CNAs
to precisely coincide with failures of the regulation net-
work, so we do not hope to detect exactly those pairs
that present a CNA. However, the number of gene
copies influences the expression independently from
expression of the TFs [23]. We therefore expect to
observe a link between CNA and gene deregulations.

To this end, we use CNA data provided by the CoReg-
Net package, associating to each gene-sample pair a copy
number state: 0 for the diploid state (two copies), 1 for a
copy number gain, —1 for a copy number loss, and 2 for a
copy number amplification. Figure 5 compares the distri-
bution of the perturbation scores across copy number
states by representing, for each copy number class, the
empirical cumulative distribution function of the perturba-
tion scores. For each value s of the perturbation score in
abscissa, the ordinate is the proportion of gene-sample
pairs with a score greater than s. The fact that the curve
corresponding to the diploid state is above all the other

L SO

@ |
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< | — 2 (p=0.0025)

o

o

g

o

= N—

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Perturbation score

Figure 5 Empirical cumulative distribution of scores, by Copy-

Number status. Student’s test is used to compare every altered

state with the normal.
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curves indicates that gene-sample pairs having a CNA are
given a higher perturbation score than diploid gene-
sample pairs by our deregulation model. Although the dif-
ference seems slight, it is highly significant given the large
number of scores, as indicated by the p-value of the Stu-
dent test for the pairwise differences between the diploid
state and each of the other altered states. As expected, the
scores of the “amplification” state 2 are also higher than
the scores of “gain” state 1.

Conclusion

In the present article, we develop a statistical model for
gene expression based on a hidden regulatory structure.
Given a reference GRN, it allows to determine which
genes are misregulated in a sample, meaning an expres-
sion which does not match the network given the
expression of its regulators. Numerical experiments vali-
date the algorithmic procedure: when applied to bladder
cancer data with known CNA, the deregulation score is
higher in samples in which genes have an altered num-
ber of copies.

We believe that our methodology will be useful to
understand which regulation mechanisms are altered in
different cancer subtypes. Indeed, the results of our
methodology are sample-specific. However, characteriz-
ing the deregulations which are common to most of the
individuals suffering a given cancer subtype is a promis-
ing perspective.

The integration of CNA to the methodology, as
already done in the context of differential expression
[24], will also be considered in future work, as it would
allow a better power for detecting genes suffering misre-
gulation due to a copy alteration.

Availability of supporting data
The EM algorithm described in this article is available
as a Java archive at http://www.math-info.univ-paris5.
fr/~ebirmele/index.php?choix=6/

Bladder cancer data and hLicorn are available through
the CoRegNet Bioconductor package.

Additional material

Additional File 1: File containing PR curves for varying ¢, y, the number
of genes/samples and the number of belief propagation iterations. It also
contains figures illustrating the FDR estimation on simulated data.
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