Kelder et al. BMC Systems Biology 2014, 8:108
http://www.biomedcentral.com/1752-0509/8/108

BMC
Systems Biology

RESEARCH ARTICLE Open Access

Network signatures link hepatic effects of
anti-diabetic interventions with systemic disease

parameters

Thomas Kelder'*, Lars Verschuren', Ben van Ommen', Alain J van Gool'** and Marijana Radonjic'*

Abstract

determinants of disease progression.

complex disease phenotype.

Background: Multifactorial diseases such as type 2 diabetes mellitus (T2DM), are driven by a complex network of
interconnected mechanisms that translate to a diverse range of complications at the physiological level. To
optimally treat T2DM, pharmacological interventions should, ideally, target key nodes in this network that act as

Results: We set out to discover key nodes in molecular networks based on the hepatic transcriptome dataset from
a preclinical study in obese LDLR-/- mice recently published by Radonjic et al. Here, we focus on comparing efficacy
of anti-diabetic dietary (DLI) and two drug treatments, namely PPARA agonist fenofibrate and LXR agonist
T0901317. By combining knowledge-based and data-driven networks with a random walks based algorithm, we
extracted network signatures that link the DLI and two drug interventions to dyslipidemia-related disease parameters.

Conclusions: This study identified specific and prioritized sets of key nodes in hepatic molecular networks underlying
T2DM, uncovering pathways that are to be modulated by targeted T2DM drug interventions in order to modulate the
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Background

To improve our understanding and ability to intervene
with complex multifactorial diseases such as type 2 dia-
betes mellitus (T2DM) it is important to investigate the
molecular networks underlying the biological system
and elucidate which and how interactions within this
system contribute to pathology [1]. This will enable dis-
covery of novel therapeutic pathways that trigger a
specific cascade of processes underlying pathology devel-
opment and subsequently optimally target a wide range
of disease parameters. This is a challenging task, since
disease networks are large and complex, involving many
disease-driving processes which are in turn composed of
tens of thousands interconnected components (e.g.
genes, proteins, metabolites) and hundreds of thousands
possible functional interactions [2].
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Large-scale experiments and curation efforts provide a
large map of possible molecular pathways, protein interac-
tions and transcription factor targets [3-7]. Such networks
have been shown to provide mechanistic insights and iden-
tify key regulators in various disease settings. For example,
integration of different experimental data types with inter-
action networks revealed the Epidermal Growth Factor
signaling system as a regulator of the extracellular environ-
ment [8] and using network analysis a central role of
AMPK and energy homeostasis impairment in Alzheimer’s
disease was identified [9]. In addition, context-specific net-
works can be generated based on high-throughput datasets
such as transcriptomics [10], proteomics [11] and metabo-
lomics [12]. Data-driven network reconstruction methods,
such as Weighted Gene Co-expression Analysis [13] can be
used to extract co-regulated network modules that reduce
dimensionality and identify biologically relevant patterns in
the data. These methods have proven to be of value in
complex diseases, from defining a network-based inflam-
mation signature common across diseases [14], to elucidat-
ing molecular mechanisms underlying autism in brain [15].
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To condense useful information out of these large net-
works, it is necessary to prioritize and extract parts of this
network that are most relevant in the context of disease de-
velopment or response to interventions. Such network sig-
natures aid design of novel, evidence-based therapies by
discovering and prioritizing key intervention targets, im-
proving understanding of underlying mechanisms, and can
serve as biomarkers for efficacy of interventions [16-20].

Current drug treatments to intervene with type 2 dia-
betes mellitus (T2DM) are considered insufficient [21],
and novel interventions are being developed to improve
treatment efficacy across the range of T2DM-related
complications. A recent preclinical study on anti-
diabetic treatments in LDLR-/- mice (ADT study) [22]
provides a model to investigate the mechanisms under-
lying T2DM-associated disease parameters, such as risk
factors (e.g. plasma glucose and insulin levels) and com-
plications (e.g. atherosclerosis). This study compared the
efficacy of ten anti-diabetic drugs and dietary life style
intervention (DLI) on the course of the disease by exten-
sive histological, molecular and biochemical phenotyp-
ing. This showed that DLI had a supreme successful
effect, reverting nearly all T2DM risk factors and com-
plications to the healthy level. Most drug interventions
reduced hyperglycemia but T2DM-associated complica-
tions were not improved or, in case of fenofibrate and
T0901317, were even aggravated [22]. This suggests that
underlying molecular networks affected by DLI are key
to successfully resolving disease phenotype while target-
ing hepatic transcription factors PPARA (fenofibrate) or
LXR (T0901317) influence downstream molecular net-
works in a suboptimal way leading to both beneficial
and undesirable phenotypic effects. With this in mind,
we used the hepatic transcriptome dataset associated
with these three interventions in the ADT study to infer
molecular paths that should be either mimicked or cir-
cumvented when designing improved interventions.

Our analysis extracted network signatures that link
hepatic effects of anti-diabetic interventions with sys-
temic disease parameters using a combination of data-
driven and knowledge-based network analysis. This
provides a ranking of nodes in the underlying complex
regulatory network whose transcriptional regulation is
most strongly linked to specific disease parameters. The
network signatures allow mechanistic insights into hep-
atic processes that drive dyslipidemia-associated T2DM
phenotypes, place selected genes in functional context of
different intervention effects and highlight them as po-
tential novel drug targets.

Results

To identify network signatures that define transcription-
ally regulated paths linking anti-diabetic intervention
targets with changes in type 2 diabetes mellitus (T2DM)
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disease parameters, we applied network analysis on the
ADT study [22] which includes both extensive phenotyp-
ing of systemic disease parameters as well as hepatic
transcriptome measurements. We included 16 measured
disease parameters consisting of parameters relevant for
insulin resistance (plasma glucose and insulin, QUICKI
index), body and organ weights (adipose depots, kidney,
liver, heart, and total body weight), atherosclerotic lesion
area, plasma cholesterol, and plasma and liver triglycer-
ides. Five experimental groups from the ADT study have
been included in our analysis: the chow and high-fat diet
(HED) groups, serving as reference for health and
disease state, the dietary lifestyle intervention (DLI)
representing successful intervention, and two drug inter-
vention groups (fenofibrate and T0901317, targeting hep-
atic transcription factors PPARA and LXR, respectively).
The following network analysis has been applied to the
ADT dataset (Figure 1): 1) Co-expression modules identi-
fication and selection, 2) Extension of co-expression mod-
ules with different knowledge-based networks to provide a
wider biological context and to include intervention tar-
gets, 3) Creation of intervention-specific networks by fil-
tering the reference network for differentially expressed
genes (DEGs) and 4) extraction of the most relevant paths
linking intervention targets with disease parameters. The
following sections describe the results of each step.

Identification of co-expression modules

To identify clusters of genes which are co-expressed genes
in the context of the interventions, co-expression modules
were identified using weighted gene co-expression net-
work analysis (WGCNA) on hepatic gene expression data
from the chow, HFD, DLI, fenofibrate, and T0901317
groups. After topological clustering of the co-expression
network, 24 modules were identified, varying from 22 to
451 genes (Supplementary Figure S1 in Additional file 1:
Table S1 in Additional file 2). For each module an eigen-
gene was calculated that provides a single representation
of the profiles of all genes within the module. For 14 mod-
ules a valid eigengene could be calculated, that explained
minimal 50% of the variance in first principal component
(Table 1). Next, identified modules were assessed for their
relevance based on whether they could be annotated to a
biological process, whether they correlate to one or more
disease parameters, and whether they are driven by the in-
terventions. The detailed description of these three ana-
lysis steps is provided in Additional file 3.

Shortly, of the 14 co-expression modules, modules A,
B, and C satisfy all three criteria. The module for which
the most significantly enriched GO terms were identified
was module B, annotated to immune and inflammation
related functions. Genes from module A and C were
enriched for metabolic process related GO terms. Mul-
tiple co-expression modules correlated with the disease
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(See figure on previous page.)

and co-expression modules that link to disease parameters.

Figure 1 Schematic representation of the network analysis approach to link intervention targets to disease parameters. The analysis
consists of the following steps: 1) The hepatic transcriptome dataset is used to build a weighted co-expression network from which modules are
selected that are relevant for linking intervention effects to disease parameters. 2) A reference network is generated by adding knowledge-based
biological context to the co-expression modules, including protein interactions, transcription factor targets and intervention targets. 3) For each
intervention, an intervention-specific network is generated by filtering for genes significantly regulated by the intervention. 4) The kWalks
algorithm is applied to the intervention-specific network for each intervention, to extract the most relevant paths linking intervention targets

parameters related to dyslipidemia, which were previ-
ously found to be deteriorated after both drug interven-
tions (plasma and intrahepatic triglycerides, cholesterol,
atherosclerotic lesion area, liver weight). In contrast,
although glycemia/insulin sensitivity related disease
parameters (glucose, insulin, QUICKI) and obesity (body
weight, epididymal fat weight) are fully resolved by
T0901317 and partly by fenofibrate [22], no co-expression
module correlated with these parameters. This indicates
that hepatic target activation determines changes in dys-
lipidemia rather than dysglycemia. The three modules
with significant GO annotation and correlation to a dis-
ease parameter (A, B, C) are also enriched for genes differ-
entially expressed after HFD, which are largely reversed by
DLI This is in concordance with the observed improve-
ment by DLI of the disease parameters correlating with

Table 1 Identified network modules

these modules. In contrast, the drug interventions further
deregulate nearly all genes in the module that were also
regulated by HED. These opposite effects match the ob-
served deterioration of the corresponding disease parame-
ters by both drug interventions. In addition, the modules
show a large part of additional genes regulated by drugs
that were not deregulated by disease, indicating that the
drug interventions target or result in different metabolic
and immune-related mechanisms than those related to
disease progression. Module B, annotated to immune re-
sponse and inflammation related processes, was most
strongly enriched with DEGs for the T0901317 interven-
tion. Notably, the majority of DEGs (141 out of 146) in
the module were upregulated by T0901317 compared to
HFD and show the opposite response for DLI where these
are downregulated compared to HFD. These genes include

Module Size GO Terms Significant correlations

A (yellow) 198 metabolic process; amine metabolic process; Liver weight (-0.91), Triglycerides (-0.90),
negative regulation of peptidase activity; lipid Atherosclerosis (-0.79), Cholesterol (-0.79)
biosynthetic process; oxidoreductase activity;
electron carrier activity

B (red) 161 cell activation; response to stress; immune Atherosclerosis (0.80), Cholesterol (0.78),
system process; inflammatory response; Liver weight (0.75)
cytokine production

C (black) 142 lipid metabolic process; carboxylic acid metabolic Liver weight (0.88), Cholesterol (0.83)
process; acyl-CoA metabolic process; thioester
metabolic process; oxidation-reduction process

D (green) 185 aromatic amino acid family catabolic process;
cofactor binding; rRNA binding; endopeptidase
inhibitor activity

E (royalblue) 51 Cholesterol (-0.82)

F (blue) 369 protein localization; protein transport; generation
of precursor metabolites and energy

G (magenta) 125 circadian rhythm

H (purple) 118 regulation of primary metabolic process

| (greenyellow) 112 receptor activity

J (cyan) 83

K (lightyellow) 54

L (darkgreen) 41

M (darkturquoise) 39 electron transport chain

N (orange) 22 hexosaminidase activity

Modules with valid eigengenes and their size, representative GO terms, and significant correlations with disease parameters (correlation coefficient

in parentheses).
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genes encoding for several macrophage markers (CD14,
CD68, LYZ), and immune cell specific proteins (CD86,
CD74, CD83, CD52, CD53, Rac2).

Extending co-expression modules with knowledge-based
interactions and intervention targets

Modules A, B, and C which are annotated to a biological
process, correlated to a disease parameter, and enriched
with DEGs in response to intervention were extended
with a knowledge-based interaction network and inter-
vention targets. This knowledge-based network com-
prises different types of interactions, including curated
interactions and reactions from pathways databases, ex-
perimentally determined protein-protein interactions,
and predicted functional protein associations.

The main intervention target for fenofibrate is Peroxi-
some proliferator-activated receptor alpha (PPARA),
which upon activation increases the catabolism of tri-
glycerides by induction of lipoprotein lipase (LPL) and
reducing the production of very-low-density lipoprotein
(VLDL) [23]. The main targets of T0901317 are Liver X
receptor alpha (LXRA) and beta (LXRB), whose activa-
tion results in efflux of cholesterol from macrophages in
atherosclerotic lesions, which are converted by the liver
into bile acids, thereby reducing vascular inflammation
and increasing plasma HDL cholesterol [24]. Based on
information from the STITCH database [25], 9 add-
itional targets for fenofibrate, and 4 additional targets
for T0901317 were included, which comprise secondary
and indirect targets as well. For DLI, 21 empirically
identified transcription factors whose target genes are
enriched among DEGs in the DLI group were included
as intervention targets. Together, merging of the three
most relevant modules, the knowledge-based interaction
network, and the intervention targets resulted in a refer-
ence network of 11,970 nodes and 118,493 edges on
which further analysis was based.

Filtering reference network for the intervention-specific
transcriptional response

For each intervention, a subnetwork was generated based
on all genes in the reference network that were differen-
tially expressed under that intervention (DEGs, p < 0.05,).
In each case, about 40% of the total number of DEGs is
represented in the intervention network and connected
with at least one edge (connection between two proteins,
representing a functional association or interaction)
(Table 2). To investigate the relevance and translational
value of the intervention networks we overlaid informa-
tion derived from human genetic associations relevant
to metabolic syndrome and related diseases (obesity,
insulin resistance, and type 2 diabetes mellitus) on the
intervention networks. A significant enrichment with
disease-associated genes was found for each intervention
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Table 2 Number of DEGs in the dataset and sizes of the
intervention-specific networks

Total DEGs in Connected nodes Edges
dataset (p < 0.05)
DLI network 1287 497 5975
Fenofibrate network 2149 828 21598
T0901317 network 2924 1245 38472

network compared to the total set of measured genes
(Fisher’s exact test, DLI: p < 1.33E-15, fenofibrate: 4.86E-
26, T0901317: 7.79E-23). This indicates that the dataset
and resulting intervention networks indeed capture rele-
vant processes linked to human disease and supports the
use of the LDLR-/- mice as model for studying metabolic
syndrome in humans.

Network signatures linking intervention to disease
parameters
For each of the three selected co-expression modules we
identified the most relevant paths between intervention
targets and any of the module nodes in the correspond-
ing intervention network using the kWalks algorithm.
This resulted in a relevance score for each node and
edge, representing the expected number of times it is
visited by random walks between the intervention and
module nodes. These scores provide a ranked network
signature for each intervention, highlighting the genes
that have the most relevant position in the network in
connecting DLI, fenofibrate and T0901317 interventions
with co-expression module genes associated to disease
parameters atherosclerosis, plasma cholesterol levels,
liver weight, and plasma triglyceride levels (Figure 2).
Figure 2A shows the network signature for DLI, com-
posed of the genes with highest module scores for at
least one of the three modules, colored by direction of
regulation. Many genes have a high relevance score for a
single module, but low score for other modules (Cyp2f2,
Ccendl, Cyp2ul, Egfr, Fasn, Agxt2l1, Fads2, Fgf21, Plin2,
Fastkd5), indicating that they may serve as good drug
targets for specifically affecting this particular disease
parameter. Several genes have a high relevance score for
multiple modules, such as Sdc3, Sdc2, Anxa2 for the
DLI signatures for modules B and C. This may indicate
a role for the proteins encoded by these genes in cross-
talk between the processes underlying these modules, in
this case between lipid metabolism (module C) and in-
flammation (module B). To compare network signature
of DLI to drug interventions, the relevance scores for
the drug interventions are also shown in Figure 2A.
Most genes with high relevance score for DLI have zero
or very low score for the drug interventions (e.g. Fasn,
Axl, Fgf21, Gpd2, Cypl7al, Pkm, Fastkd5, etc.) indicat-
ing they are part of DLI-specific mechanisms linked to
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the positive effect of this intervention. Only 6 out of 26
genes in the DLI signature are also among the genes
with top relevance scores for the drug interventions.
Notably, these are all regulated in the opposite direction
compared to DLI signature. In the DLI profile only
Cyp4al2a and Cyp4al2b are regulated in the same direc-
tion for both DLI and drugs and have a relevance score
for the drugs, albeit low. In addition, none of the pro-
teins encoded by the genes in the DLI signature are
targets of either of the two drugs. These observations
indicate that the hepatic mechanisms through which
the drug interventions aim to resolve disease have
little overlap with mechanisms underlying the successful
DLI intervention.

Figure 2B and C show the network signatures for the
genes with highest relevance scores for the drug inter-
ventions. As expected based on the different mecha-
nisms of action, the relevance scores for two drugs
show a distinct pattern. A large part of the signature for
fenofibrate consists of genes encoding proteins with a

role in lipid metabolism and transport, such Lpl, Pltp,
Abcd3, Ppara, Crat, Apoal, Abhd5, Acat2. These genes
are upregulated after fenofibrate intervention, corre-
sponding to its known effect on increasing lipolysis
through activation of PPARA, resulting in improvement
of lipidaemia-related disease parameters (LDL choles-
terol, triglycerides) [26]. The signature of T0901317 in-
cludes several of its targets as most relevant nodes
(Nrli2, Nr1h3, Nr1h2), as well as immune and inflam-
mation related genes relevant for the module B (Mmp?9,
Cd74, Nfkbia, Rac2), lipid metabolism relevant for mod-
ule C (Cyp4a3l, Cyp4ald), detoxification and drug-
metabolizing proteins relevant for modules A or C
(Gstpl, Cyp2d9, Cyp3all, Cyp2c37). The biological an-
notation of identified nodes suggests their central role
in mediating mechanisms underlying T0901317 effects
on disease endpoints, in particular effect on levels of tri-
glyceride and cholesterol in serum and the effect on
modulation of inflammatory signals relevant to develop-
ment of atherosclerosis.
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Performance assessment of network-based ranking

To assess whether the gene ranking within network signa-
tures improves our ability to identify top-relevant genes
for hepatic processes underlying type 2 diabetes mellitus
(T2DM), we compared our network-based ranking with
gene ranking by differential expression (p-value) alone and
with random ranking. As reference of known disease
genes, a list of 93 mouse genes and gene products related
to hepatic T2DM processes was generated using text min-
ing of the PubMed database (see Methods). Figure 3
shows the coverage of known disease genes in sets of top
ranked genes of increasing size for the ranking based on
DLI. As expected, both network-based ranking and rank-
ing based on differential expression outperform random
ranking. For sets of 25 genes or more, network-based
ranking outperforms ranking based on differential expres-
sion by covering more known disease genes, with up to
three times higher coverage. In addition, after selecting
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the top 64 genes, ranking based on differential expres-
sion fails to identify any additional known disease genes,
while the coverage for the network-based ranking con-
tinues to increase. Table 3 shows the enrichment of
known disease genes (based on Fisher exact test) in the
full network signatures (all genes that were assigned a
positive score by the random walks algorithm) and sig-
natures of the same size based on ranking by differential
expression. For all three interventions, the network sig-
natures show a higher enrichment with known disease
genes than the same number of genes selected based on
ranking by differential expression, with 2.8 times higher
enrichment for the DLI signature.

To further validate the relevance of the signatures in
the context of drug discovery and healthcare applica-
tions, we tested whether the signatures were enriched
with known drug targets for T2DM, Fatty liver, or Ath-
erosclerosis and genetic associations to these diseases.
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e
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Figure 3 Comparison of different ranking methods. Comparison of different ranking methods for the dietary lifestyle intervention (DLI) with
respect to the ability to recover genes known to be relevant to hepatic T2DM processes. Plotted are our network-based ranking (green points),
ranking by differential expression alone (red points) and random ranking (blue points). The horizontal axis represents the number of selected top
genes based on the ranking method, the vertical axis shows the percentage of known disease genes that is present in the set of selected
top genes.
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Table 3 Enrichment of known T2DM genes in the
network signatures

Ranking Fold enrichment P-value
DLI network-based 878 344E-10
DLI differential expression 3.09 0.023
T0901317 network-based 379 5.09E-06
T0901317 differential expression 227 0016
Fenofibrate network-based 737 1.08E-11
Fenofibrate differential expression 2.86 0011

Enrichment of genes known to be relevant to hepatic T2DM processes based
on literature in the full network signatures (all genes that were assigned a
positive score by the random walks algorithm), and signatures of the same
size based on ranking by differential expression alone. Fold enrichment is the
increase of ratio between known relevant genes and remaining genes over
the signature compared to the same ratio over all genes in the dataset. The
p-values were calculated using a Fisher exact test.

The network signature based on DLI showed significant
enrichment for drug targets (p = 0.014), while the signa-
ture of the same size based on ranking by differential
expression was not significantly enriched (p =0.069).
The network signatures for Fenofibrate and T0901317
consistently show a higher, albeit not significant, enrich-
ment with drug targets than the corresponding signa-
tures based on differential expression (Supplemental
Table S2 in Additional file 4). For genetic associations,
both the network signatures and signatures based on
differential expression were significantly enriched, but
the network signature showed a consistently higher en-
richment (Supplemental Table S2 in Additional file 4).

Finally, we tested translatability and tissue-specificity
of the signatures by identifying the coverage of genes in
several baseline gene expression datasets in both mouse
and human (Supplemental Table S3 in Additional file 5).
The signature is well covered for all tissues across mouse
and human (61% nodes in signature expressed for tissue
with lowest coverage), indicating that the signature has
relevance beyond the mouse model used in our dataset.
As expected based on the origin of our dataset, liver has
best coverage for each signature compared to the other
mouse tissues.

Biological context of network signatures

In addition to identifying a panel of prioritized nodes, the
network signatures add a biological context to this ranking
by providing information on the relevance of underlying
interactions between these nodes. These interactions shed
a light on biological pathways that link the signature genes
to disease parameters and provide mechanistic insight into
interventions effects. To facilitate functional interpret-
ation, for each signature a subnetwork containing the top
most relevant interactions and module genes was ex-
tracted and visualized (Figure 4, Supplementary Figure S2
and S3 in Additional files 6 and 7).
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Figure 4 shows the subnetwork associated to module
B, which is strongly enriched with immune and inflam-
mation genes and DEGs for both DLI and T0901317
intervention. This module also shows a clear opposite
pattern of regulation between these interventions where
the majority of genes were downregulated by DLI, while
upregulated by T0901317 intervention. Several nodes re-
ceive a non-zero relevance score for both interventions
(Cendl, Lgals3, Gjal) while the network visualization
provides insight in difference in their regulation by the
interventions. For example, Ccndl has a high relevance
score in both signatures, but is downregulated by DLI
and upregulated by T0901317. In the DLI network,
Ccendl is directly regulated by 5 transcription factors af-
fected by DLI, of which 4 could be related to inflamma-
tion or immune response pathways (Nr3cl1, Nrdal, Rxra,
Smarcbl; based on annotations in Gene Ontology, In-
genuity Pathway Analysis, and WikiPathways). In con-
trast, Ccndl is connected to T0901317 through a single
indirect association involving multiple intermediate in-
teractions. This difference can be observed throughout
the network, as the average shortest path length from
intervention to the module nodes is twice as long in the
T0901317 subnetwork compared to the DLI subnetwork.
In addition, the edge relevance scores for the DLI net-
work are more equally distributed across nodes, while
the scores in the T090137 network are mainly concen-
trated in the path through Mmp9. This may indicate a
more direct and balanced activation of repression of a
combination of multiple transcription factors by DLI,
while the indirect regulation by T0901317 intervention
leads to a less controlled mechanism.

Discussion

Treatment of complex diseases requires control of the
underlying network of molecular processes that trans-
lates in a diverse range of complications at the physio-
logical level. For example, in type 2 diabetes mellitus
(T2DM) it is not sufficient to solely improve hypergly-
cemia, as this does not significantly reduce risk for car-
diovascular complications [27]. Therefore, it is crucial to
study disease in light of the full complexity of the under-
lying network of interconnected mechanisms contribut-
ing to pathology [1]. Here we propose a network-based
solution to find hepatic molecular signatures that play a
key role in the effect of interventions on different path-
ologies. By combining a series of network analysis ap-
proaches on a hepatic transcriptomics dataset from the
preclinical study in an LDLr-/- mouse model fed high fat
diet, we discovered and functionally annotated gene
co-expression network modules associated with anti-
diabetic interventions. We then extracted network signa-
tures representing most critical molecular paths that link
the interventions with dyslipidemia-related parameters.
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The resulting network signatures highlight a panel of
ranked-by-relevance, functionally related nodes that may
be used either as intervention targets or as biomarkers
for determining likelihood of success for novel anti-
diabetic interventions.

We integrated different interactions resources, including
protein-protein interactions, canonical pathways, and
transcription factor targets, to embed the co-expression
modules in a larger reference network. This combination

of data-driven co-expression networks and knowledge-
based functional interactions allowed us to make optimal
use of the specific strengths of both approaches: analyze
molecular data within the framework of available know-
ledge to interpret the patterns identified in the data
(knowledge-based), but still allowing inclusion of novel in-
teractions not described before (data-driven). By filtering
the resulting networks for genes affected by intervention,
we were able to extract context-specific networks that
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were highly enriched for genes genetically linked to
T2DM. We exploited the underlying topology of these
networks using a subgraph extraction method to further
prioritize interactions in the network based on their rele-
vance in connecting known intervention targets with the
co-expression modules. Together, our network biology ap-
proach provides both a high-level view on patterns in the
data by identifying network modules and zooms in to the
molecular level by prioritizing the most relevant nodes
and interactions to identify putative targets that may aid
improved therapy development.

Currently, the network analysis as described here
makes use of undirected networks, limiting the analysis
to identification of associations rather than cascades of
regulatory events that lead to changes in disease parame-
ters. Firstly, the co-expression network analysis identifies
associations rather than causal links between molecular
changes and disease parameters, so it cannot be deter-
mined whether the identified modules are directly driven
by intervention or an indirect association. To overcome
this problem, causal networks could be derived from
studies combining genetic variation with gene expression
[18], however to our knowledge no such studies are
available in context of anti-diabetic interventions. Sec-
ondly, in this workflow different types of interactions are
combined, some of which result from high-throughput
experiments (protein-protein interactions) or prediction
algorithms, which may be less specific and lack direc-
tionality. Nevertheless, we chose to include these to pro-
vide sufficient coverage, since limiting on a single
interaction resource or including only curated and di-
rected interactions would drastically reduce the network
size and introduce bias to existing knowledge rather
than discovery of novel findings. With current initiatives
in pathway and network curation [3,4,28] the availability
of directed interactions is expected to grow. Since the ran-
dom walks algorithm we used here can incorporate net-
work directionality, it will be straightforward to include
this information in future analyses when sufficient cover-
age can be obtained with directed networks. Furthermore,
when studies measuring tissue-specific regulatory ele-
ments [29] and context-specific interactions [30] become
abundant, this analysis can be further improved by using
this interaction information directly, rather than inferring
edge specificity through the connecting nodes.

Despite the evident improvement of glycemic status by
all three interventions [22], we found a strong correlation
of hepatic transcriptional mechanisms only with dyslipid-
emia related disease parameters, but not with dysglycemia.
This suggests that hepatic mechanisms predominantly de-
termine dyslipidemic phenotypes, as hepatic target activa-
tion is rather associated with dyslipidemia than with
dysglycemia related disease parameters. The observed im-
provement in dysglycemia may instead be controlled by

Page 10 of 14

organs other than liver. For example, fenofibrate has been
shown to influence insulin sensitivity in muscle [31] and
adipose tissue [32], and T0901317 can modulate insulin
secretion by pancreatic beta cells [33]. This emphasizes
the importance of a systems-level understanding of inter-
ventions, which requires mapping molecular networks
across multiple organs instead of focusing on the apparent
target organ of the intervention. The co-expression mod-
ules were functionally annotated to processes related to
lipid metabolism, and inflammation and immune re-
sponse, revealing that these hepatic processes are strongly
linked to systemic effects on dyslipidemia in the studied
interventions. In particular, one module showed a notably
high enrichment in immune and inflammation related
transcripts. The presence of upregulated macrophage
markers and genes expressed specifically in immune cells
indicated that this module may represent mRNA measure-
ments of macrophage origin. We found that this module
exhibits a distinct pattern between interventions, where
nearly all genes were downregulated by DLI but upregu-
lated by T0901317 intervention. This provides a key hep-
atic signature linked to improvement or detoriation of
dyslipidemia related parameters by DLI and T0901317
intervention.

The network signatures resulting from this analysis
provide ranking scores for genes based on their rele-
vance in mediating the effect that each intervention has
on disease parameters. By using a random walks based
algorithm we were able to encode the structure of the
underlying transcriptionally regulated networks in this
ranking. The importance of each node is scored accord-
ing to the centrality of its position along the paths con-
necting intervention targets with the co-expression
modules. We showed that this network-based approach
outperforms ranking by differential expression alone.
Based on these signatures, we propose genes which have
a key role in linking interventions and disease param-
eter. Genes with a high relevance score unique in the
DLI signature, but not for the drug interventions (Fasn,
Axl, Fgf21, Gpd2, Cypl7al, Pkm, Fastkd5), may point to
putative targets for improved interventions mimicking
the mechanisms underlying DLI. Notably, the gene
products of two of these genes are already under investi-
gation as therapeutic targets. Fgf21, encoding for Fibro-
blast growth factor 21, is currently being investigated as
novel therapeutic agent for T2DM [34,35], and the anti-
diabetic properties of the fatty acid synthase (Fasn) in-
hibitor platensimycin have recently been demonstrated
in a mouse model [36]. Interestingly, Axl, encoding for
the AXL receptor tyrosine kinase, was found to induce
T2DM after overexpression in transgenic mice [37]. In
addition, we highlighted a possible key role in cross-talk
between inflammatory and metabolic processes (Sdc2,
Sdc3, Anxa2) in context of the DLI intervention. Both
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Sdc2 and Sdc3 encode for syndecans which function as
co-receptors in various growth factors signaling path-
ways and play a role in inflammation as well as lipid me-
tabolism [38]. The therapeutic relevance of this finding
may reside in their potential use in uncoupling the in-
flammation component from metabolic dysfunction
which is known to play a critical role in T2DM [39]. In
addition to a network based ranking of genes, the net-
work signatures provide visualization that reveal the
underlying interactions among the top ranked nodes.
This facilitates interpreting mechanisms and substantiat-
ing evidence by putting the genes in context of existing
knowledge underlying each interaction. Such integration
of resources allows for optimal utilization of ever-
growing body of publicly available knowledge and data
to address research problems of specific interest.

Conclusions

In summary, by combining data- and prior knowledge-
driven networks, correlation analysis, functional annota-
tion and random walks based network analysis, we
identified relevance-ranked hepatic network signatures
underlying effects of different anti-diabetic interventions
on dyslipidemia-related disease parameters. We propose
that the DLI network signature may serve as a template
for defining new or better intervention targets that me-
diate global positive effects of this intervention. In turn,
network signatures of the two drugs assist in further
specification of optimal intervention targets, as these
possibly correlate to adverse effects and as such should
be avoided.

Methods

Transcriptomics dataset

The generation of the transcriptomics dataset of the
ADT study used in this analysis has been described in
[22]. The dataset was obtained from the ArrayExpress
database (E-MTAB-1063) [40]. This dataset consists of
hepatic transcriptomics measurements with the Illumina
MouseRef-8 v2.0 Expression BeadChip platform on
LDLr-/- mice that were fed either chow diet or high-fat
diet (HFD) for 16 weeks. At 9 weeks, mice from the
HED group were either kept on HEFD, switched back
to chow diet (dietary life style intervention, DLI), or
treated with a drug intervention on top of the HFD (the
groups for T0901317 and fenofibrate were included in
this analysis). The data was normalized using quantile
normalization as described in [22]. Differential expres-
sion p-values between the HFD group at 16 weeks
(HF16wk) and each intervention group (dietary life style
intervention (DLI), Fenofibrate, T0901317) were calcu-
lated using the limma R package [41]. Adjusted p-values
were calculated using the Benjamini-Hochberg method.
For filtering the networks unadjusted p-values were
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used, whereas for discussing individual genes in the text
we used the adjusted p-value.

Knowledge-based network

The knowledge-based network was generated by integrat-
ing relations between genes/proteins from different re-
sources, including curated pathways (WikiPathways
v20120408 [4], KEGG v20110518 [42], and a set of intern-
ally curated pathways), protein interactions (STRING v9
[43], including all interactions with score >0.4), transcrip-
tion factor targets (Tfe [44] v20111018, Ingenuity Pathway
Analysis), known drug-protein interactions for Fenofibrate
and T0901317 (STITCH 3.1 [25]). The knowledge-based
networks used as input are available in the GML format
(Additional file 8).

Co-expression network modules

Gene co-expression modules were identified using the
WGCNA package for R [13]. Pairwise gene correlations
were calculated based on the expression profile over
the hepatic samples from the ADT study at timepoint
16 weeks, in the chow diet, HFD, DLI, Fenofibrate,
and T0901317 treated groups. A soft threshold function
(power =4) was applied to the resulting adjacency
matrix based on the criterion of approximate scale-free
topology (minimum power for which the scale-free fit
coefficient > 0.9). The resulting network was clustered
into modules by performing hierarchical clustering on
the topological overlap matrix (TOM) and using the
TreeCut algorithm to define modules (hybrid mode
without PAM stage, minimal module size of 20 genes)
[45]. Each module was annotated to Gene Ontology
using the Bioconductor package GOstats [46], using the
hypogeometric test.

The knowledge-based network and the nodes and
edges within the co-expression modules were combined
to form a single reference network on which further
analysis was applied. This was done by taking the union
of nodes and edges of both networks followed by mer-
ging any multiple edges into single edges.

Correlation between co-expression modules and disease
parameters

The ADT study [22] included measurements on 16 dis-
ease parameters. These include plasma glucose and insu-
lin, QUICKI index, body and organ weights (adipose
depots, kidney, liver, heart, and total body weight), ath-
erosclerotic lesion area, plasma cholesterol, and plasma
and liver triglycerides (Additional file 9). To associate
the co-expression network modules to changes in these
disease parameters, the eigengene (first principal compo-
nent, see [22]) of each module was correlated to the
measured physiological parameters by Pearson correl-
ation. To ensure the eigengene sufficiently represented
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the expression profiles of the module genes, modules for
which the first principle component explained less than
50% of the variation were excluded from the network.

Intervention-specific networks

To make the reference network intervention-specific, a
subnetwork was generated for each intervention by filter-
ing the reference network for corresponding differentially
expressed genes relative to the HF diet group. Three
intervention-specific subnetworks were generated (the
DLI network, Fenofibrate network and T0901317 net-
work), by filtering all differentially expressed genes using a
moderate significance threshold (unadjusted p < 0.05). To
allow for modeling the drug response, nodes that repre-
sent the drug or direct drug targets were included regard-
less of their differential expression. For the DLI network, a
virtual “DLI” node was added and connected to the tran-
scription factors of which the target sets were significantly
enriched with differentially expressed genes (overlap P
value < 0.001, Ingenuity Pathway Analysis [47]).

Disease associations

To assess the translational relevance of the response net-
works, information on human genetic disease associa-
tions was combined with the genes in the network. A
list of human genes was compiled which were genetically
associated with any of a set of metabolic syndrome re-
lated phenotypes (T2DM, insulin resistance, metabolic
syndrome, obesity) based on the genetic association
database (v11102011) [48] and HuGE Navigator Pheno-
pedia (v11102011) [49]. These genes were mapped when
possible to their mouse ortholog using mappings pro-
vided by Ensembl (version 64) [50].

To assess the ranking performance of the network signa-
tures for genes relevant to hepatic T2DM related pro-
cesses, we used the text mining tool Fable (http://fable.
chop.edu) to create a reference list of known functionally
relevant genes or proteins. We applied the PubMed query
“type 2 diabetes mellitus’ AND liver” in Fable to compile a
list of 491 human protein names. As with the genetic asso-
ciations, the resulting genes were mapped when possible to
their mouse ortholog using mappings provided by Ensembl
(version 64), resulting in a reference list of 93 mouse genes.

Enrichment with drug targets and genetically associ-
ated genes was calculated using the Hypergeometric test.
Drug targets were obtained from DrugBank, by querying
for targets of drugs acting on T2DM, Fatty liver, or Ath-
erosclerosis. For genetic associations, the set of genes
obtained from the genetic association database and
HuGE Navigator Phenopedia (see above) was used.

Tissue specificity and translatability
Genes in the signatures were cross-referenced with
RNA-Seq baseline experiments from ArrayExpress Atlas
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[51], providing information on whether the gene is
expressed under baseline conditions in 6 mouse tissues
and 27 human tissues (E-MTAB-599 and E-MTAB-1733).
The default expression level cutoff of 0.5 FPKM (Frag-
ments Per Kilobase of transcript per Million mapped
reads) was used. Human genes were mapped when pos-
sible to their mouse ortholog using mappings provided by
Ensembl (version 64).

Subnetworks linking intervention and disease parameters
To identify subnetworks relevant for the relationship be-
tween a drug and a disease parameter, the kWalks algo-
rithm [52] was used. The kWalks algorithm aims to
extract a subnetwork that best explains the relationships
between a set of given nodes of interest in a network. In
this case, the nodes of interest are the node for a given
drug, and the nodes in a given co-expression module
which correlates to a disease parameter. For each com-
bination of drug and co-expression module, relevance
scores were calculated for each node and edge in the
corresponding response network, representing the ex-
pected number of times the node or edge is visited by
random walks between the drug node and module
nodes. To increase performance, the maximum path
length of the random walker (L,,) was set to 50, which
was shown to approximate the case of using unlimited
random walks very well [52].

The resulting node and edge relevances were used to
extract the most relevant paths from drug origin to dis-
ease parameters. For visualization of the most relevant
subnetworks, a cutoff for the edge relevance score was
identified that minimizes the complexity of the network,
while keeping both the drug and module nodes con-
nected. We identified the maximum edge relevance
score (Imax) for which the drug nodes and a minimum of
5 module nodes are in the same connected component
after removing all edges below rp... If no such ry.y
could be identified, the minimum number of required
module nodes was decreased until a valid rp,,, could be
found. To include the core of the co-expression module
in the visualization, the resulting network was combined
with the top ten module genes with the highest module
membership score (correlation with the module's eigen-
gene) and their edges.

Network processing and visualization
The networks were loaded and processed in R using the
igraph package [53]. For network visualization, Cytos-
cape (version 2.8.1) [54] was used. The resulting network
visualizations are available in the Cytoscape session file
format (Additional file 10).

All R scripts and the required input data used in this
analysis are available as a repository on GitHub (https://
github.com/thomaskelder/ADT-liver-network).
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Additional files

Additional file 1: Figure S1. Dendrogram and module assignment
(colors in bar below dendrogram) of the topological clustering of the
co-expression network.

Additional file 2: Table S1. This table contains the module
assignments for each gene in the dataset, as well as corresponding
module membership scores and p-values (based on correlation to the
module eigengene).

Additional file 3: Module selection analysis. This document contains
a detailed description of the analysis on all co-expression modules in
order to select those relevant for further analysis.

Additional file 4: Table S2. Results of enrichment analysis of the
signatures with drug targets and genetically associated genes.

Additional file 5: Table S3. Tissue specificity analysis of the signatures.

Additional file 6: Figure S2. Network visualization of a subnetwork
underlying the signature for module C, see Figure 4 for detailed legend.

Additional file 7: Figure S3. Network visualization of a subnetwork
underlying the signature for module A, see Figure 4 for detailed legend.

Additional file 8: Knowledge-based networks used as input.
Contains a zip archive with the GML files for each knowledge-based
network used in this analysis. The GML format (http://en.wikipedia.org/
wiki/Graph_Modelling_Language) can be read using the R igraph library
or Cytoscape (http://www.cytoscape.org).

Additional file 9: Disease parameters. Excel table containing the
measurements on the disease parameters from the ADT study.

Additional file 10: Cytoscape network visualizations. Cytoscape
session file containing the network visualizations as displayed in Figure 4,
supplementary Figure S3, and supplementary Figure S4. This file format
can be opened using Cytoscape (http://www.cytoscape.org) version 2.8.
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