Pienaar et al. BMIC Systems Biology (2015) 9:79

DOI 10.1186/512918-015-0221-8
BMC

Systems Biology

RESEARCH ARTICLE Open Access
@CrossMark

In silico evaluation and exploration of
antibiotic tuberculosis treatment regimens

Elsie Pienaar'?, Véronique Dartois®, Jennifer J. Linderman'™ and Denise E. Kirschner®”

Abstract

Background: Improvement in tuberculosis treatment regimens requires selection of antibiotics and dosing schedules
from a large design space of possibilities. Incomplete knowledge of antibiotic and host immune dynamics in tuberculosis
granulomas impacts clinical trial design and success, and variations among clinical trials hamper side-by-side comparison
of regimens. Our objective is to systematically evaluate the efficacy of isoniazid and rifampin regimens, and identify
modifications to these antibiotics that improve treatment outcomes.

Results: We pair a spatio-temporal computational model of host immunity with pharmacokinetic and pharmacodynamic
data on isoniazid and rifampin. The model is calibrated to plasma pharmacokinetic and granuloma bacterial load data
from non-human primate models of tuberculosis and to tissue and granuloma measurements of isoniazid and rifampin in
rabbit granulomas. We predict the efficacy of regimens containing different doses and frequencies of isoniazid and
rifampin. We predict impacts of pharmacokinetic/pharmacodynamic modifications on antibiotic efficacy. We demonstrate
that suboptimal antibiotic concentrations within granulomas lead to poor performance of intermittent regimens
compared to daily regimens. Improvements from dose and frequency changes are limited by inherent antibiotic
properties, and we propose that changes in intracellular accumulation ratios and antimicrobial activity would lead
to the most significant improvements in treatment outcomes. Results suggest that an increased risk of drug
resistance in fully intermittent as compared to daily regimens arises from higher bacterial population levels early

during treatment.

development.

Conclusions: Our systems pharmacology approach complements efforts to accelerate tuberculosis therapeutic
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Background

Pulmonary tuberculosis (TB) results from Mycobacterium
tuberculosis (Mtb) infection. TB is treatable, but remains a
significant public health problem worldwide [1]. Lengthy
treatment, requiring at least 6 months of chemotherapy
with multiple antibiotics, contributes to patient non-
compliance, relapse, drug-resistance, and toxicity, creating
an urgent need for shorter regimens and less frequent
dosing [2-5]. New approaches are desperately needed for
improving TB treatment [6] and include both designing
new treatment regimens and developing new antibiotics.
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Current regimen design is largely based on efficacy
data in mouse models and has not led to dramatic im-
provements to standard protocols [7]. New regimen de-
sign is difficult due to limited understanding of basic
mechanisms driving clinical outcomes [7] and because
standardized, side-by-side comparisons between treat-
ment regimens are lacking [8—10]. New anti-TB antibi-
otics are being developed, but it is difficult to predict
clinical efficacy based on in vitro experiments or even
pre-clinical efficacy data as illustrated by disappointing
results from recent clinical trials [11-13].

Though it is known that sufficient exposure of bacteria
to antibiotics is key to effective TB treatment, dynamics of
antibiotics and Mtb at sites of infection, i.e. within granu-
lomas, remain largely unknown and difficult to assess.
Granulomas are dense, roughly spherical, complex im-
munological structures that form upon Mtb infection.
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Granulomas isolate and control Mtb as well as provide a
niche for its persistence. These structures complicate treat-
ment since antibiotic penetration into granulomas is often
heterogeneous, and bacteria develop phenotypic tolerance
to antibiotics inside granulomas [14].

New antibiotics and regimens must be designed based
on a strong pharmacokinetic (PK)-pharmacodynamic
(PD) rationale, mindful of the complexities facing anti-
biotic penetration into and activity within granulomas [2].
Here we show how systems pharmacology can help nar-
row the design space of new antibiotic regimens and anti-
TB antibiotics. We use our established computational
model that integrates spatio-temporal dynamics of host
immunity (granuloma formation and function [15-19]),
PK (in plasma and in lung tissue) and PD [20] (Fig. 1a).
Our approach draws from data in animal studies of TB
that exhibit human-like pathology [21]. We use this model
to generate a repository of in silico granulomas and then
“treat” these granulomas with isoniazid (INH) and
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rifampin (RIF), alone and in combination. We compare
current regimens in a side-by-side analysis and, unique to
using a computational model, we are able to isolate mech-
anisms of antibiotic penetration and activity that lead
granulomas to sterilization. Further, we propose new anti-
biotic regimens and antibiotic property modifications that
could greatly improve TB treatment.

Results and discussion

Daily and intermittent regimens are not equivalent in
efficacy and intracellular Mtb dominate bacterial
populations during treatment with all regimens tested
While the CDC endorses both daily and intermittent (e.g. 2
or 3 doses per week) antibiotic regimens for TB treatment,
direct comparisons between these regimens are lacking.
Using our computational model, we evaluate treatment of
identical granulomas with four CDC-recommended regi-
mens (Fig. 1b) [22] to determine whether intermittent regi-
mens, using higher or equal drug doses, are equivalent to

i Plasma y'd
a Pharmacodynamics Pharmacokinetics &
A Simulation grid S
Tissue 4~ |\ .
Pharmacokinetics / ¢ @ Resting macrophage
Infected macrophage
Intracellular O Q n @ phag
Killing / < N Live Mtb
O‘ ] C'; Antibiotic Killed Mtb
‘/‘\ ( g . .
e ; (/ @ Antibiotic Gradient
'3 -
1 V&)
g W4 Caseum
4 )
Extracellular NJ n
Killing MY . O
Granuloma ’
b Infection TreaSment start
ay 100
Dj\y 0 Y l Day 114 Day 160 Day 280
1a Daily (15 mg/kg INH; 20 mg/kg RIF)
5 5 1b
ES
=) -
gz 2a Daily
3a Three times a week (45 mg/kg INH; 20 mg/kg RIF)
Time ——— >
Fig. 1 a Computational model. Granuloma formation and function, plasma pharmacokinetics (PK), tissue PK and pharmacodynamics (PD) are
integrated into a single computational framework. Cell recruitment, movement, states (e.g. activated), actions (e.g. tumor necrosis factor secretion),
interactions (e.g. macrophage activation) and death of macrophages and T-cells are followed over time, with granuloma formation and function as
emergent behavior. Bacteria are represented as three subpopulations: intracellular, extracellular replicating and extracellular non-replicating (i.e. residing
in caseous areas). Plasma PK equations determine the concentration of antibiotic at vascular source sites on the simulation grid. Antibiotics permeate
the vascular wall, diffuse within the granuloma, penetrate host cells and kill bacteria based on local intracellular and extracellular concentrations.
Further model details are available in [20]. Artwork in (a) was constructed by combining and modifying artwork elements from Servier Medical Art
(http//www.serviercom/Powerpoint-image-bank) provided under the Creative Commons Unported License 3.0. b Simulated antibiotic dosing
regimens. Simulated infections are initiated at day 0 and granulomas evolve for the first 100 days (red bars). Regimens 1a, 1b, 2a and 3a,
recommended by the CDC/WHO [22], are composed of different doses and frequencies. Regimens 1b and 2a switch from daily to 2 doses per
week after 60 and 14 days of treatment, respectively. Each regimen is implemented with INH, RIF and INH + RIF
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daily regimens with regard to antibiotic penetration into  given for 3 doses per week (Fig. 1b). While bacterial re-
granulomas and bacterial killing. We use doses of INH  growth during RIF treatment is less pronounced than dur-
and RIF that yield human-equivalent exposure in non- ing INH treatment, intermittent regimens still allow higher
human primates (NHPs) [23]. Our computational model levels of bacteria for RIF and INH + RIF treatment as com-
is calibrated to NHP data as much as possible; tissue PK  pared to 7 doses per week. Treating with a combination of
characteristics are based on antibiotic penetration in  INH and RIF lowers bacterial numbers compared to mono-
rabbit granulomas [14, 20] as equivalent NHP data are not  therapy for all regimens tested (Fig. 2g-i).
available. We generate a repository of 500 in silico granu- After seven days, nearly all extracellular bacteria are
lomas, simulate treatment according to current CDC regi- eliminated, independent of antibiotic or regimen (Fig. 2).
mens (Fig. 1b), and calculate both average antibiotic  Elimination of extracellular Mtb is responsible for the
concentrations and bacterial numbers for each granuloma  steepest decreases in total colony forming units (CFU, a
over time. We distinguish between three bacterial subpop-  measure of bacterial load). Intracellular Mtb are elimi-
ulations — intracellular, extracellular replicating and extra-  nated more slowly, and continue to dominate total bac-
cellular non-replicating; the last represents bacteria trapped  terial populations for all regimens during the 6-month
in caseum, the necrotic center characteristic of TB granu-  treatment period (Additional file 1: Figure S1). The pro-
lomas [24]. These bacterial subpopulations have differential ~ portions of extracellular non-replicating populations in-
susceptibilities to INH and RIF [25-27] and we assign each  crease once regimens 1b and 2a switch from daily to
subpopulation a different Cs, value (concentration where intermittent phase (Additional file 1: Figure S1).
50 % of maximum efficacy is achieved) [20].

Compared to daily regimens (Fig. 2a, d), intermittent reg-  Antibiotic exposure within granuloma interiors is below
imens (Fig. 2b, ¢, e, f) reduce the time during which drug effective levels for all regimens
levels remain above Cso for both INH and RIF. For both  Temporal dynamics in antibiotic concentration can be
antibiotics we observe bacterial regrowth between doses captured by cumulative exposure measures such as area
once antibiotic levels decrease below effective concentra- under the concentration curve (AUC), which correlates
tions, and lower dosing frequency leads to increased bacter-  with efficacy for INH and RIF [28, 29]. Our model results
ial growth. For INH, a 7 dose per week regimen shows (Fig. 3a) provide first time predictions of AUC averaged
better efficacy than 3 doses per week despite the larger dose  over entire granulomas (Fig. 3b, f) as well as for specific
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Fig. 2 Average bacterial and antibiotic dynamics in simulated granulomas for the first 7 days of treatment with INH (a-c), RIF (d-f) or INH + RIF
(g-i) for 7, 3 and 2 doses per week regimens. INH (a-c¢) and RIF (d-f) concentrations (orange curves) inside granulomas are plotted on left vertical-
axes; bacterial subpopulations (purple, blue, green and red) are plotted on right vertical-axes (all panels). Solid curves are mean and dashed curves
are +/— SEM (N =417). Black lines are Csq values (Csq: concentration where antibiotic reaches 50 % of its maximal activity) for intracellular (Csqpy),
extracellular (Csoge) and non-replicating (Csq, gn) bacterial populations
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Fig. 3 Antibiotic distribution, cumulative exposure (AUC) and treatment outcomes in simulated granulomas. a Simulated granuloma snapshot at
100 d.p.i. with cellular (gray) and caseated (purple) areas indicated. Snapshot shows resting (green), activated (blue), and infected (orange and
red) macrophages; extracellular bacteria (brown); T cells (purple, pink and light blue). b INH 7 day AUC (mg.h/L) averaged over entire granulomas
for all simulated granulomas (N =417). c-e INH 7 day AUC as a function of position in the granuloma in panel (a). AUCs are calculated over the
first week of treatment with three dosing regimens: 7 doses per week, 3 doses per week, and 2 doses per week. f-i Same as (b-e) but for RIF.
Cellular and caseum outlines from (a) are shown in black and white lines respectively in (c-e; g-i). Color bars are scaled from 0 mg.h/L to the AUC
ECgo (exposure where 80 % of maximal killing is achieved) for each antibiotic. j Treatment outcomes for single antibiotic therapy. Each circle
represents one granuloma sterilized during 180 days of treatment. Bars and errors bars: mean +/— SEM of time to sterilization. Numbers on the
right show treatment failure rates. k Treatment outcomes for combination therapy with INH and RIF. Green bars and errors bars: mean +/— SEM.
Red and blue lines indicate means for INH (red) and RIF treated granulomas (blue) from (j). | Probability of a host with 1, 10 or 46 granulomas
sterilizing all granulomas during 6 months of treatment. *: p < 0.0001 (one way ANOVA with Sidak multiple comparison correction)
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locations within granulomas (Fig. 3c-e, g-i) during the first
week of treatment. These values have not yet been experi-
mentally determined.

Average INH AUC over entire granulomas is signifi-
cantly higher for 3 doses per week regimen than for 7
doses per week (Fig. 3b). This increase is due to higher
INH doses (45 mg/kg; Fig. 1b) used for intermittent regi-
mens. However, in examining spatial variation of INH
AUC inside granulomas (Fig. 3c-e), note that higher
average AUC for the 3 doses per week regimen reflects
an increase in AUC in the granuloma periphery while in-
terior exposure remains low. Conversely, average and
spatial INH exposure within granulomas for the 2 doses
per week regimen is lower than for 7 doses per week.
For RIF there is a noticeable decrease in average (Fig. 3f)
and spatial (Fig. 3g-i) AUC as frequency decreases, since
RIF doses are not increased with decreasing frequency
(following protocol) [22]. Taken together, these predic-
tions suggest that antibiotic exposure in granuloma inte-
riors (where bacteria reside) is well below effective
exposures in all regimens tested.

Intermittent regimens show higher treatment failure rates
and longer times to sterilization than daily regimens;
combination therapy improves outcomes

Data connecting antibiotic dynamics to long-term treat-
ment success are lacking and challenging to obtain
experimentally. We can probe how drug exposure differ-
ences between regimens influence long-term treatment
outcomes. At the granuloma scale, we define treatment
success as elimination of all bacteria from a granuloma and
treatment failure as bacteria remaining after 6-months of
treatment. We evaluate outcomes of antibiotic treatment
by computing the average time to sterilization (Ts) and the
treatment failure rate (Fig. 3j). Ts shows little variation be-
tween INH regimens and indicates that the majority of
granulomas sterilized with INH regimens 1b and 2a were
sterilized during the initial phase of daily dosing. Higher
treatment failure rates for INH-2a compared to INH-1b in-
dicate that switching to intermittent dosing too early can
hamper sterilization. RIF-3a takes significantly longer to
sterilize than RIF-1a. RIF is less efficient than INH in terms
of treatment failure rates in all the intermittent regimens
(1b, 2a, 3a). Since combination therapy is typical, we also
evaluated outcomes of INH + RIF treatment (Fig. 3k), as-
suming antibiotics act independently. Combination ther-
apy shortens Ts and lowers treatment failure rate for all
regimens as compared to individual antibiotic regimens.
INH + RIF-3a significantly increases Ts compared to
INH + RIF-1a.

Assuming high numbers of independently evolving
granulomas (46 in NHPs [30]) and using per-granuloma
failure rates (Figs. 3j-k), we can calculate the compound
probability of a host being cured, i.e. all granulomas
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being sterilized. Fig. 3l shows that low treatment failure
rates at the granuloma scale could lead to significant risk
of treatment failure in hosts with multiple granulomas.
These results support the hypothesis that switching from
daily to intermittent dosing too early (regimen 2a) can
lead to higher rates of treatment failure, and that fully
intermittent regimens (regimen 3a) significantly delay
granuloma sterilization.

Small increases in dosing frequency could improve
outcomes

We exploit the power of our systems pharmacology ap-
proach to explore INH and RIF doses and frequencies,
using multiple treatment outcome metrics (Fig. 4a). As
expected, high antibiotic doses at high frequency give
the best outcomes in terms of lowering total CFU after
treatment, Ts, and treatment failure rate. For both anti-
biotics, doses above ~15 - 20 mg/kg given 3-5 times a
week can achieve significant improvement as measured
by total CFU or treatment failure rate. However, a dos-
ing frequency above 7-11 doses per week is needed to
minimize Ts.

To provide an overall measure of treatment efficacy, we
define a treatment outcome index, TOI, a combination of
total CFU, Ts and treatment failure rate. INH-1a and RIF-
la perform best by this measure, with improvements pre-
dicted if frequencies increase to 9 doses per week or doses
to 25 — 30 mg/kg. Toxicity can occur at higher doses and
is a concern, especially for INH [31]. Our suggested in-
creases in dose and/or frequency could likely be well-
tolerated by patients for RIF [32] but not for INH [33]. To
illustrate the trade off between cumulative dose and effi-
cacy: cumulative INH dose for regimen 1a is 105 mg/kg/
week. An increase in frequency to 9 doses per week would
result in 135 mg/kg/week; an increase in dose only to
25 mg/kg would result in 175 mg/kg/week. Therefore, we
predict that increasing INH dose frequency would be a
safer option than increasing dose. As evident in our ana-
lysis, regimen comparisons will depend on the outcome
metrics used. For example, considering CFU after treat-
ment alone, one would conclude that regimens la and 3a
have similar efficacy. However if one considers the add-
itional outcome metrics or a combination of these out-
come metrics (in the form of TOI) it is clear that the two
regimens are not equally effective.

Performance of antibiotics with modified PK and PD
properties

Strategic modification of existing antibiotics is an attract-
ive complement to discovery of new compounds. We can
evaluate the performances of potential derivatives of INH
and RIF by modifying key PK and PD properties and
quantifying the extent to which these derivatives are pre-
dicted to lower bacterial load, shorten Ts and lower
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axes) previously identified [20] to affect outcomes. Results for INH-1a/RIF-1a (center columns on all panels) are compared with antibiotics where
properties were decreased (by 20, 50 or 90 %, left of center) or increased (by 20, 50 or 100 %, right of center) from INH/RIF values. Y-axes show
parameters: vascular permeability; maximum killing activity against intracellular Mtb; Hill constant quantifying steepness of dose response killing
curve for intracellular Mtb; rate of antibiotic metabolism inside host cells; rate of antibiotic clearance from plasma; Cellular uptake ratio; concentration of
antibiotic where 50 % of maximum killing activity is achieved against intracellular Mtb
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treatment failure rate (Fig. 4b). In previous work, we iden-
tified antibiotic properties most influential in determining
treatment outcome, including four PK parameters (vascu-
lar permeability, plasma clearance rate constant, cellular
uptake ratio and drug metabolism rate) and three PD pa-
rameters (maximum killing activity, steepness of the dose
response killing curve (Hill constant), and Cs for intracel-
lular bacteria) [20]. Infection outcome measures for regi-
mens INH-1a and RIF-1a are shown in center columns in
all panels of Fig. 4b, and can be compared to other col-
umns within the same panel representing potential new
antibiotics with individual PK or PD parameters decreased
(by 20, 50 or 90 %) or increased (by 20, 50 or 100 %) from
INH or RIF values. As expected, INH and RIF derivatives
with increased vascular permeability or maximum intra-
cellular activity show improved outcomes, while the re-
mainder show improved outcomes when corresponding
parameters are decreased.

Large changes (>50 %) in antibiotic properties can be
difficult to achieve chemically, so we focus our search
on antibiotic properties where small changes (10-20 %)
from parent drugs are predicted to have a large effect on
the outcome of treatment. Total CFU after treatment
and treatment failure rate can be minimized by INH de-
rivatives with only a 20 % change in maximum intracel-
lular killing activity, intracellular Hill constant or cellular
uptake ratio. RIF derivatives with a minimum of 50 %
change in intracellular Hill constant, antibiotic metabol-
ism rate and cellular uptake ratio are required to minimize
total CFU after treatment and treatment failure rate. Ts is
only minimized by INH and RIF derivatives with 50-90 %
changes in properties such as maximum intracellular kill-
ing activity and drug metabolism rate. Therefore, deriva-
tives with smaller changes in combinations of these
properties might be required to significantly shorten Ts.
This approach provides a first-time quantitative guide to
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strategic antibiotic design by systematically evaluating the
benefits of antibiotic modifications.

Intracellular bacteria present the main reservoir of
bacteria at risk of resistance

Clinical observations show that fully intermittent regi-
mens (such as 3a) have an increased risk of selecting for
drug resistance [34]. This could be due to sub-therapeutic
antibiotic exposure in these regimens (Fig. 3a-i) and/or to
larger surviving bacterial populations (Fig. 2) that simply
increase the probability of drug resistance. While captur-
ing the development of bacterial resistance is beyond the
scope of this study, we are able to identify regions within a
granuloma for which antibiotic exposures could lead to
increased selection of resistant strains. We perform this
analysis for RIF only, building on data from in vitro RIF
resistance studies that link RIF-resistance to a specific
range (0.009 to 0.07) of C,,,,/Csp values [28] (C,..x: peak
concentration during the dosing period); comparable data
for INH is not available.

We calculate RIF C,,,./Cs, for specific locations in in
silico granulomas (Fig. 5a, b), and identify regions in
granulomas with RIF exposure in the experimentally
determined ‘high-risk’ range for each bacterial subpopula-
tion (Fig. 5c-e). The high-risk region for intracellular
bacteria (Fig. 5¢) is larger than those for non-replicating
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extracellular (Fig. 5d) and replicating extracellular bacteria
(Fig. 5e). However, the development of resistance also
depends on how many bacteria reside in these high-risk
regions. We quantify the number of bacteria in high-risk
regions in all granulomas (Fig. 5f, g) and numbers are
reflective of total bacterial load (Fig. 5h, i). At-risk bacter-
ial populations are higher for RIF-3a early on and for RIF-
1b and RIF-2a after switching from daily to 2 doses per
week, as compared to RIF-1a. For all regimens, the intra-
cellular subpopulation is at highest risk of developing re-
sistance, due to both high proportions of intracellular Mtb
(Additional file 1: Figure S1), as well as larger high-risk
regions (Fig. 5¢). This indicates that the clinically observed
increased risk of drug resistance for RIF-3a (compared to
RIF-1a) [34] is due to higher intracellular bacterial load in
high-risk regions early in treatment.

Conclusions

TB remains one of the leading infectious diseases world-
wide [35]. Experimental studies in appropriate animal
models are costly and difficult, and computational models
are ideal for generating and testing hypotheses. We evalu-
ate TB treatment using our computational model that
integrates host immune dynamics, plasma PK, tissue PK,
PD and bacterial dynamics and is calibrated to animal
models of TB. The model is well-suited to study TB
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treatment in the complex granuloma environment, which
is difficult to accomplish clinically or in the laboratory.

There is clinical evidence for improved patient compli-
ance and effective treatment of active TB with intermit-
tent regimens [36]. However, direct efficacy comparisons
between daily and intermittent regimens are scarce, and
existing reports do not agree on the clinical differences
between daily and intermittent regimens [34, 37, 38].
Our simulated granulomas do not suffer from cohort-to-
cohort variability, which often limits comparison of clin-
ical trials. Our side-by-side comparison of regimens indi-
cates that intermittent INH and RIF regimens have an
increased risk of treatment failure and prolonged time to
sterilization as compared to daily regimens. We can use
the computational model to quickly and systematically
test a large number of regimens and quantify improve-
ments that are achievable, acknowledging two major
obstacles: drug toxicity associated with increased cumu-
lative exposure to antibiotics, and patient compliance
and implementation issues associated with directly ob-
served treatment. While more than double the current
dose of RIF is well tolerated in most patients [32, 39], in-
creases in INH exposure are only well-tolerated in pa-
tients with fast INH plasma clearance rates [33]. It is
increasingly appreciated that antibiotic levels may have
an important impact on TB treatment outcomes and
emergence of drug resistance [40, 41]. This is particu-
larly true for the rifamycins, as demonstrated in multiple
clinical studies of ‘high-dose’ RIF or rifapentine [32, 42].
Increasing dosing frequency can aggravate patient com-
pliance issues, unless an increase in dosing frequency
can lead to a significant reduction in treatment duration.
Implementation of higher dosing frequencies places in-
creased strain on patients that need to have their dosing
observed. However, such stresses could be alleviated by
training home supervisors [43] or community members
[44] to facilitate DOT. Ultimately, TB treatment is an
optimization challenge spanning multiple biological, so-
cial and epidemiological scales.

Furthermore, is it more desirable to improve drug pene-
tration or potency? We have shown that antibiotic efficacy
is the result of a complex interplay between a variety of
PK and PD properties including effective concentrations
(Cso), tissue distribution and drug uptake by host cells,
and we have quantified the impact of each property. Our
results confirm that over-reliance on potency rather than
PK and PD at the site of infection should be avoided [2].
Antibiotic limitations are functions of physico-chemical
properties that can be dialed-in by medicinal chemistry, to
some extent [45]. For example, QSAR-based design has
made significant strides toward rational design of INH
derivatives [46, 47], but is almost exclusively focused on
lowering MIC [46-48]. A systematic evaluation of the
penetration of new drug candidates to the site of action
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most relevant for their sterilizing activity will undoubtedly
help shorten TB treatment and minimize the number of
agents required to achieve a sterile cure [45]. We move to-
ward such systematic evaluation by predicting where INH
and RIF are limited in the path from blood to lesion to
bacterium [2]. Our approach can provide structure and
direction to medicinal chemistry efforts and early drug
discovery programs.

How antibiotic and bacterial dynamics in the granuloma
contribute to the global rise in antibiotic resistant TB, re-
mains unclear. There is a knowledge gap between in vitro
studies of drug-resistance and clinical observations. Using
our model, we offer the first time ability to predict both
spatial and temporal risks of resistance in granulomas for
different regimens, and can move toward designing desper-
ately needed treatment regimens minimizing drug resist-
ance. In vivo studies of drug resistance in NHP models of
TB are difficult due to low bacterial numbers per granu-
loma. In vitro resistance studies incorporating PK [28]
could be integrated into a next-generation model, shedding
light on the contribution of unintentional monotherapy
(e.g. in non-replicating bacterial populations where INH
performs poorly) to drug resistance development. TB treat-
ment could move beyond traditional antibiotic treatment
to include immune-modulation and targeted drug delivery
[49, 50], and we have begun to explore those possibilities
with our computational model [18, 51].

Our computational approach, particularly when ex-
panded to include additional antibiotics such as bedaqui-
line, can form part of the international collaborative
effort to determine which antibiotics and combinations
should be advanced to phase 2 and 3 clinical trials [10]
and inform strategies to include immune-modulators in
TB treatment [49]. As efforts to shorten treatment regi-
mens beyond the current 6 months have failed in clinical
trial stage [7, 11-13], our method provides a straightfor-
ward way to understand reasons for inferiority of shorter
regimens [7], and to explore new combinations and
strategies in silico, increasing the probability of clinical
trial success.

Methods

Agent-based model of antibiotic treatment in TB
granulomas

Our next-generation computational model captures granu-
loma formation and function [16, 17, 19], plasma and lung
tissue pharmacokinetics (PK) and pharmacodynamics
(PD) of INH and RIF [20] (Fig. 1a). Briefly, our computa-
tional agent-based model (ABM) of granuloma formation
spans molecular, cellular and tissue scales. The tissue scale
comprises cellular movement in chemokine gradients on a
2 dimensional grid. The cellular scale comprises discrete
macrophage and T cell agents and their interactions, with
cell-specific states (resting, activated, infected or chronically
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infected for macrophages; and cytotoxic T cells, regulatory
T cells or IFN-y producing T cells). When the cumulative
number of host cell deaths in a grid compartment reaches
a threshold the compartment becomes caseated. The mo-
lecular scale comprises secretion, diffusion, binding and
degradation of cytokines (tumor necrosis factor-a,
interleukin-10) and chemokines (CCL-2, CCL-5, CXCL-9).
Vasculature on the simulation grid is represented by des-
ignating a randomly-distributed number of micro-
compartments as vascular source compartments where
recruited host cells and antibiotics enter the grid. Vascular
sources inside the granuloma are considered inactive to
reflect lack of vascularization observed in vivo [52]. Bac-
terial populations are captured by continuous variables
representing extracellular replicating Mtb (in each ‘healthy’
grid compartment), extracellular non-replicating Mtb (in
each caseated grid compartment) and intracellular Mtb (in
each macrophage). Bacterial dynamics comprise growth,
killing by activated macrophages, killing when infected host
cells Mtb reside in undergo apoptosis or cytotoxic killing.
Macrophages burst when intracellular Mtb reach the carry-
ing capacity of a macrophage, distributing the bacteria to
surrounding grid compartments. Full methodological de-
tails are available online (malthus.micro.med.umich.edu/
GranSim/).

Antibiotic plasma PK are captured by a four-compartment
ODE model of oral antibiotic absorption [14, 20]. Antibiotic
tissue PK comprises diffusion and degradation on the simu-
lation grid and penetration into and metabolism by host
cells. We implement diffusion as described in [16, 18, 53]
using insulating boundary conditions for antibiotic diffusion
under the assumption of similar vascularization on grids
adjacent to the one under investigation. Cellular accumula-
tion of antibiotics is modeled at pseudo-steady state [54],
using a partition coefficient to calculate intracellular and
extracellular antibiotic concentrations following diffusion.
Antibiotics are added to or subtracted from the vascular
source compartments on the grid based on concentration
differences between plasma and grid concentrations.

Antibiotic PD are calculated using an E,,,, model as
in [55] with parameters defined separately for intra- or
extracellular populations since PD differ between these
populations [25, 26]. PD are calculated for each grid
compartment or macrophage using local antibiotic con-
centrations. Antibiotic killing is implemented by sub-
tracting the killing rate (calculated from the E,,,,, model)
from the growth rate for each Mtb population.

This model is calibrated to data from NHPs (cynomolgus
macaques), the animal model that most closely reproduces
human disease and pathology [21], and is continuously cu-
rated to incorporate new data. Plasma PK and PD parame-
ters are calibrated to NHP data [23, 30] while tissue PK
parameters are calibrated to rabbit data [14] due to a lack
of data in NHPs. We assumed similar INH and RIF tissue
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distribution parameters in rabbits and NHPs. Spatial reso-
lution of INH and RIF concentrations within granulomas is
not available from experiments, but can be determined
from the computational model. We used Csq values from
in vitro experimental data sets [25, 26] and calibrated other
potency parameters to match per granuloma outcomes in
INH and RIF treated NHPs [20, 30]. For this work, we
modified the computational model to allow us to study
INH + RIF combination therapy and multiple dosing regi-
mens. We assumed that INH and RIF are indifferent in
combination [56, 57]. Parameter values for host im-
mune functions as well as antibiotic PK and PD are
given in Additional file 1: Tables S1 and S2.

Treatment regimens

We simulated INH- and RIF-containing regimens recom-
mended by the CDC/WHO [22] (Fig. 1b). INH dose size
was increased as dosing frequency decreases, but RIF dose
size was kept constant even when frequency changes as
per protocol. [22] We use doses of INH and RIF that
achieve human-equivalent exposure in NHPs [23]. RIF
doses are 20 mg/kg, and INH doses are 15 mg/kg for daily
dosing and 45 mg/kg for 2 and 3 doses per week.

Treatment outcome measures

Clinical trials use multiple measures of treatment effi-
cacy [3]. These outcomes are observed in patients, while
our focus is on a single granuloma. At the granuloma
scale, we define treatment success as elimination of all
bacteria from a granuloma (sterilization), and treatment
failure as bacteria remaining after treatment. We evaluated
treatment outcome based on (i) CFU after treatment (in
non-sterilized granulomas), (ii) time to sterilization
Ts (in sterilized granulomas) and (iii) the treatment
failure rate (percentage of granulomas not sterilized
by the end of the treatment period). For comparing
regimens, we defined a treatment outcome index
(TOI): TOI = (w,;CFU" + w,Ts + ws%Failure’)/3; where
w;=wy=w3 are weights assigned to each outcome
measure (i-iii). We assume equal weights. Asterisks
indicate normalization between minimum and maximum
over all regimens compared. The TOI ranges between 0
and 1, lower values representing “better” outcomes.

In silico treatment

We generated a repository of 500 in silico granulomas,
capturing inter-patient variability on a granuloma scale
by varying host immune and PK parameters within
ranges given in Additional file 1: Tables S1 and S2. We
allowed granulomas to evolve for 100 days post infection
(d.p.i) before starting treatment. Eighty-three granu-
lomas that cleared infection due to immune action prior
to treatment start (at 100 d.p.i) were excluded from the
analysis, leaving 417 granulomas in the final set.
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For evaluating antibiotic dose, frequency and PK/PD
property variations (Fig. 4) we use a separate repository of
82 granulomas that did not sterilize due to immune action
prior to treatment start at 100 d.p.i. For dose-frequency var-
iations, INH doses varied between 5 and 45 mg/kg and RIF
between 10 and 60 mg/kg. Frequency was varied between 1
and 14 doses per week for INH and RIF. All granulomas
were treated with each dose-frequency combination and
treatment outcome measures (CFU after treatment, Ts, and
treatment failure rate) were calculated as described above.

To explore efficacy of INH and RIF derivatives with dif-
ferent PK and PD properties, the repository of 82 granu-
lomas were treated with regimen INH-la and RIF-la
using baseline INH and RIF properties [20], or with one of
seven key properties varied individually. We generated
new antibiotics by decreasing (by 20, 50 or 90 %) or in-
creasing (by 20, 50 or 100 %) individual properties from
baseline INH and RIF values. Granulomas were treated
with the modified antibiotics and the treatment outcome
measures were calculated as described above.

Risk of drug resistance

In vitro experiments in hollow-fiber systems [28] have
shown that RIF resistance is amplified in a range of
Cimax/MIC. We converted this range to C,.x/Cso (Cso:
concentration where antibiotic reaches 50 % of its max-
imal activity) and calculated this value for each location
in the simulated granuloma at the end of each dosing
period, enabling us to predict which regions within
granulomas are prone to resistance development during
a particular dosing regimen. Since equal RIF doses are
given for all CDC regimens [22] (Fig. 1b), C,,../Cso
values are nearly identical for all dosing frequencies
(Fig. 2d-f). Therefore, the initial high-risk regions will be
similar for all dosing frequencies and we only considered
daily dosing. We also quantified the bacteria in each
subpopulation in the resistance-prone regions over the
entire treatment period. We only performed this analysis
for RIF due to the lack of data for INH. INH resistance
develops at nearly all concentrations/exposures in vitro
[27, 29] and in vitro resistance mechanisms do not re-
flect resistance mechanisms seen in patients [58].

Additional file

Additional file 1: Figure S1. Proportions of bacterial subpopulations
(intracellular, replicating extracellular and non-replicating extracellular) before
and during treatment with multiple regimens. Table S1: Granuloma host
parameter baseline values and ranges used to capture patient-to-patient
variability in the repository of 500 in silico granulomas. Table S2: Antibiotic
pharmacokinetic (PK) and pharmacodynamic (PD) parameters.
(DOCX 855 kb)
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