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Abstract

Background: Protein domains can be viewed as portable units of biological function that defines the functional
properties of proteins. Therefore, if a protein is associated with a disease, protein domains might also be associated and
define disease endophenotypes. However, knowledge about such domain-disease relationships is rarely available. Thus,
identification of domains associated with human diseases would greatly improve our understandingof the mechanism
of human complex diseases and further improve the prevention, diagnosis and treatment of these diseases.

Methods: Based on phenotypic similarities among diseases, we first group diseases into overlapping modules. We then
develop a framework to infer associations between domains and diseases through known relationships between
diseases and modules, domains and proteins, as well as proteins and disease modules. Different methods including
Association, Maximum likelihood estimation (MLE), Domain-disease pair exclusion analysis (DPEA), Bayesian, and
Parsimonious explanation (PE) approaches are developed to predict domain-disease associations.

Results: We demonstrate the effectiveness of all the five approaches via a series of validation experiments, and show the
robustness of the MLE, Bayesian and PE approaches to the involved parameters. We also study the effects of disease
modularization in inferring novel domain-disease associations. Through validation, the AUC (Area Under the operating
characteristic Curve) scores for Bayesian, MLE, DPEA, PE, and Association approaches are 0.86, 0.84, 0.83, 0.83 and 0.79,
respectively, indicating the usefulness of these approaches for predicting domain-disease relationships. Finally, we choose
the Bayesian approach to infer domains associated with two common diseases, Crohn’s disease and type 2 diabetes.

Conclusions: The Bayesian approach has the best performance for the inference of domain-disease relationships. The
predicted landscape between domains and diseases provides a more detailed view about the disease mechanisms.

Background
Uncovering the mechanisms underlying human complex
diseases is one of the central goals of human disease studies.
Recent developments in human genetics and computational
biology made it possible to identify a number of genes that
are associated with complex diseases [1]. For example,
recent genome-wide association studies have detected more

than 2000 genetic loci associated with human complex
diseases or traits [2, 3]. Most of the identified loci, however,
represent novel discoveries with no obvious candidate
genes and molecular mechanisms [4], rendering difficulties
in medical treatment according to genes [5–7]. Even if
particular disease associated genes are identified [8–12],
narrowing down to particular domains can be challenging
because genes may encode for proteins containing a variety
of domains. Protein domains are structural units of proteins
that can also function independently from other regions of
the protein. If a gene product (protein) contains multiple
domains [13] and the gene is associated with a disease, one
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of the domains might be associated with the disease.
Narrowing down domains associated with complex diseases
will greatly improve our understanding about the pathogen-
esis of the diseases and facilitate the discovery of drugs as
well as personalized medicine.
Several pioneering studies have developed methods for

large-scale inference of associations between domains
and human diseases based on domain-domain interactions
and disease phenotype similarities [14, 15]. These studies
have two drawbacks. Firstly, both studies rely on a relatively
small set of domain-disease associations compiled by bridg-
ing domains that contain known deleterious nsSNPs and
human diseases with these nsSNPs [15]. To circumvent this
problem we seek evidences of domain-disease associations
at the gene level, and instead of considering inadequate
number of disease mutations in the domains, we resort to
highly abundant publicly available gene-disease associations
[16–20]. Secondly, these studies depend on domain-
domain interactions that are generally incomplete and
contain many false positive and false negative domain
interactions [14, 15]. In this study, we use the domain-
protein, protein-disease and disease-disease relationships to
infer domain-disease relationships without using domain
interactions. The basic idea is that if a disease is associated
with many genes with their corresponding products (pro-
teins) containing common domains, the common domains
are more likely to be associated with the disease.
We surprisingly noted that inferring domain-disease rela-

tionships based on domain-protein and protein-disease
relationship is closely related to the problem of inferring
domain-domain interactions based on protein-protein
interactions, a problem that have been studied extensively
over the past decade [21–32]. Therefore, we adopted some
of the promising methods for protein domain interactions
based on protein interactions to the inference of domain-
disease relationships. These methods include the simple
Association method, the Maximum likelihood estimation
(MLE) approach studied in Deng et al. [33], Domain pair
exclusion analysis (DPEA) approach proposed by Riley
et al.[25], a Bayesian version of the MLE approach as
developed by Kim et al. [34], and Parsimonious explanation
(PE) approach proposed by Guimaraes et al. [26].
Since a particular disease/trait generally has a relatively

small number of associated genes and inferring the do-
mains related to the disease based on the small number
of proteins can be unreliable, therefore we group single
diseases into modules. Each module comprises several
disease phenotypes that are highly similar to each other,
and different modules may share diseases. This modulariza-
tion process takes into consideration of the comorbidities
of various diseases [35, 36], and overlaps among modules
are allowed indicating that one disease may belong to more
than one module since for complex disorders, different
genetic mutations may lead to the same clinical outcome

[37, 38]. For example, schizophrenia is a group of heritable
disorders presenting distinct clinical syndromes, and
schizophrenia has been shown to be associated with eight
separate networks of genetic mutations [20]. Dubowitz syn-
drome is also a complex disease comprised of multiple, gen-
etically distinct but phenotypically overlapping disorders [39].
As a result, we are able to define a larger number of proteins
associated with a particular disease module, and the data
insufficiency problem could be solved. In practice we group
the diseases based on phenotype similarities obtained from a
recent work of Jiang et al. [40] and then identify potentially
overlapping disease modules. Then we identify domains
associated with each disease contained in these modules.
We develop a framework to infer associations between

domains and diseases through known relationships be-
tween diseases and modules, domains and proteins, as
well as proteins and disease modules. We demonstrate
the validity and robustness of these approaches, compare
their performance, and predict domain-disease as well
as gene-disease associations. We further illustrate the
consistency between our inference results and the evi-
dences from genome-wide association studies for two
common diseases: Crohn’s disease and type 2 diabetes.

Materials and methods
Data sources
The developed scheme to infer domain-disease relation-
ships depends on the relationships between domains and
proteins, proteins and diseases, and phenotypic similarities
among diseases.
The relationships between domains and human proteins

were obtained from the Pfam database, which provides a
large collection of both high quality protein domain families
(Pfam-A) and low quality protein domain families (Pfam-B)
[41]. In version 27.0 of the Pfam-A collection (released in
March 2013), there were 146,442 associations between 5561
domains and 100,977 human proteins. A domain is referred
as associated with a protein if the protein contains the do-
main. The relationships between genes and human diseases
were extracted from the OMIM database [16], from which
4951 associations between 3313 genes and 4151 diseases
were established. Moreover, from a recent work of Jiang et
al. [40], we obtained a pair-wise phenotypic similarity profile
for 7719 diseases. The author applied text mining techniques
to extract feature vectors from three vocabularies, UMLS,
MeSH, and HPO, respectively, and a cosine value between
two feature vectors for a pair of diseases was calculated to
measure their similarity. Here we only selected the pheno-
type similarities obtained using the UMLS terms, since it has
a full coverage of all 7719 disease phenotypes and also
achieves the best performance in the leave-one-out cross-
validation experiments of measuring the strength of associ-
ation between a candidate gene and a query disease [40].

Zhang et al. BMC Systems Biology 2016, 10(Suppl 1):4 Page 64 of 119



Identification of overlapping disease modules
Given the disease phenotypic similarity profile and a
predefined threshold on disease similarity, we construct
a disease network with diseases as nodes and two dis-
eases are linked if their pair-wise similarity is above this
threshold. Considering computational feasibility, in this
paper we choose a threshold of 0.5, and obtain 39,506
linked pairs among 6033 diseases with similarity above
this threshold, based on which we construct our disease
network.
Then, we use the ClusterONE (Clustering with Over-

lapping Neighborhood Expansion) method [42] to detect
overlapping modules in the disease network. This method
was originally proposed to detect potentially overlapping
protein complexes from protein-protein interaction data.
Here we apply the algorithm to detect overlapping disease
modules, with all default parameter values, and retrieve
modules containing at least 5 diseases and having p-values
below 0.05, a measure to evaluate the statistical signifi-
cance of the module.
As a result, we obtain altogether 255 modules, with

3430 diseases included. We say a gene is associated with
a module if the gene is associated with at least one of
the diseases in the module. We only include modules
containing at least one disease having known associated
genes. Similarly, we only include genes associated with
at least one disease module. A gene is referred as associated
with a disease module if it is associated with at least one
disease in the module. Finally, we obtain 2096 associations
between 1106 domains and 1238 proteins, 4096 associ-
ations between 3430 diseases and 255 modules, and
1789 associations between 1238 proteins and 255 modules.
Relationships among domains, proteins, diseases and
modules are shown in Fig. 1.

As mentioned above we construct our disease network
by choosing a threshold of 0.5. Here we also try other
thresholds from 0.1 to 0.9 with a step of 0.1 to identify
disease modules, and list the numbers of domains, proteins,
diseases and modules obtained using the same method, in
the Additional file 1: Table S1. From the result we see that
when the threshold is selected as 0.5, we obtain the highest
number of 255 modules, and when the threshold is selected
as 0.4, the numbers of collected domains, diseases and pro-
teins are the largest (1145 domains, 4090 diseases, and
1298 proteins). We also see that as the threshold increases
from 0.5 to 0.9, or decreases from 0.4 to 0.1, the numbers
of domains, diseases, proteins and modules are all decreas-
ing, but drop relatively slightly when the threshold is be-
tween 0.3 and 0.6 (the numbers of domains, diseases,
proteins, and modules are larger than 800, 2300, 900, 50,
respectively). Since if a threshold larger than 0.6 is selected,
there would be fewer diseases that have pair-wise similar-
ities above this threshold, while if a threshold smaller than
0.3 is selected, there would be less disease modules being
identified for the increasing insignificance of disease
modules due to the excessive connections in the disease
network. Therefore, we set the threshold at 0.5 to keep
a reasonable number of domains, diseases, proteins and
modules.

Methods to predict domain-disease associations
We develop a scheme to infer domain-disease associations
from known relationships between domain-proteins,
disease-modules and protein-modules as demonstrated in
Fig. 2. As shown in Fig. 2, for a given disease/trait Tn, we
first extract all module(s) containing this disease (in the
figure Mj) and all the other diseases contained in Mj. Then
we consider the modules that share at least one disease

Fig. 1 The relationships between the different data types. The histograms of the number of a proteins with respect to the number of domains
the protein contains, b disease modules with respect to the number of diseases the module contains, c disease modules with respect to the
number of proteins the module associates, d domains with respect to the number of proteins the domain associates, e diseases with respect to
the number of disease modules the disease associates, and f proteins with respect to the number of disease modules the protein associates
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with module Mj (in the figure Mj′ ), and also incorporate

other diseases inMj′ . Next, from the protein-module asso-

ciations we collect all proteins associated with the set of

Mj; ;Mj′

n o
(in the figure Pi1 and Pi2), and further find do-

mains contained in these proteins. Similarly, we consider
all proteins sharing domains with proteins {Pi1, Pi2}, and
incorporate their domains as well. The resulting set of do-
mains are called candidate domains. Finally, we predict
the associations between each of the collected candidate
domains and the disease/trait Tn. For different diseases,
the numbers of candidate domains can vary, and only
247,112 domain-disease relationships will be predicted. For
each disease, the number of associated domains is small
and thus the standard machine learning based approach
cannot be used to predict domain-disease relationships. For
clarity of presentation, we summarize all the notations used
in the five approaches in Additional file 2.

The association approach
We first propose a naive Association approach to rank
the candidate domain-disease relationship. For a candidate
domain Dmand a query disease/trait Tn, their potential of
being associated is measured by the fraction of associated
protein-module pairs among all the protein-module pairs
containing this domain-disease pair. Specifically, let
Amn = {(P,M); Dm ∈ P, Tn ∈M, P is associated with M},
where P indicates proteins and M indicates disease
modules, be the set of associated protein-module pairs
containing the domain-disease pair (Dm,Tn). Similarly,
let Nmn = {(P,M);Dm ∈ P,Tn ∈M}, be the complete set of
protein-module pairs containing (Dm,Tn). The associ-
ation score is given by

Score Dm;Tnð Þ ¼ Amnj j
Nmnj j :

Fig. 2 Scheme for predicting domain-disease relationships. Nodes represent diseases/traits, modules, proteins and domains. An edge connecting
two nodes represents a known association. Steps 1-7 demonstrate the procedure that, when predicting for a specific disease, how to obtain its
candidate domains. Step 1: For a given disease Tn, all module(s) containing this disease (in the figure Mj) and all the other diseases/traits contained in
Mj are extracted. Step 2: Module(s) sharing at least one disease with module Mj (in the figure Mj′ ) are extracted. Step 3: All the other diseases/traits in

Mj′ are included in the prediction scheme. Step 4: All proteins associated with the set of Mj ; ;Mj′

n o
(in the figure Pi1 and Pi2) are extracted. Step 5: All

domains contained in the set of {Pi1, Pi2} are included in the prediction scheme. Step 6: All proteins sharing domains with proteins {Pi1, Pi2} are included
in the prediction scheme. Step 7: All the other domains in all proteins produced at Step 6 are included in the prediction scheme and the resulting set
of domains are called candidate domains
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If the domain is not included in any proteins that are
known to be associated with the disease module con-
taining the disease, the corresponding score is defined as
zero [33]. With this definition, we calculate the scores of
all candidate domains for each disease.

The maximum likelihood estimation (MLE) approach
Deng et al. [33] developed a Maximum Likelihood Estima-
tion (MLE) approach to predict domain-domain interac-
tions from protein-protein interactions. Here we extend the
approach to infer domain-disease associations, with param-
eters of this model estimated in terms of the Expectation
Maximization (EM) algorithm [33]. Let D denote domains,
T denote diseases/traits, P denote proteins and M denote
disease modules. Let ϕmn = 1 denote that domain Dm

associates with disease Tn and ϕmn = 0, otherwise. Simi-
larly, let ψij = 1 denote protein Pi associates with module
Mj and ψij = 0, otherwise.
It is assumed that a protein associates with a module if

and only if at least one of domains inside this protein as-
sociates with one of diseases belonging to the module.
Under this assumption, we have

Pr ψij ¼ 1
� �

¼ 1−
Y

Dm;Tnð Þ∈ Pi;Mjð Þ
1−λmnð Þ

where λmn = Pr (ϕmn = 1) denotes the probability that do-
main Dm associates with disease/trait Tn, and we thus
define the association score as

Score Dm;Tnð Þ ¼ λmn:

If we consider about two types of errors, false positive
rate fp and false negative rate fn, and let Oij be the indi-
cator variable denoting if protein Pi and module Mj are
observed to be associated, then

f p ¼ Pr Oij ¼ 1jψij ¼ 0
� �

f n ¼ Pr Oij ¼ 0jψij ¼ 1
� �

:

Thus, the probability for the observed protein-module
association is
Pr(Oij = 1) = Pr(ψij = 1)(1 − fn) + (1 − Pr(ψij = 1))fp, and the

likelihood function for all the observed protein-module
relationships is:

L ¼
Y
ij

Pr Oij ¼ 1
� �� �Oij 1−Pr Oij ¼ 1

� �� �1−Oij

The likelihood L is a function of θ = {λ, fp, fn}. We then
apply an EM algorithm to estimate θ, as was developed
by Deng et al. [33] for the inference of domain-domain
interactions. The details of implementing the EM algo-
rithm is described in Additional file 2. We initialize all

λmn
init = 1/|D(n)|, where |D(n)| denotes the total number of

candidate domains for disease/trait n, meaning that each
domain has an equal probability to be associated with a
specific disease. Also, we perform a grid search for dif-
ferent combinations of {fp, fn}, and find results are quite
robust when fp is close to 0 while fn is close to 1. There-
fore we use {fp, fn} = {0, 0.9} throughout this paper.

The domain-disease pair exclusion analysis (DPEA)
approach
Riley et al. [25] developed the DPEA (Domain Pair Ex-
clusion Analysis) approach for predicting domain inter-
actions from protein interactions. Here we extend the
approach to predict domain-disease associations based
on protein-module relationships. This approach extends
the MLE approach, by first estimating the probability for
each potential domain-disease association through the
MLE approach, and then measuring association strength
in terms of the changes in likelihood ratios when a po-
tential underlying domain-disease pair is assumed to be
not associated [25].
The DPEA approach does not consider the false positive

and negative rates inherent in protein-module associations,
which means, {fp, fn} = {0, 0}. However, it identifies low-
probable but high-specificity domain-disease associations
that are not detected by the MLE approach.
The likelihood L is a function of θ = λ, and we apply

an EM algorithm to estimate θ. Then we use the log-
likelihood ratio without restricting λmn versus that when
λmn = 0 to measure the strength of association between
the domain Dm and trait Tn. The score is thus defined as

Score Dm;Tnð Þ ¼
X
ij

log
Pr Oij ¼ 1jDm;Tn can associate
� �

Pr Oij ¼ 1jDm;Tn do not associate
� �

¼
X
ij

log

1−
Y

Dk ;Tlð Þ∈ Pi;Mjð Þ
1−λklð Þ

1−
Y

Dk ;Tlð Þ∈ Pi;Mjð Þ
1−�λ

mn
kl

� �

where �λ
mn

is obtained from λ by setting the probability
of domain Dm associated with disease Tn to be zero, and
is also estimated by the EM algorithm. The details of
deducing the score function of the DPEA approach is
described in Additional file 2.

The Bayesian approach
Kim et al. [34] extended the MLE approach to a Bayesian
approach for the prediction of domain-domain interactions
based on protein interactions. We adopt the Bayesian ap-
proach for the prediction of domain-disease associations
based on protein-module associations. We assume a uni-
form prior distributions of false positive rate fp and false
negative rate fn: fp~Unif[up, vp] and fn~Unif[un, vn], and
also assume the domain-disease association probability λmn
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has a Beta prior distribution: λmn~Beta(α, β) as in Kim
et al. [34]. Therefore, the posterior distribution of λmn is
proportional to

λjrest½ �∝L Ojf n; f p; λð Þf λjf n; f pð Þ
∝
Y
ij

Pr Oij ¼ 1
� �� �Oij 1− Pr Oij ¼ 1

� �� �1−Oij � f λjf n; f pð Þ

∝
Y
ij

hij λð Þ 1−f nð Þ þ 1−hij λð Þ� �
f p

� 	Oij ½1−hij λð Þ 1−f nð Þ

− 1−hij λð Þ� �
f p�1−Oij

� f λjf n; f pð Þ
Here λ = {λmn; Dm ∈ P, Tn ∈M}, where P indicates

proteins and M indicates disease modules, and hij(λ) =
Pr (ψij = 1).
In addition, the posterior distributions of fp and fn are

proportional to

f pjrest½ �∝L Ojf n; f p; λð Þf f pjλ; f nð Þf f njλð Þ
∝
Y
ij

Pr Oij ¼ 1
� �� �Oij 1− Pr Oij ¼ 1

� �� �1−Oij � f f pjλ; f nð Þf f njλð Þ

∝
Y
ij

Pr Oij ¼ 1
� �� �Oij 1− Pr Oij ¼ 1

� �� �1−Oij � f f pjλ; f nð Þ

∝
Y
ij

hij λð Þ 1−f nð Þ þ 1−hij λð Þ� �
f p

� 	Oij ½1−hij λð Þ 1−f nð Þ
− 1−hij λð Þ� �

f p�1−Oij

�f f pjλ; f nð Þ

and

f njrest½ �∝L Ojf n; f p; λð Þf f njλ; f pð Þf f pjλð Þ
∝
Y
ij

Pr Oij ¼ 1
� �� �Oij 1− Pr Oij ¼ 1

� �� �1−Oij � f f njλ; f pð Þf f pjλð Þ

∝
Y
ij

Pr Oij ¼ 1
� �� �Oij 1− Pr Oij ¼ 1

� �� �1−Oij � f f njλ; f pð Þ

∝
Y
ij

hij λð Þ 1−f nð Þ þ 1−hij λð Þ� �
f p

� 	Oij ½1−hij λð Þ 1−f nð Þ

− 1−hij λð Þ� �
f p�1−Oij

�f f njλ; f pð Þ

An adaptive rejection sampling algorithm [43] is applied
to sample from the posteriors, and parameters can be esti-
mated using the posterior means.

The parsimony explanation (PE) approach
Guimaraes et al.[26] originally developed a PE approach
for predicting domain interactions based on protein in-
teractions. Here we extend the PE approach for predict-
ing domain-disease associations from protein-module
associations. The PE approach formulates the problem
of predicting domain-disease associations into a linear
programming framework. The optimization objective
is to minimize the number of overall domain-disease
associations necessary to justify each of the underlying
protein-module associations. We define a set of domain-
disease pairs Δ = {{Dm,Tn}|Dm ∈ P, Tn ∈M, and P associ-
ates with M}, where P indicates proteins and M indicates
disease modules, underlying all associated protein-module
pairs. Therefore, domain Dm and disease Tn are assumed to
have an association variable xmn if and only if there exists
an associated protein-module pair P and M containing

domain Dm and disease Tn, respectively. We propose to
solve the following linear programming (LP) problem:

Minimize
X

Dm;Tnf g∈Δ
xmn;

Subject to:
X

Dm;Tnð Þ∈ Pi;Mjð Þ
xmn≥1 , for every associated

protein-module pair (Pi,Mj) corresponding to one linear
constraint. The resulting value xmn is then used to measure
the strength of potential domain-disease association be-
tween domain Dm and disease Tn. To account for the noise
in the protein-module associations, we define r as the reli-
ability rate, which is, the probability that a protein-module
association actually exists. For a pre-selected r, we include
each protein-module association into the constraints with
probability r, and perform the linear programming 1000
times. The average xmn is defined as the LP-score and used
to measure the strength of association between domain Dm

and disease Tn.
To control for possible over-prediction of associations

between frequently occurring domain-disease pairs, we
assign a promiscuity versus witnesses (pw)-score to each
domain-disease pair. Specifically, a pw-score between
domain Dm and disease Tn is defined as

pw‐score Dm;Tnð Þ ¼ min p‐value Dm;Tnð Þ; 1−rð Þw Dm;Tnð Þ
� �

where w(Dm,Tn) is the number of occurrences (witnesses)
for a given domain-disease pair (Dm,Tn) in each associated
protein-module pair (Pi,Mj), and r is the reliability rate
of the protein-module association. Thus, the value of

1−rð Þw Dm;;Tnð Þ is the probability that all witnesses of
domain-disease pairs in (Pi,Mj) are false positives. We
then define p ‐ value(Dm,Tn) to measure the influence
of the frequently occurring domain-disease pairs on the
LP-score. To estimate this, we generate 1000 random
protein-module associations by preserving the same
protein-domain and module-disease compositions as
well as the total number of protein-module associations,
but selecting associations between proteins and modules
at random. We perform the linear programming 1000
times, and the p ‐ value(Dm,Tn) is calculated as the fre-
quency of obtaining the same or higher LP-score in the
1000 runs when the protein-module pair containing the
domain-disease pair (Dm,Tn) is randomized.
Potential associations with LP-scores above a threshold

and pw-scores below another threshold are predicted to
be putative associations between domains and diseases.

Validation methods and evaluation criteria
We compile an independent validation set to test how
well the Association, MLE, DPEA, Bayesian, and PE
approaches perform in recovering known associations
between domains and diseases obtained from the Ensembl
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database (Human Release 80, accessed in June 2015) [44].
By running the BioMart tool [45] within Ensembl, we
collect 3004 associations between 869 domains and
1484 diseases in our study. We then consider these 3004
associations as positives, and all the other 244,108 possible
domain-disease associations as negatives (247,112 candidate
domain-disease associations minus 3004 known associa-
tions). For each of the approaches developed above, we
rank the domain-disease pairs together in descending order
of their scores. Given a predefined threshold of rank, we
define the sensitivity (or called recall) as the percentage of
positive domain-disease pairs that are ranked above the
threshold, the specificity as the percentage of negative
domain-disease pairs that are ranked below the threshold,
and the precision as the percentage of domain-disease
pairs ranked above the threshold that are truly positives.
By varying the threshold values, we are able to plot a ROC
(Receiver Operating Characteristic) curve, which demon-
strates the relationships between sensitivity and 1-specifi-
city, as shown in Fig. 3 (a), and a Precision-Recall curve,
which demonstrates the relationships between precision
and recall, as shown in Fig. 3 (b).
We use three criteria to measure the performance of

each approach. The first criterion is the Area Under the
ROC curve (AUC), which provides an overall measure
for the performance of the prioritization approach. The
second criterion is the Accuracy, which is the fraction of
positive domain-disease pairs with the corresponding
domain being ranked at the top 10 of the disease. Since
the average length of candidate domain lists for all 3430
diseases is 72 (247,112 candidate domain-disease associ-
ations divided by 3430), therefore by a random guess the
probability to rank a known domain-disease association
at the top 10 is 10/72 ≈ 0.1389. Obviously, a high value
of accuracy that is much larger than 0.1389 represents

an approach with high prediction power. The third cri-
terion is the Mean Rank Ratio (MRR). For each positive
domain-disease pair, the rank ratio is calculated as the
rank of corresponding domain for the disease divided by
the total number of candidate domains, and the mean
rank ratio is the average of rank ratios for all the positive
associations in the validation experiment. This criterion
provides a summary of the ranks of all positive domain-
disease associations, and the smaller the mean rank ratio
is, the better the approach performs.

Results
Validation and comparison of different approaches
On the basis of the compiled known associations between
domains and diseases that comprise an independent test
data set, we implement a series of large-scale validation
experiments to demonstrate the effectiveness of all the ap-
proaches developed in this paper. As is described in the
“Materials and Methods” section, in each run of the exper-
iments, we prioritize candidate domains according to the
scores generated by a selected approach under investiga-
tion, with performances being evaluated by AUC, accuracy
and mean rank ratio of known domain-disease associa-
tions, and list the results in Table 1. Corresponding ROC
curves together with the Precision-recall curves of the
Association, MLE, DPEA, Bayesian, and PE approaches
are shown in Fig. 3.
From the results in Table 1 we see that, all the ap-

proaches perform reasonably well recovering the known
associations between domains and diseases. The AUC
scores obtained using the five approaches are all above
0.79, the accuracies are all above 0.62, and the mean rank
ratios are all below 0.25, suggesting the effectiveness of the
approaches. The best performance is achieved using the
Bayesian approach, with an AUC score of 0.8554, accuracy

Fig. 3 Receiver Operating Characteristic (ROC) and Precision-Recall curves of the different approaches. The figure shows ROC curves (Subplot a)
and precision-recall curves (Subplot b) of the Association, MLE (fp = 0, fn= 0.9), DPEA, Bayesian (up, un = 0, vp, vn = 1, and α= 2, β = 2), and PE (r = 100 %,
and pw threshold≤ 0.01) approaches, respectively. Based on both ROC and precision-recall curves, the three MLE based approaches including DPEA,
MLE and Bayesian outperform PE and Association. The Bayesian approach performs slightly better than DPEA and MLE
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of 0.7289 and a mean rank ratio of 0.1872. The MLE ap-
proach is a little inferior to the Bayesian approach whose
AUC score is 0.8407, accuracy is 0.7074, and the mean
rank ratio is 0.1914. The DPEA and PE approaches are
two less effective ones with the performances being quite
close to each other (AUCs are 0.8309 and 0.8262, accur-
acies are 0.6513 and 0.6525, and mean rank ratios are
0.2177 and 0.2282), while the Association approach per-
forms worst with a AUC score of 0.7900, accuracy of
0.6256, and a mean rank ratio of 0.2432. From Fig. 3, we
observe that the ROC curve of the Bayesian approach is
above those of the other approaches, suggesting that the
performance of Bayesian approach is superior over that of
the others. From the precision-recall curves we also see
the same trend. Therefore, we see from the results that
the predictive power of the five approaches follows an
order of: Bayesian >MLE >DPEA > PE > Association.

Robustness of the approaches
We notice that some of these approaches contain free
parameters such as the false positive rate fp and the false
negative rate fn in the MLE approach, the hyper-
parameters in prior distributions of the Bayesian approach,
in addition to the reliability rate r and the pw-score thresh-
old in the PE approach. In the above validation experi-
ments, we only use predefined values of these parameters
for simplicity, yet there is still necessity to show whether
these approaches are sensitive to these parameters. Hence,
for each approach we select several values across the range
of corresponding parameters, perform the validation exper-
iments, and see how the results change accordingly.
Specifically, for the MLE approach we implement a

grid search of fp and fn at the same time, increasing
from 0 to 1 with a step of 0.1, respectively. Performances
in terms of AUC, accuracy, and mean rank ratio are
shown in Fig. 4 (a-c) and Additional file 1: Table S2.
From the figure we can see when both fp and fn are rela-
tively large (the shading areas in Additional file 1: Table
S2), the AUC is lower than 0.72, the accuracy is lower
than 0.48, and the mean rank ratio is higher than 0.35.
Otherwise as fp increases, performances become worse.
For example, when fn = 0.2, the peak performance is ob-
tained at fp = 0 (AUC = 0.8313, accuracy = 0.6935, and
mean rank ratio = 0.2128), and the worst performance is
obtained at fp = 0.9 (AUC = 0.7944, accuracy = 0.6069,
and mean rank ratio = 0.2815). The best performance is
obtained at fp = 0 combined with fn = 0.9 (AUC = 0.8407,
accuracy = 0.7074, and mean rank ratio = 0.1914). From
the results we conjecture that better performance is

Table 1 Performance of the five approaches

Approach AUC Accuracy Mean rank ratio

Association 0.7900 0.6256 0.2432

MLE 0.8407 0.7074 0.1914

DPEA 0.8309 0.6513 0.2177

Bayesian 0.8554 0.7289 0.1872

PE 0.8262 0.6525 0.2282

The AUC, accuracy and mean rank ratio of the Association, MLE (fp= 0, fn= 0.9),
DPEA, Bayesian (up, un = 0, vp, vn = 1, and α = 2, β = 2), and PE (r = 100 %, and
pw threshold ≤ 0.01) approaches for predicting domain-disease associations,
respectively

Fig. 4 Influences of the free parameters on the performance of the MLE and PE approaches. Horizontally, Subplots a-c illustrate the influences of
false positive rate (fp) and false negative rate (fn) on AUC, accuracy and the mean rank ratio of the of the MLE approach; Subplots d-f illustrate
the influences of reliable rate (r) and pw threshold on AUC, accuracy and the mean rank ratio of the PE approach. Vertically, Subplots a and d
illustrate AUC scores; Subplots B and E illustrate accuracies; Subplots C and F illustrate mean rank ratios, respectively
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usually obtained when fp is small and fn is large. This is
reasonable since according to the experience of Deng
et al. [33], fp usually takes a very small value while fn
usually takes a large value close to 1. In the further
analysis we just use fp = 0 and fn = 0.9 so as to acquire
a higher predictive power.
Additionally, for the Bayesian approach, we have

assigned a beta prior distribution for λ, and to eliminate
the effect of shape hyper-parameters on the results, we
choose to use a 0-1 uniform distribution instead. After
re-run of the validation experiments, we obtain AUC =
0.8553, accuracy = 0.7289, and mean rank ratio = 0.1874,
which brings tiny change to the inference results. Hence
we conjecture that the Bayesian approach is quite robust
when an appropriate flat prior distribution is used, and
compared to the likelihood functions, priors are not fac-
tors playing decisive roles here.
Finally, for the PE approach we decrease the reliability

rate r from 100 to 50 % with a step of 10 % while fixing
the pw-score threshold as 0.01, 0.05, and 0.10, respect-
ively, with the changes of AUC, accuracies and mean
rank ratios shown in Fig. 4 (d-f ) and Additional file 1:
Table S3. First, as the pw-score threshold increases, per-
formances in terms of the three criteria become worse.
For example when r is 100 %, the performance obtained
at pw threshold = 0.01 is the best (AUC = 0.8262, accur-
acy = 0.6525, and mean rank ratio = 0.2282), followed
by the performance obtained at pw threshold = 0.05
(AUC = 0.8238, accuracy = 0.6509, and mean rank ratio =
0.2314), while the worst performance is obtained at pw
threshold = 0.10 (AUC= 0.8235, accuracy = 0.6499, and
mean rank ratio = 0.2365). The same trend can also be
observed for other values of r. Second, as r decreases,
performances become worse since both AUC and ac-
curacy increase, and mean rank ratio decreases. For ex-
ample, when the pw-score threshold is 0.01, the peak
performance is obtained at r = 100 % (AUC = 0.8262,
accuracy = 0.6525, and mean rank ratio = 0.2282), and the
worst performance is obtained at r = 50 % (AUC = 0.7635,
accuracy = 0.5793, and mean rank ratio = 0.2929). The
change of AUC is not as obvious as the other two criteria,
and all the values for the three criteria are generally stable.
We then conjecture that the PE approach is not sensitive
to this free parameter on the basis that pw threshold is
smaller than 0.10 and r is greater than 50 %. In the further
analysis we use pw threshold = 0.01 and r = 100 % to
achieve maximal number of new predictions according to
Guimaraes et al. [26].

Effects of disease modularization on the performance of
different approaches
Beyond the parameters in the approaches, our proposed
inference scheme also highly relies on the formulation of
disease modules. To demonstrate it, we select the disease

RENAL TUBULAR ACIDOSIS DISTAL AUTOSOMAL
DOMINANT (OMIM: 179800) as an example. Using the
scheme illustrated in Fig. 2, we extract all relevant rela-
tionships among modules, diseases, proteins and domains,
as shown in Fig. 5, to infer the strength of associations
among all domains and diseases shown in the figure. Each
disease and its known associated gene (protein) are
marked with the same color.
By clustering single disease phenotypes into modules

in a disease network, known associations between proteins
and diseases are actually expanded. Considering a disease
that has no known associated proteins, if this disease
belongs to a module whose other member diseases have
known associated proteins, then as a result, relations
between these proteins and the disease are actually
bridged, the hidden effects of which would greatly benefit
us to uncover more novel associated domains or genes for
the disease. For example, the disease RENAL TUBULAR
ACIDOSIS PROXIMAL (OMIM: 179830) does not have
any known associated genes in the OMIM database. How-
ever, since it belongs to the same module as the disease
RENAL TUBULAR ACIDOSIS DISTAL AUTOSOMAL
DOMINANT (OMIM: 179800), we are able to predict its
associated domains. We further map the predicted do-
mains to all genes with corresponding proteins containing
these domains, and therefore we are able to predict the
genes associated with the disease.
Moreover, we compare the disease RENAL TUBULAR

ACIDOSIS DISTAL AUTOSOMAL DOMINANT (OMIM:
179800) with another disease OSTEOPETROSIS, AUTO-
SOMAL RECESSIVE 3 (OPTB3; OMIM: 259730), since
the former disease is only contained in module #127
and the latter one is contained in both module #127
and module #161. The results in terms of all five ap-
proaches are listed in Table 2. First, we observe that the
Association and PE approaches generate zero scores for
a domain-disease association if the domain is not contained
in any proteins that are associated with the modules con-
taining the disease, while the other three approaches usually
provide such association with a non-zero score. This ex-
plains why the Association and the PE approach have rela-
tively lower predictive power compared to the other three
approaches. Second, if we only focus on disease RENAL
TUBULAR ACIDOSIS DISTAL AUTOSOMAL DOMIN-
ANT (OMIM: 179800), we observe that comparatively
the domains ATP-synt_ab (PF00006), ATP-synt_ab_N
(PF02874), Carb_anhydrase (PF00194), HCO3_cotransp
(PF00955), Band_3_cyto (PF07565) and ATP-synt_ab_C
(PF00306) have more indirect associations with the
disease, compared to the domains TNF (PF00229),
IMPDH (PF00478), CBS (PF00571), Voltage_CLC (PF00654),
and V_ATPase_I (PF01496), and therefore should have
comparatively higher scores. This is generally the case
when we see from the left half part of Table 2, except
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Table 2 Effect of disease modularization on the performances of different approaches

Disease (OMIM ID)

RENAL TUBULAR ACIDOSIS, DISTAL, AUTOSOMAL
DOMINANT (OMIM: 179800)

OSTEOPETROSIS, AUTOSOMAL RECESSIVE 3;
OPTB3 (OMIM: 259730)

Association MLE DPEA Bayesian PE Association MLE DPEA Bayesian PE

Domain(Pfam ID) ATP-synt_ab(PF00006) 0.5 0.0971 0.0041 0.6256 0.0476 0.25 0.0930 0.0024 0.6084 0.0476

ATP-synt_ab_N(PF02874) 0.5 0.0971 0.0041 0.6843 0.0476 0.25 0.0930 0.0024 0.6366 0.0476

Carb_anhydrase(PF00194) 0.5 0.1566 0.062 0.8031 0.1646 0.5 0.1499 0.0541 0.7741 0.1210

HCO3_cotransp(PF00955) 1 0.1300 0.0065 0.7569 0.0714 0.5 0.1086 0.0003 0.6438 0.0714

Band_3_cyto(PF07565) 1 0.1300 0.0065 0.7078 0.0714 0.5 0.1086 0.0003 0.6859 0.0714

ATP-synt_ab_C(PF00306) 1 0.1069 0.0002 0.6879 0.0476 0.5 0.0983 0.0001 0.6048 0.0476

TNF(PF00229) 0 0.0806 0.1900 0.4526 0 0.125 0.0968 0.1906 0.5360 0.1250

IMPDH(PF00478) 0 0.0874 0.007 0.4572 0 0 0.0878 0.0059 0.4301 0

CBS(PF00571) 0 0.0851 0.0676 0.4381 0 0.1667 0.0910 0.0646 0.6035 0.06250

Voltage_CLC(PF00654) 0 0.0874 0.0058 0.4547 0 0.5 0.1040 0.0061 0.6864 0.06250

V_ATPase_I(PF01496) 0 0.0808 0.0823 0.4801 0 0.25 0.1103 0.0823 0.7057 0.1250

The scores of predicting the associations between two diseases RENAL TUBULAR ACIDOSIS, DISTAL, AUTOSOMAL DOMINANT (OMIM: 179800) as well as
OSTEOPETROSIS, AUTOSOMAL RECESSIVE 3; OPTB3 (OMIM: 259730)), and their candidate domains ATP-synt_ab (PF00006), ATP-synt_ab_N (PF02874), Carb_anhydrase
(PF00194), HCO3_cotransp (PF00955), Band_3_cyto (PF07565), ATP-synt_ab_C (PF00306), TNF (PF00229), IMPDH (PF00478), CBS (PF00571), Voltage_CLC (PF00654) as
well as V_ATPase_I (PF01496), in terms of the Association, MLE (fp = 0, fn = 0.9), DPEA, Bayesian (up, un = 0, vp, vn = 1, and α = 2, β = 2), and PE (r = 100 %, and pw
threshold ≤ 0.01) approaches, respectively

Fig. 5 Example for illustration of module effect. Nodes represent diseases with OMIM numbers, modules with index numbers, proteins with
OMIM numbers and domains with Pfam numbers. Edges connecting two nodes represent a known association. Nodes with the same background
colors represent 7 known associations between corresponding diseases and proteins. (i) Disease OMIM # corresponds to disease/trait names as:
[179800]: RENAL TUBULAR ACIDOSIS, DISTAL, AUTOSOMAL DOMINANT. [179830]: RENAL TUBULAR ACIDOSIS, PROXIMAL. [267200]: RENAL TUBULAR
ACIDOSIS III. [267300]: RENAL TUBULAR ACIDOSIS, DISTAL, WITH PROGRESSIVE NERVE DEAFNESS. [602722]: RENAL TUBULAR ACIDOSIS, DISTAL,
AUTOSOMAL RECESSIVE; RTADR. [604278]: RENAL TUBULAR ACIDOSIS, PROXIMAL, WITH OCULAR ABNORMALITIES AND MENTAL RETARDATION.
[259730]: OSTEOPETROSIS, AUTOSOMAL RECESSIVE 3; OPTB3. [259700]: OSTEOPETROSIS, AUTOSOMAL RECESSIVE 1; OPTB1. [259710]: OSTEOPETROSIS,
AUTOSOMAL RECESSIVE 2; OPTB2. [259720]: OSTEOPETROSIS, AUTOSOMAL RECESSIVE 5; OPTB5. [600329]: OSTEOPETROSIS AND INFANTILE
NEUROAXONAL DYSTROPHY. [611490]: OSTEOPETROSIS, AUTOSOMAL RECESSIVE 4; OPTB4. [611497]: OSTEOPETROSIS, AUTOSOMAL RECESSIVE
6; OPTB6. [612301]: OSTEOPETROSIS, AUTOSOMAL RECESSIVE 7; OPTB7. (ii) Protein OMIM # corresponds to gene name as: [164360]: ATP5A1;
[114815]: CA8; [109270]: SLC4A1; [192132]: ATP6V1B1; [603345]: SLC4A4; [611492]: CA2; [602642]: TNFSF11; [153440]: LTA; [191160]: TNF; [300386]:
CD40LG; [146690]: IMPDH1; [602727]: CLCN7; [602743]: PRKAG2; [604592]: TCIRG1; [611716]: ATP6V0A2. (iii) Domain Pfam # corresponds to domain
name as: [PF00006]: ATP-synt_ab; [PF02874]: ATP-synt_ab_N; [PF00194]: Carb_anhydrase; [PF00955]: HCO3_cotransp; [PF07565]: Band_3_cyto; [PF00306]:
ATP-synt_ab_C; [PF00229]: TNF; [PF00478]: IMPDH; [PF00571]: CBS; [PF00654]: Voltage_CLC; [PF01496]: V_ATPase_I
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for the results of DPEA method, that due to the too
many connection with proteins, the domain PF00229
has the highest score. Third, if focus on domains ATP-
synt_ab (PF00006), ATP-synt_ab_N (PF02874), Carb_an-
hydrase (PF00194), HCO3_cotransp (PF00955), Band_3_-
cyto (PF07565) and ATP-synt_ab_C (PF00306), we
observe that their scores obtained for disease RENAL
TUBULAR ACIDOSIS DISTAL AUTOSOMAL DOMIN-
ANT (OMIM: 179800) are generally higher than those ob-
tained for disease OSTEOPETROSIS, AUTOSOMAL
RECESSIVE 3 (OPTB3; OMIM: 259730). Since the disease
RENAL TUBULAR ACIDOSIS DISTAL AUTOSOMAL
DOMINANT (OMIM: 179800) is only contained in one
module while disease OSTEOPETROSIS, AUTOSOMAL
RECESSIVE 3 (OPTB3; OMIM: 259730) is contained in
two, we conjecture from the results that, for a domain
under investigation, if a disease is only contained in one
module associated with the proteins containing this do-
main while another disease is also contained in other
modules that are not associated with the corresponding
proteins, usually the first disease would receive higher
score to be associated with this domain since its relation-
ship with the domain is more “specific”.

Top predictions of domain-disease and gene-disease
associations
We list the 50 highest-scoring domain-disease associa-
tions predicted using the Bayesian approach, as shown
in Table 3. We then map the domains predicted for
these diseases to all genes with corresponding proteins
containing these domains, and mark the genes that are
known as disease genes in the OMIM database using a
bold italic style. Among these predictions, 8 are in the
above 3004 known domain-disease associations com-
piled by the Ensembl BioMart tool and we mark them
using a bold style in Table 3 (diseases with ranks 6,
7, 9, 19, 20, 25, 42, and 50, respectively). Four of
these diseases, CORNEAL DYSTROPHY EPITHELIAL
BASEMENT MEMBRANE (EBMD; OMIM: 121820),
CORNEAL DYSTROPHY GROENOUW TYPE I
(CDGG1; OMIM: 121900), CORNEAL DYSTROPHY
LATTICE TYPE I (LCD1; OMIM: 122200) and LUBS
X-LINKED MENTAL RETARDATION SYNDROME
(MRXSL; OMIM: 300260) have their predicted do-
mains exactly mapped to their only known genes in
the OMIM database, while the other 4 diseases have
extra predictions of genes that are unknown to be as-
sociated with these diseases before. Some of these
predictions might be redundant, such as for the dis-
ease ALPHA-THALASSEMIA (OMIM: 604131), the
gene HBB, which is short for HEMOGLOBIN–BETA
LOCUS, is obviously a cause of another type of
thalassemia called BETA-THALASSEMIA (OMIM:
613985) but not ALPHA-THALASSEMIA [46].

However, for diseases that without any known genes
associated, the predictions might indicate novel gen-
etic findings for the diseases. As listed in the table,
all the rows without bold or italic correspond to dis-
eases that have no known OMIM genes at all. But by
our methods we can predict for each of them a high-
est scored domain and a short list of genes, which
are highly possible to be the real causal ones since
the top ranked diseases are mostly rare diseases and
the majority of them are caused by altered functions
of single genes [47].
Finally, there are still 7 domain-disease associations

that are unknown in our study, but they have at least
one known genes in the OMIM database, and we mark
them using an italic style (diseases with ranks 5, 8, 15,
21, 28, 30, and 48, respectively). From the prediction re-
sult we see that only one of these diseases, QUESTION
MARK EARS ISOLATED (QME; OMIM: 612798) suc-
cessfully recover its known disease genes EDN1 (OMIM:
131240), while the other 6 diseases fail to prioritize their
known associated genes at the top. This is one main
drawback of the modularization, i.e., it will lose some in-
formation of known disease-gene associations when
constructing protein-module association. A trade-off is
called for to achieve the balance between the exploration
of novel disease-gene predictions and the failure of re-
covering known associations.

Evidences in genome-wide association studies
Over the past decade, genome-wide association studies
(GWAS) have led to the identification of susceptible sin-
gle nucleotide polymorphisms (SNPs) conferring risk for
common human diseases [48]. The NHGRI-EBI catalog
of published genome-wide association studies [3] is a
quality controlled, manually curated, literature-derived
collection of all published genome-wide association
studies assaying at least 100,000 SNPs and all SNP-trait
associations with p-values < 1.0 × 10− 5 [49]. With this re-
source, it is of interest to test the consistency of our in-
ferred domain-disease associations with the GWAS
results.
We choose the inference results obtained using the

Bayesian approach for further analysis since it performs
the best in the above validation experiments. Then for a
given disease of interest, from the GWAS catalog we are
able to collect a list of reported susceptible SNPs, and
check how many of these SNPs appear within 5 Mbp
around the domains that are ranked in top 10 in our in-
ference results. We next select Crohn’s disease (OMIM:
266600) and Type 2 diabetes (OMIM: 125853) as two
typical examples of common polygenetic disorders with
multiple genes contributing to the diseases, therefore
GWAS studies provide a collection of risk factors for
these two disorders.
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Table 3 Novel predictions of domain-disease and gene-disease associations

Rank Disease OMIMd Module
Index

Domain Pfam Gene OMIMg

1 APNEA, OBSTRUCTIVE SLEEP 107650 152 Acetyltransf_1 PF00583 NAA10 300013

AANAT 600950

2 ARTERIES, ANOMALIES OF 108000 182 Sugar_tr PF00083 SLC2A1 138140

SLC2A2 138160

SLC2A9 606142

SLC2A10 606145

3 ATRESIA OF EXTERNAL AUDITORY CANAL AND CONDUCTIVE DEAFNESS 108760 133 zf-C2H2_2 PF12756 TSHZ1 614427

4 CELIAC ARTERY STENOSIS FROM COMPRESSION BY MEDIAN ARCUATE
LIGAMENT OF DIAPHRAGM

116870 182 Sugar_tr PF00083 SLC2A1 138140

SLC2A2 138160

SLC2A9 606142

SLC2A10 606145

5 SCHNYDER CORNEAL DYSTROPHY; SCCD 121800 77 Fasciclin PF02469 TGFBI 601692

6 CORNEAL DYSTROPHY, EPITHELIAL BASEMENT MEMBRANE; EBMD 121820 77 Fasciclin PF02469 TGFBI 601692

7 CORNEAL DYSTROPHY, GROENOUW TYPE I; CDGG1 121900 77 Fasciclin PF02469 TGFBI 601692

8 CORNEAL DYSTROPHY, MEESMANN; MECD 122100 77 Fasciclin PF02469 TGFBI 601692

9 CORNEAL DYSTROPHY, LATTICE TYPE I; LCD1 122200 77 Fasciclin PF02469 TGFBI 601692

10 CORONARY ARTERY DISSECTION, SPONTANEOUS 122455 182 Sugar_tr PF00083 SLC2A1 138140

SLC2A2 138160

SLC2A9 606142

SLC2A10 606145

11 DEAFNESS, CONDUCTIVE STAPEDIAL, WITH EAR MALFORMATION AND FACIAL
PALSY

124490 137 Endothelin PF00322 EDN1 131240

EDN3 131242

12 EAR FOLDING 128500 137 Endothelin PF00322 EDN1 131240

EDN3 131242

13 PREAURICULAR FISTULAE, CONGENITAL 128700 137 Endothelin PF00322 EDN1 131240

EDN3 131242

14 EAR PITS, POSTERIOR HELICAL 128710 137 Endothelin PF00322 EDN1 131240

EDN3 131242

15 EAR WITHOUT HELIX 128800 137 Endothelin PF00322 EDN1 131240

EDN3 131242

16 EXTERNAL AUDITORY CANAL, BILATERAL ATRESIA OF, WITH CONGENITAL
VERTICAL TALUS

133705 133 zf-C2H2_2 PF12756 TSHZ1 614427

17 FIBROMUSCULAR DYSPLASIA OF ARTERIES 135580 182 Sugar_tr PF00083 SLC2A1 138140

SLC2A2 138160

SLC2A9 606142

SLC2A10 606145

18 GLAUCOMA AND SLEEP APNEA 137763 152 Acetyltransf_1 PF00583 NAA10 300013

AANAT 600950

19 LUBS X-LINKED MENTAL RETARDATION SYNDROME; MRXSL 300260 66 MBD PF01429 MECP2 300005

20 ALPHA-THALASSEMIA 604131 188 Globin PF00042 HBA1 141800

HBA2 141850

HBB 141900

21 HOLT-ORAM SYNDROME; HOS 142900 140 LMBR1 PF04791 LMBR1 605522

22 INTERNAL CAROTID ARTERY, SPONTANEOUS DISSECTION OF 147820 182 Sugar_tr PF00083 SLC2A1 138140
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Table 3 Novel predictions of domain-disease and gene-disease associations (Continued)

SLC2A2 138160

SLC2A9 606142

SLC2A10 606145

23 LITHIUM TRANSPORT 152420 180 SNF PF00209 SLC6A3 126455

SLC6A19 608893

24 MACULAR DYSTROPHY, FENESTRATED SHEEN TYPE 153890 77 Fasciclin PF02469 TGFBI 601692

25 MULLERIAN APLASIA AND HYPERANDROGENISM 158330 199 wnt PF00110 WNT5A 164975

WNT10B 601906

WNT4 603490

WNT10A 606268

26 OSSIFIED EAR CARTILAGES 165670 137 Endothelin PF00322 EDN1 131240

EDN3 131242

27 ENCHONDROMATOSIS, MULTIPLE, OLLIER TYPE 166000 166 Iso_dh PF00180 IDH2 147650

IDH1 147700

IDH3B 604526

28 MACULAR DYSTROPHY, PATTERNED, 1; MDPT1 169150 77 Fasciclin PF02469 TGFBI 601692

29 RADIAL RAY HYPOPLASIA WITH CHOANAL ATRESIA 179270 140 LMBR1 PF04791 LMBR1 605522

30 QUESTION MARK EARS, ISOLATED; QME 612798 137 Endothelin PF00322 EDN1 131240

EDN3 131242

31 THUMB DEFORMITY 188100 140 LMBR1 PF04791 LMBR1 605522

32 THYROID HORMONE PLASMA MEMBRANE TRANSPORT DEFECT 188560 180 SNF PF00209 SLC6A3 126455

SLC6A19 608893

33 TRACHEOESOPHAGEAL FISTULA WITH OR WITHOUT ESOPHAGEAL ATRESIA 189960 133, 181 zf-C2H2_2 PF12756 TSHZ1 614427

34 TRIGGER THUMB 190410 140 LMBR1 PF04791 LMBR1 605522

35 TRIPHALANGEAL THUMB WITH DOUBLE PHALANGES 190500 140 LMBR1 PF04791 LMBR1 605522

36 TRIPHALANGEAL THUMB, NONOPPOSABLE 190600 140 LMBR1 PF04791 LMBR1 605522

37 UTERINE ANOMALIES 192000 199 wnt PF00110 WNT5A 164975

WNT10B 601906

WNT4 603490

WNT10A 606268

38 UTERUS BICORNIS BICOLLIS WITH PARTIAL VAGINAL SEPTUM AND
UNILATERAL HEMATOCOLPOS WITH IPSILATERAL RENAL AGENESIS

192050 199 wnt PF00110 WNT5A 164975

WNT10B 601906

WNT4 603490

WNT10A 606268

39 ACRORENAL-MANDIBULAR SYNDROME 200980 199 wnt PF00110 WNT5A 164975

WNT10B 601906

WNT4 603490

WNT10A 606268

40 ADDUCTED THUMBS SYNDROME 201550 140 LMBR1 PF04791 LMBR1 605522

41 APNEA, CENTRAL SLEEP 207720 152 Acetyltransf_1 PF00583 NAA10 300013

AANAT 600950

42 ARTERIAL TORTUOSITY SYNDROME; ATS 208050 182 Sugar_tr PF00083 SLC2A1 138140

SLC2A2 138160

SLC2A9 606142

SLC2A10 606145
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Crohn’s disease
Crohn’s disease is a type of chronic inflammatory bowel
disease (IBD) of the gastrointestinal tract [50] affecting
26–200 per 100,000 in European populations [51], and is
thought to be caused by a combination of environmen-
tal, immune and bacterial factors in genetically suscep-
tible individuals [52]. Recently, genome-wide association
studies (GWAS) have made remarkable progress in
Crohn’s disease identifying at least 140 genome-wide sig-
nificant loci [53]. In our study, we compile from GWAS
catalog 203 reported susceptible SNPs, and 54 of them
are found to be within 5 Mbp regions of all domains that
are ranked at the top 10. Then for each of the top 10 do-
mains, we check regions of their corresponding genes,
to see if any GWAS reported SNPs are inside, upstream,
or downstream within 5Mbp of every gene region, and
list the results in Additional file 1: Table S4.
From the table we observe 18 times that a susceptible

SNP locates inside a domain with 10 times in ATG16
(PF08614), 4 times in NACHT (PF05729), and 4 times in
CARD (PF00619). We also observe 24 times that a sus-
ceptible SNP locates within 1 Mbp upstream or down-
stream of a domain, 52 times that a susceptible SNP
locates within 1 to 5 Mbp region of a domain, and only 33
times that a susceptible SNP locates beyond 5 Mbp region
of a domain. From these results we conjecture that do-
mains ranked among the top 10 indeed tends to be closer
to, even include, known susceptible SNPs for this disease.

Type 2 diabetes
Type 2 diabetes, which is also called noninsulin-
dependent diabetes mellitus (NIDDM) or adult-onset

diabetes, is a metabolic disorder that is characterized by
high blood sugar in the context of insulin resistance and
relative lack of insulin [54]. It results from interaction
between genetic and environmental risk factors [55–57].
To uncover the genetic basis of the disease, at least 88
SNPs have been reported being associated with in-
creased risk for Type 2 diabetes [58]. In our study, we
compile from GWAS catalog 221 reported susceptible
SNPs, and 35 of them are found to be within 5 Mbp re-
gions of 8 domains that are ranked at the top 10 (except
domain Peptidase_M10 (PF00413) and LTD (PF00932).
Similarly, for each of the top 10 domains, we check re-
gions of their corresponding genes, to see if any GWAS
reported SNPs are inside, upstream, or downstream
within 5Mbp of every gene region, and list the results in
Additional file 1: Table S5.
From the table we observe 3 times that a susceptible

SNP locates inside a domain with once in PH (PF00169)
and twice in IRK (PF01007). We also observe 19 times
that a susceptible SNP locates within [13] 1 Mbp up-
stream or downstream of a domain, 32 times that a sus-
ceptible SNP locates within 1 to 5 Mbp region of a
domain, and also 32 times that a susceptible SNP locates
beyond 5 Mbp region of a domain. From these results
we conjecture that domains ranked among the top 10
indeed tends to be closer to, and even include, known
susceptible SNPs for this disease.

Conclusions and discussion
In this paper, we implemented a comparative study of
inferring protein domains that are associated with hu-
man inherited diseases, by means of five approaches that

Table 3 Novel predictions of domain-disease and gene-disease associations (Continued)

43 AURAL ATRESIA, MULTIPLE CONGENITAL ANOMALIES, AND MENTAL
RETARDATION

209770 133, 181 zf-C2H2_2 PF12756 TSHZ1 614427

44 BILIARY ATRESIA, EXTRAHEPATIC; EHBA 210500 133, 181 zf-C2H2_2 PF12756 TSHZ1 614427

45 CITRULLINE TRANSPORT DEFECT 215720 180 SNF PF00209 SLC6A3 126455

SLC6A19 608893

46 CENTRAL CLOUDY DYSTROPHY OF FRANCOIS; CCDF 217600 77 Fasciclin PF02469 TGFBI 601692

47 DEAFNESS, CONDUCTIVE, WITH MALFORMED EXTERNAL EAR 221300 137 Endothelin PF00322 EDN1 131240

EDN3 131242

48 DICARBOXYLIC AMINOACIDURIA; DCBXA 222730 180 SNF PF00209 SLC6A3 126455

SLC6A19 608893

49 DUODENAL ATRESIA 223400 181 zf-C2H2_2 PF12756 TSHZ1 614427

50 HARTNUP DISORDER; HND 234500 180 SNF PF00209 SLC6A3 126455

SLC6A19 608893

“Rank” is the rank of predicted domain-disease associations in terms of Bayesian scores; “Disease” is the name of the disease phenotype, “OMIMd” is ID of disease
phenotype in the OMIM database; “Module Index” is the index of module including the disease; “Domain” is the name of domain; “Pfam” is the domain ID in the
Pfam database; “Gene” is mapped gene from corresponding domain; and “OMIMg” is the gene ID in the OMIM database. The bold rows represent known domain-
disease associations compiled by the Ensembl BioMart tool. The italic rows represent domain-disease associations that are unknown in our study but have at least
one known genes in the OMIM database. The bold italic elements in the “OMIMg” column represent that the predicted genes are known as disease genes in the
OMIM database
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are previously used to predict domain-domain interac-
tions from protein-protein interactions. On the basis of
several network data sources, we first constructed dis-
ease modules from the disease phenotype similarity net-
work, and then proposed a framework to make the
inference through known relations between diseases and
modules, domains and proteins, as well as proteins and
disease modules. We further demonstrate the effective-
ness and robustness of these approaches, through a
series of large-scale validation experiments, and dis-
cussed about the benefits brought by modularization,
while comparing the performances of the five ap-
proaches in terms of three evaluation criteria (AUC
score, Accuracy, and Mean rank ratio). We finally illus-
trate the consistency between our inference results and
the evidences from genome-wide association studies for
two common diseases: Crohn’s disease and Type 2
diabetes.
Our main contribution therefore lies in the following

parts: (1) effectively utilization of protein-domain, gene-
disease and phenotype similarity sources to make large-
scale inference of domain-disease associations and even
novel gene-disease associations; (2) comparisons of the
predictive powers of five well-known approaches in solv-
ing the domain-disease association inference problem;
(3) comprehensive analysis of the robustness of the ap-
proaches to changing parameters; (4) illustration of the
effects of disease modularization in predicting novel

domain-disease and gene-disease associations; (5) ana-
lysis of top 50 predictions of domain-disease and corre-
sponding gene-disease associations; (6) demonstration
of the consistency of our inference results with the
genome-wide association studies, providing genetic
support to our domain-disease association inference
results.
Notwithstanding so, our work can be further explored

from the following aspects. First, the success of all the
five approaches is mainly owing to the known gene-
disease, protein-domain relationships and the construc-
tion of disease modules based on phenotype similarities.
Therefore, the abundances and qualities of these rela-
tionships are of great importance to the inference
results. However, current studies concerning the struc-
tures and functions protein domains are still too few,
making the domain-centric approach instead of the
gene-centric ones challenging [13]. To improve this situ-
ation one may resort to more network containing the
domain information as an alternative, such as the
domain-domain interactions from the DOMINE data-
base [59]. As for the construction of disease module, al-
though there are already several methods for calculating
similarities between disease phenotypes, how to categorize
the diseases remains a challenge. In our work we just sim-
ply construct the phenotype similarity network according
to a threshold, through which the numerical information
of similarities among diseases is not sufficiently utilized.

Table 4 Strengths and weaknesses of the approaches

Strength Weakness

Association • Fast in implementation
• No need to pre-determine parameters
• Results can be easily validated by
hand calculation

• Unsatisfactory in predictive power
• Does not consider the structures all relevant
protein-module associations as a whole
• Do not have control for possible over-prediction
of associations between frequently occurring
domain-disease pairs

MLE • Good in predictive power
• Fast in implementation
• Take into account the structures all
relevant protein-module associations as a whole

• Need to pre-determine parameters
• Do not have control for possible over-prediction
of associations between frequently occurring
domain-disease pairs

DPEA • Satisfactory in predictive power
• No need to pre-determine parameters
• Have control for possible over-prediction
of associations between frequently occurring
domain-disease pairs

• Slow in implementation when the number of
candidate domain-disease associations is large

Bayesian • Excellent in predictive power
• Take into account the structures all relevant
protein-module associations as a whole

• Slow in implementation when the number of
candidate domain-disease associations is large
• Do not have control for possible over-prediction
of associations between frequently occurring
domain-disease pairs
• Failure when the log-concave conditions of
parameters are not satisfied

PE • Satisfactory in predictive power
• Only one pre-determined parameter
• Have control for possible over-prediction of
associations between frequently occurring
domain-disease pairs

• Slow in implementation when the number of
candidate domain-disease associations is large
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The threshold itself needs to be pre-determined as well,
and in this paper we select its value mainly for the con-
sideration of computational feasibility. However, differ-
ent values of the threshold would change the number
of diseases, proteins, and domains involved, and differ-
ent clustering approaches and their potential parame-
ters used may also influence significantly. For clustering
diseases into biological meaningful modules, more
knowledge about disease categorization is needed.
Second, although we successfully developed the dis-

ease modules to circumvent the limitations of the insuf-
ficient protein-disease associations, the modularization
does not differentiate the diseases in the same modules,
and known protein-disease information is reduced to
protein-module information instead. As a result, for the
diseases that already have known genes associated, these
disease genes are not guaranteed to be scored highest
for the diseases. Therefore, to overcome this problem,
we need to assign different weights to diseases in the
same module during the disease modularization process.
Third, as shown in Table 4, we list the strengths and

weaknesses for all the five approaches referred in this
paper. Although the Bayesian approach performs the
best in our comparative study, it also suffers from some
mathematical and computational issues that need to be
improved upon. Although the Adaptive Rejection Sam-
pling method in the Bayesian approach only needs that
the posterior distribution to be log-concave, we still need
to determine the prior distributions for the parameters
involved. As is known, the specification of prior is intrin-
sically complicated and subjective. The main consider-
ation is that the posterior mean and variance should not
depend on the units in which the disease similarities are
measured and should also be invariant to the shift of the
response variable. Therefore, one can consider the use of
Jeffrey’s prior instead of the conjugate prior. Also, the
computational time of the Bayesian approach is much
longer than the other four approaches, and as the scale
of networks increase, the iteration processes becomes
unbearable. More computational efficient approaches to
estimate the posterior probability distributions are
needed.
Finally, our study is mainly motivated by the hypoth-

esis that protein domains can be viewed as functional
units of proteins, and are considered important in dis-
ease development. However, in addition to domains, the
linker sequences between domains could also be essen-
tial for the biological functions of the proteins, which
has been demonstrated by a recent study [60]. Some
linker sequences can be viewed as flexible “domains”, by
connecting various domains in a single protein without
interfering with the function of each domain [61], and
their relationships between linker sequences and dis-
eases is a topic for a future research.
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