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Quantitative modeling and analytic
assessment of the transcription dynamics
of the XlnR regulon in Aspergillus niger
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Abstract

Background: Transcription of genes coding for xylanolytic and cellulolytic enzymes in Aspergillus niger is controlled
by the transactivator XlnR. In this work we analyse and model the transcription dynamics in the XlnR regulon
from time-course data of the messenger RNA levels for some XlnR target genes, obtained by reverse transcription
quantitative PCR (RT-qPCR). Induction of transcription was achieved using low (1 mM) and high (50 mM) concentrations
of D-xylose (Xyl). We investigated the wild type strain (Wt) and a mutant strain with partial loss-of-function of the carbon
catabolite repressor CreA (Mt).

Results: An improved kinetic differential equation model based on two antagonistic Hill functions was proposed, and
fitted to the time-course RT-qPCR data from the Wt and the Mt by numerical optimization of the parameters. We show
that perturbing the XlnR regulon with Xyl in low and high concentrations results in different expression levels and
transcription dynamics of the target genes. At least four distinct transcription profiles were observed, particularly for the
usage of 50 mM Xyl. Higher transcript levels were observed for some genes after induction with 1 mM rather than
50 mM Xyl, especially in the Mt. Grouping the expression profiles of the investigated genes has improved our
understanding of induction by Xyl and the according regulatory role of CreA.

Conclusions: The model explains for the higher expression levels at 1 mM versus 50 mM in both Wt and Mt. It does not
yet fully encapsulate the effect of partial loss-of-function of CreA in the Mt. The model describes the dynamics in most of
the data and elucidates the time-dynamics of the two major regulatory mechanisms: i) the activation by XlnR, and ii) the
carbon catabolite repression by CreA.
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Background
The fungus Aspergillus niger has numerous economic and
ecological applications, for example in paper manufactur-
ing, animal feed and human foods. It is used in industrial
fermentation processes for the production of organic acids
like citric acid [1, 2], gluconic acid [3] and also for the
production of enzymes such as amylase, amyloglucosidase,
cellulases, pectinases, lactase, invertase and acid proteases
in the food industry [4, 5]. Biotechnological products from

A. niger are applied in the pharmaceutical, cosmetic and
chemical industries [6]. Understanding gene transcription
(mRNA synthesis) is crucial for advancing industrial appli-
cations and controlling the synthesis of target compounds
from A. niger. Transcription of genes coding for xylanoly-
tic and cellulolytic enzymes in A. niger is controlled by the
transactivator XlnR [7]. XlnR plays a major role in regulat-
ing the expression of plant cell wall degrading enzymes
(PCWDE) [8–10]. The target genes of the XlnR regulon
encode amongst others the main xylanolytic enzymes
xylanases B and C and β-xylosidase, and accessory
enzymes like α-glucuronidase A, acetylxylan esterase A,
arabinoxylan arabinofuranohydrolase A, and feruloyl
esterase A [11]. The XlnR regulon also comprises genes
coding for cellulolytic enzymes like endo-glucanases A,
B, C and cellobiohydrolases A and B.
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Carbon catabolite repression is a regulatory mechan-
ism occurring in microorganisms leading to the adjust-
ment of their carbon metabolism, thereby minimizing
energy demands. The carbon catabolite repressor protein
CreA was initially described in Aspergillus nidulans [12].
In the presence of high concentrations of D-xylose (Xyl),
CreA modulates XlnR-induced expression of the genes
involved in xylan degradation [13]. Up-regulation of sev-
eral PCWDE in A. niger can result from carbon starva-
tion or creA deletion [10, 14]. Mach-Aigner et al. [15]
assessed the effect of CreA on transcription of PCWDE-
encoding genes in A. niger by comparing the response to
Xyl in two strains: the wild type (Wt) and a CreA
mutant strain (Mt). They analyzed the transcript levels
of genes coding for PCWDE, evaluated their Xyl concen-
tration dependent expression profiles and described the
role of CreA and XlnR in regulating transcription in A.
niger. They found that genes coding for enzymes with
similar function responded in a similar manner to a
particular Xyl concentration and noted that utilization
of high Xyl concentration is beneficial for the induction
of hemicellulase-encoding genes [15].
Regulatory network reconstruction involves the ana-

lysis of trends and dynamics in data, and the inference
of functional and regulatory mechanisms in biological
systems. Mathematical modeling helps us to represent
and understand complex interactions in networks.
Modeling enables prediction of the resultant effect of
nonlinear interactions in a network [16], thereby pro-
viding insight into cellular regulatory processes and
kinetics [17]. Ordinary differential equations (ODEs)
are a popular formalism for modeling time responses in
regulatory networks [18–23]. ODEs used in the context
of modeling biological networks consist of mechanistic
representations of the transcription rates in biological
(sub-)systems [19]. Dynamic modeling involves incorp-
orating prior knowledge into models of the regulatory
network.
Omony et al. [24] provided a dynamic model based on

ODE for the description of the regulation mechanisms
and dynamics of the XlnR regulon. Mach-Aigner et al.
[15] investigated the role of CreA using time course data
(TCD) based on an hourly sampling interval. However,
the information in this time interval was not detailed
enough to adapt the previous dynamic model [24]. The
purpose of the current work is to make amendments to
the model based on experimental data from shorter time
intervals, that better resolve the transcript dynamics. It
also allows for a variety of regulation mechanisms for
the XlnR target genes, rather than a single mechanism
as proposed in previous models [24]. Additionally, by
comparing the Wt with Mt data, an attempt is made to
obtain more insight in the mechanism underlying the
CreA regulatory influence.

Methods
Strains, growth conditions, RT-qPCR
The strains (A. niger N400 (CBS120.49) (Wt) and the
CreA mutant strain NW283 that exhibits a de-repressed
phenotype (Mt)), growth conditions, RNA-extraction,
reverse transcription and the quantitative PCR analyses
in this work were described by Mach-Aigner et al. [15].
TCD were obtained for 23 genes for the Wt using a
sampling interval of 20 minutes during a period of 5 hours,
and for 8 genes for the Mt using an hourly sampling
interval (see Additional files 1 and 2). Strains were grown
in bioreactors on sorbitol, which was used as a non-
inducing/non-repressing carbon source. The experiments
involved quantifying expression of: xlnR, genes encoding
endoxylanases (xlnB and xlnC), β-xylosidase (xlnD),
arabinoxylan arabinofuranohydrolase (axhA), acetylxylan
esterase (axeA), α-glucuronidase (aguA), feruloyl esterase
(faeA), endoglucanase eglA and eglB, which are XlnR
target genes [25]. The other XlnR target genes are: eglC,
talB, xdhA, ladA, estA and the Xyl reductase-encoding
gene xyrA as well as abfB, bglA and xkiA [26]. XlnR also
regulates expression of α- and β-galactosidase-encoding
genes (aglB and lacA) [27] and cellobiohydrolase-
encoding genes cbhA and cbhB [28].

Previous model formulation for the XlnR regulon
dynamics
Based on prior knowledge of the regulatory mechanisms of
the XlnR regulon described by de Vries et al. [13], the ori-
ginal model of Omony et al. [29] was formulated as follows:

:xxlnR ¼ bu−kdxxlnR
:xi ¼ kis

ki1xxlnRð Þh1
1þ ki1xxlnRð Þh1

1

1þ ki2uð Þh2 −kidxi

given xxlnR 0ð Þ; xi 0ð Þ; u 0ð Þ

8>>><
>>>:

ð1Þ

where xxlnR - activity state for xlnR, u - Xyl concentra-
tion, b - input stimulus coefficient, ki2 - inverse of Hill
constant for CreA, kd - mRNA degradation parameter
for xlnR, xi - activity state for target gene i and :xi –
transcription rate. The transcription rate is constant
when the gene is on, but is reduced by the two switching
Hill functions in the first term of the right hand side,
one for activation by XlnR and the other for stimulus
proportional de-repression.
Omony et al. [29] used Hill coefficients h1 = h2 = 1.

The h1 values govern the transcriptional response of
target genes to Xyl induction. A small value, h1 ≈ 1 may
lead to a graded response, whereas larger values are
more likely to result in a bi-stable switch-like response
in gene expression profiles [30]. Ninfa and Mayo [31]
established a positive association between high Hill coef-
ficients and transcription dynamics. Many biological sys-
tems have large Hill coefficients (hl = 1,2 ≥ 2) [32] which
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are associated with multi-stability, higher order dynam-
ics, and the number and specificity of transcription fac-
tor (TF) binding sites. Our data suggest that steeper
switching is more appropriate; therefore, in this work we
used higher h1 and h2 values. We considered Xyl to co-
operatively interact with XlnR at the promoter site of
target genes, as opposed to earlier proposed binding
mechanisms [29].

New model formulation
To describe the regulatory mechanism of the dependence
of the XlnR regulon on Xyl and CreA, we define the xlnR
promoter as PxlnR. The normalized transcript levels indi-
cate that the expression of xlnR remains nearly unchanged
(values ~1 to 2 relative to the hist gene), irrespective of
the used Xyl concentration (Figs. 2H; 3H; 4W and 5W).
In the model, the resultant protein (XlnR) is considered to
ultimately bind cooperatively with Xyl to the promoter of
a target gene forming the complex xxlnRu. The concentra-
tion of this complex, which is also considered as the active
form of XlnR, is denoted by X = [xxlnRu]. This complex
dissociates into [xxlnR] and [u], which hereafter are simply
denoted by xxlnR and u, respectively. CreA binds to the
promoters of the target genes, thus inhibiting transcrip-
tion. The number of CreA binding sites varies between
the promoters of the target genes, however, we assume
that occupation of at least a single binding site suffices to
repress transcription.
xlnR is constitutively transcribed, irrespective of the

Xyl concentration [15]. It is evident from our data
(Figs. 2, 3, 4 and 5) that the pseudo-steady state assump-
tion ~xxlnR ¼ b~u=kd based on earlier proposed models for
the expression of xlnR [29] cannot be maintained.
Therefore, an improved model based on the mechanism
in Fig. 1A is used to explain the network dynamics. The
regulation mechanism for the XlnR regulon is modeled
using the equations

:
X ¼ KonxxlnRu−KoffX ð2Þ
:xCreA ¼ k1u−k2xCreA ð3Þ

:xi ¼ kis
Xh1

Kh1
i1 þ Xh1

 !
Kh2

i2

Kh2
i2 þ xCreAh2

 !
−kidxi ð4Þ

given [X(0), xCreA(0), xi(0)]
T; kis – mRNA synthesis par-

ameter, kis ∈ {kis,Wt, kis,Mt} – maximum transcription rate
in the Wt and Mt, respectively. The state variables de-
pict mRNA concentration, protein abundance and other
time-dependent quantities.
Here Kon (h-1) and Koff (h

-1) are the association and
dissociation constants, respectively. Kon describes the
interaction between XlnR and Xyl, and Koff the strength
of the interaction between the two molecules. xCreA de-
picts CreA concentration, k1 and k2 are constants. Ki1 is

the expression threshold parameter (half-saturation con-
centration) that corresponds to activation of target gene
i by the complex of XlnR and Xyl. Ki2 ∈ {Ki2,Wt, Ki2,Mt} is
an expression threshold parameter (half-saturation con-
centration). It corresponds to CreA repression in the Wt
and Mt, respectively. This allows for a partial or
complete CreA loss-of-function Mt to be accounted for
in the model. kid is the first-order rate constant for the
mRNA degradation for target gene i.

Let ψCreA ¼ Kh2
i2 = Kh2

i2 þ xCreAh2
� �

be the Hill function

associated with CreA repression. Alternatively, it can be

written as ψCreA ¼ 1= 1þ xCreA=Ki2ð Þh2
� �

, which illuci-

dates on the switiching level Ki2 and steepness param-
eter h2. For partial CreA repression, xCreA ≠ 0, with 0
< ψCreA < 1. The value h2≫ 1 represents increasingly
steeper switching around the switching level Ki2. We
used h2 = 4 throughout for the modeling. CreA mutation
implies that xCreA ≈ 0, therefore, ψCreA ≈ 1 in equation
(4), in which case equation (3) is not required. Alterna-
tively, a partial loss-of-function of CreA can be repre-
sented by maintaining equation (3), but adjusting Ki2

Fig. 1 Regulatory mechanisms in the XlnR regulon and
transcription profile classification. a: Model of how XlnR and CreA
control transcription of the XlnR target genes. The term TF
represents a transcription factor. URS and UAS – upstream
repression and activation sequences, respectively. The depicted
CreA repression of xlnR is hypothetical. b: The transcription
dynamics were classified as: C1 – a monotonic increasing function,
C2 – a function with a maximum and a lower steady state, C3 – a
function that steadily rises to a maxima, decreases and then again
increases (de-repression of transcription), and C4 – bimodal
expression with de-repression. W1 and W2 are time window partitions.
The term a.u. refers to arbitrary units. Any other parameters are as
described in the materials and methods section
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and/or h2 (in case of less effective binding sites). We

define ψXyl ¼ Xh1= Kh1
i1 þ Xh1

� �
as the Hill function

associated to the active form of XlnR, which according
to equation (1) is associated to Xyl and xlnR. In the
modeling, the basal transcription level for each tran-
script is considered as negligible compared to the actual
transcript levels.
The parameters Ki1 and Ki2,{Wt|Mt} are related to the

chemical affinity between the respective TFs and their
binding sites [33]. The model structure is the same for
the XlnR targets, except for variations in the levels of
CreA repression. The parameters kis,Mt and kis,Wt are
used to assess the mRNA levels for gene i in the Mt
and Wt. Let λi := kis,Mt/kis,Wt be the proportional fold-
change between the mRNA level in the Mt to the Wt.
It is likely that λi≫ 1 for most target genes, since
higher transcript levels were observed in the Mt than
Wt. Transcription in the Mt does not significantly
differ from the Wt when λi ≈ 1. Overall, we tested the
hypotheses that: (i) expression of the XlnR targets is
not regulated by CreA repression, (ii) not all response
patterns C3 - C4 (described below) can be generated by
the model in equations (2) to (4).
In equations (2) to (4) we assumed: (a) Xyl coopera-

tively binds with XlnR at PxlnR and CreA binds to the
DNA of XlnR targets. The new model formulation al-
lows us to explain higher order dynamics by assuming,
(b) negligible time-delay in translation, (c) transcription
only occurs if at least a TF binding site is occupied, (d)
all transcribed genes are translated into proteins, (e) all
TFs bind independently to the target gene promoter, and
(f ) mRNA and protein degradation is not regulated.

Fitting the model to the data
The model fit to data was conducted separately and
sequentially, starting with the Wt followed by the Mt. In
each strain, the model was simultaneously fitted to the
data corresponding to use of 1 and 50 mM Xyl. We used
the sum of squared errors minimization between the
measured and estimated data values. The combined goal
function is the sum of two functions one belonging to
each of the 1 and 50 mM Xyl induction. Equations (2) to
(4) were fitted to the data resulting in a single vector of
parameter estimates, θi where

θi ¼ Kon;Koff ; k1; k2; kis;Ki1;Ki2; kid½ �T ð5Þ
where θi is a concatenation of vectors ϑ1 = [Kon, Koff,

k1, k2]
T and ϑ2 ∈ {ϑ2,Wt, ϑ2,Mt}; ϑ2,Wt = [kis,Wt, Ki1, Ki2,Wt,

kid]
T and ϑ2,Mt = [kis,Mt, Ki1, Ki2,Mt, kid]

T; Ki1 and kid are
considered as the same in the Wt and Mt. These two pa-
rameters were later fixed for the estimation of kis,Mt and
Ki2,Mt using the Mt datasets. In equation (5), θi ∈ {θi,Wt,
θ2,Mt}, where θi,Wt = [ϑ1, ϑ2,Wt]

T and θi,Mt = [ϑ1, ϑ2,Mt]
T for

the Wt and Mt, respectively. The optimization routine
consisted of the goal functions: Ji,1(θi) =min∑j = 0

N (yij − ŷij)
2

and Ji,50(θi) =min∑j = 0
N (yij − ŷij)

2 for the 1 and 50 mM
induction dataset, respectively. The terms yij and ŷij
respectively refer to the measured and estimated data
value for gene i at time instant j.
The model fit to data was performed one gene at a time.

The goal functions were combined according to the
expression Jcomb(θi) = Ji,1(θi) + Ji,50(θi). The optimization
was performed using the lsqnonlin routine in MathWorks

Matlab R2013a. The results for θ̂ i are given in (Additional

file 3: Table S1 and S2). Initially, θ̂ i was obtained in the
Wt for all genes and the averages of some parameters

were fixed at �̂ϑ1 and the remaining ϑ2 re-estimated. Here
�̂ϑ1 is the vector of parameter estimates averaged (and
fixed) for all target genes. It contains the least sensitive pa-

rameters in the models. On the contrary, ϑ̂2 contains esti-
mates for non-fixed parameters, which are more sensitive

than those in �̂ϑ1 . The coefficient of variation (CV) is de-

fined as CVϑ̂2
¼ SD ϑ̂2

� �
=ϑ̂2 where SD is the standard

deviation.

Results
Qualitative model hypothesis based on analysis of the
data
Overall, four classes of transcription patterns were ob-
served in our data (Fig. 1b, classes C1 - C4). C1 is a
monotonic increasing function; transcription under C2

reaches a maximum value after which it gradually
decreases to a new steady state. In C3 and C4 there is
strong evidence of de-repression (time window W2,
Fig. 1b). The models proposed in this study describe
the transcription dynamics for some target genes,
especially those belonging to C1. In C2, first, transcrip-
tion is activated by Xyl, it attains a maximum value and
then decreases. This decrease corresponds to Xyl deple-
tion. The transcription dynamics for some genes could
not be captured by our models, e.g. abfB, which has no
binding sequence for XlnR [25]; hence, we would con-
clude that it is not part of the XlnR regulon.
Using our observations and the regulatory model for

the XlnR targets as shown in the equations and Fig. 1a,
the behavior can be qualitatively described as follows.
Initially, transcription is triggered by Xyl-mediated in-
duction (insignificant repression of transcription). At
this instance, the CreA concentration is low but grad-
ually builds up to eventually repress transcription
(Fig. 1a), as long as Xyl is present in the medium. Tran-
scription is reduced again when Xyl gets depleted, as is
depicted in class C2. The conceptual scheme allows
differences in gene expression between various target
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genes by varying the degree of induction or repression
for each individual gene.

The XlnR regulon transcription dynamics
An initial experiment was performed using the Mt and
analyzing 7 target genes of the XlnR regulon, in order to
evaluate manageable sampling intervals and to obtain
insight into Xyl utilization. In a second, more extensive
experiment, the Wt was used and more detailed TCD for
23 genes could be obtained. We observed that: (i) XlnR is
constitutively expressed, (ii) the target gene expression
levels reach higher values at a stimulus of 1 mM com-
pared to 50 mM, both in the Wt as in the Mt, and (iii) in
the Mt target gene expression levels are generally higher
than in the Wt (Figs. 2, 3, 4 and 5). Expression of xlnR in
the Mt was marginaly less than in the Wt at most time
points (Figs. 2 and 3H; 4 and 5W).
A similar up-regulation dynamic of the XlnR target

genes occur within the first hour after Xyl induction
(Figs. 2 and 3); however, after 1 h, the same genes show
varying patterns in transcription dynamic and the inten-
sity of gene expression (Fig. 4). This difference may partly
be attributed to a reduction in Xyl concentration. Unlike
other target genes, transcription of e.g. xlnD and bglA is
bimodal, i.e. they exhibit a repeated up and down pattern
of expression (Fig. 4). Transcription values of some target
genes (e.g. eglB, cbhB and aglB; Figs. 4 and 5: r, t and v)
remained around their steady states, thus showing less
interesting dynamics. Some genes exhibited dynamics that
cannot be explained using both the previous and newly
proposed models, especially using 50 mM Xyl (e.g. xlnD,
xyrA, axeA, ladA, abfB, xkiA and lacA, Fig. 5).

Genes with similar or the same regulation mechanisms
often have similar expression profiles and response to
stimuli. Such genes are expected to cluster together in a
dendogram. Dynamic time warping [34] was used to
cluster the data, which enables identification of genes
with similar in time-evolution profiles (Additional file 4:
Figure S1). In the gene expression clusters, the place-
ment for axhA differs in the Mt irrespective of the indu-
cing Xyl concentration (Additional file 4: Figure S1A
and B). In the Wt, induction with 1 mM Xyl resulted in
19 genes in a single cluster (Additional file 4: Figure
S1C) while induction with 50 mM Xyl resulted in two
large clusters each with 10 genes (Additional file 4:
Figure S1D). Genes with bimodal transcription pattern
like xlnD and bglA also cluster together in the case of
both Xyl concentrations (Additional file 4: Figure S1C and
D). Since the gene clusters are based on their transcription
profiles, they intrinsically provide clues as to which genes
might possess similar additional regulation mechanisms.

Model results
After parameters estimation, our model fits quite well
to most of the TCD (Figs. 2, 3, 4 and 5, black lines;
Additional file 3: Table S1). Hence, it is possible to find
parameter values that are consistent with the data, with
the exception of some genes. For the 50 mM experi-
ment the model fits very well to some of the gene pro-
files, e.g. xyrA and axeA and aguA in the case of the Mt
(Fig. 3) and xlnB, aguA and talB in the case of the Wt
(Fig. 5).
In the parameter estimation during model fitting to

data, the covariance matrix had large correlation values

Fig. 2 Model fit to the data obtained for the Mt using 1 mM Xyl. a-g: Black bold line is the model fit to data with all parameters fixed except kis,Mt and

Ki2,Mt. The green bold line is the fit with all parameters fixed except kis,Mt, Ki2,Mt and kid. �̂K on ¼ 14:957, �̂K off ¼ 75:541, �̂k1 ¼ 21:455 and �̂k2 ¼ 20:065
were fixed. The graphs are plotted on different scales to aid visibility and the shaded areas indicate standard deviations. h: transcript levels of xlnR. The
red line is the fit to the mean xlnR expression values. The dots represent normalized and averaged RT-qPCR data

Omony et al. BMC Systems Biology  (2016) 10:13 Page 5 of 10



between some parameters. Parameters with poorer esti-
mates were fixed before rerunning the model fit; thereby,
reducing the parameter degrees of freedom. To assess
the influence of kid , the models were fitted with and
without fixing the parameters. Though not significantly
pronounced, not fixing kid results in a systematic shift of
the model fit to the right (compare green line to the
black line) for some genes in case of the Mt data ob-
tained with 1 mM Xyl (Fig. 2). In case of the Mt data
obtained with 50 mM Xyl not fixing kid does not result
in any significant difference in the model fit (compare
green line to the black line) for all genes (Fig. 3). Overall,
the difference between the model fits in green and black
lines is insignificant.
It remains a challenge to accurately quantify CreA abun-

dance. The lack of data on CreA results in some parame-
ters being estimated with less precision (Additional file 3:
Table S1). Such lack of data on relevant state variables still
remains a huddle in modeling biological systems [35–37].
The number of parameters in equation (5) poses a chal-
lenge in the network inference because of the presence of
correlated parameters. Another source of bias in param-
eter estimation is data measurement noise which compli-
cates the surface of the objective function. This may
introduce local minima in an already complex search
space, especially for nonlinear models [38]. This need not
be a major problem if the interest is to describe the tran-
scription dynamics, but only when an attempt is made to
attach a biological meaning to the estimated parameters.

To unravel the XlnR regulon dynamics, the derived θ̂ i

were used to analyze the Hill functions. The effects of the

role interplay between ψXyl and ψCreA can be seen from
the variation in intensity of transcription on XlnR target
genes (Additional file 5: Mt: Additional file 4: Figure S2,
and S3A to G, Additional file 6: Wt: Additional file 4:
Figure S4, and S5A to V), with possible antagonism
between ψXyl and ψCreA.
Unlike induction with 50 mM Xyl (Additional file 4:

Figure S3 and S5), the evaluation of the Hill function
components using the parameter estimates shows that in
case of induction with 1 mM Xyl, the effect of CreA is
negligible, i.e. ψCreA ≈ 1 throughout the 5 h time-frame
(compare Additional file 4: Figure S4). Otherwise, Xyl
plays a major role (0 ≤ ψXyl ≤ 1) in activating transcrip-
tion (Additional file 4: Figure S2 and S4). This effect is
generally reversed in the presence of high Xyl levels
(Additional file 4: Figure S3 and S5). Unlike high Xyl
concentration, for low Xyl induction the activation term
ψXyl and the mRNA degradation term kidxi also plays a
major role in determining the network dynamics; how-
ever, at high Xyl concentration the components ψXyl and
ψCreA jointly regulate transcription.

The possibility of feedback by CreA
Additional parameter estimation exercises were done in
an attempt to improve the fit, including the introduction
of a feedback effect in the model (shown in Fig. 1a, but
not in the equations). It was found that this did, indeed
improve the fit to data for some genes, but also introduces
bias in the parameter estimates. The data are not rich
enough to estimate the feedback parameters with confi-
dence. Including a feedback loop in the model requires

Fig. 3 Model fit to the data obtained for the Mt using 50 mM Xyl. a-g: The black bold line is the model fit to data with all parameters fixed

except kis,Mt and Ki2,Mt. The green bold line is the fit with all parameters fixed except kis,Mt, Ki2,Mt and kid. �̂K on ¼ 14:957, �̂K off ¼ 75:541, �̂k1 ¼ 21:455

and �̂k2 ¼ 20:065 were fixed. The graphs are plotted on different scales to aid visibility and the shaded areas indicate standard deviations. h: xlnR
transcript levels. The red line is the fit to the mean xlnR expression values. The blue dots represent normalized and averaged RT-qPCR data
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prior knowledge of candidate molecules and their likely
direction of impact, as a repressor or activator. Such a
feedback effect may be further complicated if the mole-
cules interact with other regulatory proteins that poten-
tially also regulate the same target gene. Another reason
for excluding the feedback effect in the models is because
it would only further escalate the number of parameters
required to describe the dynamics of the XlnR regulon;
hence, the reason for using a relatively simple yet suffi-
ciently powerful model to explain the observed tran-
scription dynamics in the data. Therefore, the feedback
mechanism was not further pursued in the current
modeling.

Discussion
It was not possible to obtain good fits by merely chan-
ging the switch level Ki2 in the CreA inhibition function
between Wt and Mt. Rather, the Wt and Mt switch
levels remain roughly the same between the Wt and Mt.
The estimated rate coefficient kis indicates the relative

quantity of mRNA molecules synthesized per unit time
(Additional file 3: Table S1). Contrary to expectations
the uninhibited transcription rate coefficient kis must be
set considerably higher in the Mt to obtain good fits. It
is unclear which underlying mechanism in the Mt is
responsible for the partial loss-of-function of CreA.
The transcription responses to the 50 mM Xyl induc-

tion are given in Figs. 3 and 5. Although the Xyl concen-
tration decreases from 50 mM to ~38 mM (Fig. 6b) after
around 5 h, the Xyl level is still high. About 80 % of the
initial Xyl pulse is left by 5 h, indicating a gradual
decrease in Xyl concentration. It was thus expected that
the target gene response would follow a monotonic
increasing curve, with a possible slow decrease due to
decreasing Xyl concentration. The responses in Figs. 3
and 5 deviate significantly from this expectation.
Overall, some genes were lowly expressed and others

had noisy expression profiles. Some genes were lowly
expressed in the Wt, e.g. eglB, cbhA, cbhB and aglB in
the case of both Xyl concentrations (Figs. 4 and 5). The

Fig. 4 Model fit to the TCD obtained for the Wt using 1 mM Xyl. a-v: �̂K on ¼ 14:957, �̂K off ¼ 75:541, �̂k1 ¼ 21:455 and �̂k2 ¼ 20:065 were fixed. w:
xlnR transcript levels. The red line is the model fit to the mean xlnR expression values. The graphs are plotted on different scales to aid visibility
and the shaded areas indicate standard deviations. The blue dots represent normalized and averaged RT-qPCR data. The black lines show the
model fit to the data points
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gene bglA shows a bimodal transcription pattern with
peaks at ~1 and ~3 h (Fig. 4P). The expression of
faeA is controlled by CreA and XlnR, and it is also
known to respond to other aromatic compounds [39].
To get insight into how the genes grouped in relation
to similarity in their expression profiles, we per-
formed a cluster analysis. Clustering of expression pro-
files (Additional file 4: Figure S1A, B and D) show that
faeA falls in a unique group. A similar mechanism might
exist for the other target genes, which would explain the
complex dynamics in the data, particularly for induction
with high Xyl concentration. Using 1 mM Xyl for induc-
tion, after 5 h nearly all Xyl is consumed (Fig. 6a).
ODEs can be used to describe regulatory mechanisms

like the kinetics of protein-protein or protein-mRNA in-
teractions. The dynamics in the gene expression profiles
provide leads for testing candidate regulation mechanisms
for the XlnR regulon. The response curves show the four
types of behavior depicted in Fig. 1b, which are typical of
high order dynamics, and show fast and slow mRNA deg-
radation for some XlnR target genes. Transcription values

of some target genes remained around their steady states
and thus have less interesting dynamics. Many genes
exhibited dynamics that fit our models (Figs. 2, 3, 4 and 5).
The transcription profiles for some of the XlnR targets
indicate the involvement of further regulatory mechanisms
such as post-translational regulation. In such a case, we do
not exclude the possibility that such regulatory mecha-
nisms could be either single or multiple post-translational
modification steps.
Even if the interaction between XlnR and Xyl was not

yet experimentally proven, an interaction between carbo-
hydrates and XlnR was already proposed by Hasper et al.
[40]. The same was suggested for the ortholog Xyr1 in
Trichoderma reesei and also for the Saccharomyces
cerevisiae Gal4 itself [41].
Two regulatory mechanisms for the transcription dy-

namics were proposed: i) activation by xlnR, and ii)
regulation by CreA (main effect ~3 to 4 h). Significant
de-repression is observed in the Mt for some target
genes, especially using high Xyl concentrations. Overall,
the proposed model to a large extent explains the dynamics

Fig. 5 Model fit to the TCD obtained for the Wt using 50 mM Xyl. a-v: �̂K on ¼ 14:957, �̂K off ¼ 75:541, �̂k1 ¼ 21:455 and �̂k2 ¼ 20:065 were fixed. w: xlnR
transcript levels. The red line is the fit to the mean xlnR expression values. The graphs are plotted on different scales to aid visibility and the
shaded areas indicate standard deviations. The blue dots represent normalized and averaged RT-qPCR data. The black lines show the model fit
to the data points
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of the XlnR regulon concerning the opposing effects of
XlnR activation and CreA repression. It also provides an
explanation for the larger expression rates achieved with
the 1 mM stimulus compared to the 50 mM. We have
demonstrated that the same model structure can be used
to describe the dynamics of most XlnR targets in experi-
ments involving both the Mt and Wt – especially at low
Xyl inducing concentration.
Analysis of our model in relation to the data indicates

that some regulatory elements or mechanisms control-
ling the XlnR regulon are missing. For example post-
translational modifications of XlnR and CreA have not
been considered. Moreover, additional, yet unstudied
TFs (both, activators and repressors) are likely involved
in regulation of at least part of the XlnR regulon in an
indirect or direct manner. The possible auto-regulatory
influence of XlnR might play a role in the regulatory
network. Finally, the mechanisms of the loss of function
of CreA in the mutant may need some further study.
However, the need for re-parameterization between

Wt and Mt still leaves room for further structural im-
provements. Some of the patterns observed in the
higher order dynamics using 50 mM Xyl for induction
still remain a challenge to be accurately described;
however, in the future, uncovering more regulatory
components through experiments should enable fur-
ther refining of the proposed model in our work.
Unraveling the complexity in regulatory mechanism of
the network is crucial for engineering strains with
enhanced ability to produce PCWDE.

Conclusions
In this work we investigate the dynamics of the XlnR
regulon using mathematical modeling coupled with ex-
perimental data of gene expression profiles. We have
shown that the frequent sampling of the high resolution
TCD in our work revealed interesting dynamics in the

data. These datasets are useful for network inference and
mathematical modeling, particularly for the XlnR regulon
that has not been extensively modeled before.
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