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versus C-fixing cells in a diazotrophic
cyanobacterium, Trichodesmium erythraeum
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Abstract

Background: Computational, genome based predictions of organism phenotypes has enhanced the ability to
investigate the biological phenomena that help organisms survive and respond to their environments. In this study,
we have created the first genome-scale metabolic network reconstruction of the nitrogen fixing cyanobacterium
T. erythraeum and used genome-scale modeling approaches to investigate carbon and nitrogen fluxes as well as
growth and equilibrium population composition.

Results: We created a genome-scale reconstruction of T. erythraeum with 971 reactions, 986 metabolites, and 647
unique genes. We then used data from previous studies as well as our own laboratory data to establish a biomass
equation and two distinct submodels that correspond to the two cell types formed by T. erythraeum. We then use
flux balance analysis and flux variability analysis to generate predictions for how metabolism is distributed to
account for the unique productivity of T. erythraeum. Finally, we used in situ data to constrain the model, infer time
dependent population compositions and metabolite production using dynamic Flux Balance Analysis. We find that
our model predicts equilibrium compositions similar to laboratory measurements, approximately 15.5% diazotrophs
for our model versus 10-20% diazotrophs reported in literature. We also found that equilibrium was the most
efficient mode of growth and that equilibrium was stoichiometrically mediated. Moreover, the model predicts that
nitrogen leakage is an essential condition of optimality for T. erythraeum; cells leak approximately 29.4% total fixed
nitrogen when growing at the optimal growth rate, which agrees with values observed in situ.

Conclusion: The genome-metabolic network reconstruction allows us to use constraints based modeling
approaches to predict growth and optimal cellular composition in T. erythraeum colonies. Our predictions match
both in situ and laboratory data, indicating that stoichiometry of metabolic reactions plays a large role in the
differentiation and composition of different cell types. In order to realize the full potential of the model, advance
modeling techniques which account for interactions between colonies, the environment and surrounding species
need to be developed.
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Background
Nitrogen serves a critical role in the metabolism of all
organisms. As a key component in nucleic acids and
proteins, it is required for healthy growth and it is often
one of the most limiting nutrients for optimal yield.
Human intervention via the Haber-Bosch process for the
production of ammonia has greatly shifted the global ni-
trogen cycle, however many ecosystems still rely heavily
on biological nitrogen fixation. One such ecosystem is in
the open ocean, which is a nutrient-limited environment
and organisms that thrive here have evolved to thrive in
deplete conditions. Trichodesmium is a genus of fila-
mentous diazotrophic (nitrogen fixing) cyanobacteria
that not only flourishes in this environment but provides
bio-available nitrogen for surrounding species. Tricho-
desmium is responsible for fixing roughly 100 TgNy-1 of
nitrogen annually (42% of global N fixation) [1] and has
been reported to ‘leak’ 30-50% of the nitrogen it fixes
[2]. The genus is ubiquitous in marine environments; it
is found in environments as diverse as the Mediterra-
nean Sea [3], the Pacific Ocean [4–6], and the Great
Barrier Reef where it has implications not only as a
source of nitrogen, but also as a center for eutrophica-
tion [7]. It dwells primarily near the surface [8] and can
swell to occupy acres of the ocean or sea. Despite its
prominence in the global nitrogen cycle, most research
efforts have focused on in situ sampling and therefore
little has been done to model and or predict the effect
of different environmental factors on the growth and
nitrogen fixation rates in Trichodesmium.
Trichodesmium is a colonial cyanobacteria which

grows in multicellular filaments called trichomes, each
containing about 130 cells [9]. Trichodesmium is a non-
heterocystous cyanobacterium which means it does not
employ specialized cells (heterocysts) for nitrogen fix-
ation. Instead, nitrogen fixation and photosynthesis can
occur within the same cell. Most non-hetrocystous
cyanobacteria separate oxygen producing photosynthesis
from nitrogenase by using temporal separation; they fix
nitrogen at night when the cellular metabolism is in res-
piration mode (consuming carbohydrates stored during
the day by photosynthesis). Trichodesmium is unique in
its mechanism to fix nitrogen, it fixes nitrogen during
the day while simultaneously fixing carbon via photosyn-
thesis. Respiration rates in Trichodesmium are reported
to be higher than other cyanobacteria, which ensures
a micro- or anaerobic environment and thus mini-
mizes the potential poisoning of nitrogenase by oxygen
[10, 11]. Nitrogenase is only expressed in a subset (10-
20%) of cells consecutively arranged in the middle of the
trichome. These diazotrophic cells only express photo-
system I because photosystem II produces oxygen [10,
12–15]. Current characterization of Trichodesmium is
limited predominantly to population level observations

due to its genetic intractability and difficulty to culture.
While several laboratory studies investigating the complex
genome [16–18], transcriptome [19, 20], and proteome
[21] have been published, most relate to populations level
or sparse in situ studies in diverse, non-ideal growth con-
ditions. A handful of other recent studies report on the
morphology/structure of the cells [8, 10, 22, 23] and how
cells respond to iron, nickel, and other nutrient stresses
[24–27]. Despite the availability of these studies, they are
limited in scope and do not provide a complete pic-
ture of Trichodesmium on a cellular scale. The long
doubling time (57-98 h), low growth density (~100mg/L)
[24, 28–30], and lack of genetic tools have limited la-
boratory based research on Trichodesmium, especially
compared to other diazotrophic cyanobacteria such as
Anabaena and Cyanothece.
This work presents the first genome-scale reconstruc-

tion of a colony forming diazotrophic cyanobacterium,
T. erythraeum, a leader in marine nitrogen fixation. It
models biological optimization of metabolic exchange
and biomass creation through Flux Balance Analysis
(FBA) and Flux Variability Analysis (FVA) [31] to predict
the different metabolic behaviors of the two cell types
formed by T. erythraeum, nitrogen fixing cells and pho-
toautotrophic cells, constrained by laboratory or pub-
lished data/observations. The models described in this
work illustrate how T. erythraeum divides labor between
two cells stoichiometrically and applies the first step to-
wards a multi-objective framework of these bilaterally
operating cells. These results are extended to understand
overall population compositions and metabolite produc-
tion rates to visualize what role metabolite passage plays
in formation of these complex colonies via dynamic Flux
Balance Analysis (dFBA) [32] and a population co-
optimization algorithm. This model lays the foundation
for future colonial cyanobacteria characterization and in-
tegration with in situ and transcriptomic data for T.
erythraeum.

Results
Biomass composition and growth rates
Cells were grown in YBC-II medium in ambient air
(79% N2) or supplemented with either 100 μ mol KNO3

as a nitrogen source. Growth was monitored by measur-
ing total chlorophyll content (see Fig. 1a). These data
were then used to calculate the growth rate and doub-
ling time assuming exponential growth (Table 1).
The biomass composition of T. erythraeum was mea-

sured in order to formulate an accurate biomass forma-
tion equation. The composition of cells grown on both
ambient air and nitrate were measured (see Table 2 as
described in the methods section. The “soluble pool” is a
collection of soluble metabolites that are well conserved
between organisms for survival and includes small
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sugars, energy carrying molecules, and other small mole-
cules. To accurately represent proteins and lipids, the
amino acid and fatty acid composition of cells were mea-
sured as well (see Additional file 8: Tables S1 and S2).
We attempted to grow cells on ammonium because we
hypothesized that this would remove the necessity of
diazotroph formation and enable all the cells in the
trichome to be carbon-fixing. This would allow biomass
measurement of photoautotrophs directly; however,
growth on ammonium in the laboratory was not possible
as seems to be consistent with some other cyanobacteria.
Therefore we used the composition of cells grown on N2

as the average biomass composition for all subsequent
modeling efforts.

Network reconstruction and manual curation
Reconstructing a complete genome-scale metabolic net-
work from a genomic sequence required several itera-
tions. The first draft of the network was created using
an automated genome-scale model algorithm, the SEED
RAST [33] and contained 956 reactions. Automated
metabolic network reconstructions rely on homology to
well characterized and annotated model organisms such
as E. coli or S. cerevisiae. Therefore, the unique meta-
bolic pathways for photosynthesis and nitrogen fixation
were not accounted for in the initial draft. The initial au-
tomated draft had several gaps and missing reactions,
therefore several iterations of manual curation were ne-
cessary to fill in missing reactions and infer the presence

of reactions that were not predicted based on homology
to model organisms. First, we focused on closing the bal-
ance on reactions associated with biomass and cellular
energy pathways (light harvesting, ATP cycling, and
Redox reactions); this was done by referencing metabolic
pathway databases such as BioCyc [34] and KEGG [35].
We then compared our draft network to genome scale
reconstructions of other related organisms, including
Cyanothece ATCC 51142 [36], Synechocystis sp. PCC
6803 [37], Synechococcus sp. PCC 7002 [38], Arabidopsis
thaliana [39], Phaeodactylum tricornutum [40], and
Chlamydomonas reinhardtii [41, 42]. Through compari-
son, we added more photosynthesis-specific metabolic
reactions which were predicted to be present in the
genome based on BLAST results. Finally, transport re-
actions included in the model were selected based on
proteomic data or diffusion (CO2, H2O, N2, etc.) [16].
Manual curation efforts built the model out to a max-
imum of 1035 reactions; closer inspection of the reac-
tions revealed that several were predicted by the SEED
algorithm but had no significant homology to the T.
erythraeum genome and were non-essential, therefore
they were removed. The current draft of the genome-
scale metabolic model (Additional file 1: Table S1 and
Additional file 2: Table S2) for T. erythraeum contains
971 reactions: 1 biomass formation equation (based on
experimental data), 9 macromolecule synthesis and
condensation reactions, 27 exchange reactions, 38
transport reactions (validated by proteomics data), and
907 metabolic reactions. These reactions involve 647
unique genes and 986 metabolites. Despite our manual
curation efforts, the model still has 215 dead end reac-
tions: 113 are involved in lipid, amino acid, or pyrimi-
dine/purine metabolism and are bypassed by summary
reactions (see Additional file 3 for a complete list).

Fig. 1 Growth curves and biomass compositions of T. erythraeum. Cells were grown with either ambient air (circles/left and blue) or potassium
nitrate (triangles/right and dark cyan) as the nitrogen source in YBCII medium and growth was monitored by measuring total chlorophyll a
content. a) Growth curves of cells in different nitrogen sources and computational growth. Error bars represent standard deviation from 3
biological replicates. b) Biomass composition of T. erythraeum. The major elements of biomass were measured directly from cultures grown on
diatomic nitrogen (ambient air) or potassium nitrate. Error bars represent standard error from 6 biological replicates

Table 1 Growth rates and doubling times of T. erythraeum

Nitrogen source Growth rate (d-1) Doubling time (h)

Ambient Air 0.0108 ± 5.14 × 10-4 64.4 ± 5.10

KNO3 0.0120 ± 5.65 × 10-4 58.1 ± 2.86

Reported error is standard error σffiffi
n

p
� �

where n = 3 biological replicates
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Manual curation of the model led us to identify 9 genes
which are present in the genome based on homology but
not annotated, 5 genes encoding enzymes with related
functions we assume to be promiscuous and 1 gene which
is required for the production of biomass but was not
present in the genome based on homology (see Table 3).

Flux balance analysis
A T. erythraeum trichome is made up of cells with two
distinct metabolic modes: photoautotrophic and diazo-
trophic. Each cell type was modeled separately and thus
required a different set of constraints to define the cell
type. The specific constraints applied to each cell type
based on literature and experimental data are provided
in the methods section (Table 6). Growth associated
ATP demand is assumed to be identical to Cyanothece
sp. ATCC 51142 [36]: 544 mmol ATP (g DW h)-1. Main-
tenance energy, represented by the reaction EN_ATP:
ATP +H2O → ADP +H+ + Pi was adjusted until the
predicted growth rate matched published experimental
growth rates (0.0146 h-1) [29]. Maintenance energy de-
mands were found to be: 64.3 mmol ATP (g DW h)-1 for
photoautotrophs and 67.2 mmol ATP (g DW h)-1 for
diazotrophs. We hypothesize that this number is signifi-
cantly higher than heterotrophic bacteria for two rea-
sons: (i) maintaining a micro-aerobic or anaerobic
environment in the cells for nitrogenase is energetically
demanding and (ii) we do not constrain the photon ab-
sorption beyond the amount provided to the cells in the
laboratory despite knowledge that cells aren’t 100% effi-
cient at light harvesting. The COBRA toolbox [43] was
used to evaluate the biomass yields for each cell type
separately subject to published growth rates, carbon

dioxide uptake, and nitrogenase activity (see Table 4). An
.m file to run the model in Matlab with appropriate con-
straints has been included in the supplemental files
(Additional file 4).
Flux maps were generated in order to visualize carbon

trafficking within the cell for both cell types (illustrated
in Fig. 2 with data in Additional file 5: Table S5) subject
to the constraints specified in Table 6. As expected, the
model for a photoautotrophic cell exhibited high flux
through the non-oxidative pentose phosphate pathway
and gluconeogenesis. Moreover, the highest recorded
flux is through ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO), the enzyme responsible for car-
bon fixation. The TCA and glyoxylate cycles are partially
inactive; the majority of energy is produced through
lower glycolysis or photosynthesis and the TCA Cycle’s
main utility is in precursor biosynthesis. The diazotroph,
on the other hand, has higher flux in the pathways asso-
ciated with respiration: the oxidative pentose phosphate
pathway and TCA cycle in particular displayed substan-
tial activity. The glyoxylate shunt also has high flux, indi-
cating crucial differences in how metabolism is regulated
in the different cell types.
Another utility of a FBA model is the ability to predict

essential genes. We performed an in silico gene knockout
analysis and identified 275 genes as essential in photo-
trophic cells and 253 in diazotrophic cells (see red-coded
genes in Additional file 6: Genes Table S6). Essential
genes are frequently linked to biomass relevant com-
pound synthesis (like pigments and amino acids),
carbon and/or nitrogen fixation, or glycolysis. Genes
and reactions which decrease growth rate but were
not lethal were frequently linked to central carbon pro-
cessing. These gene knockout results are corroborated by

Table 2 Biomass composition of T. erythraeum

Metabolite Mass fraction (g/g DW) Biomass coefficient (mmol/g DW)

N2 KNO3 N2 KNO3

Protein 0.289 0.438 2.12 × 10-4 2.66 × 10-4

Phycoerythrina 1.54 × 10-2 3.67 × 10-2 2.64 × 10-2 4.46 × 10-4

Cyanophycina 3.80 × 10-2 9.33 × 10-2 6.96 × 10-2 4.31 × 10-2

Carbohydrate 0.265 0.351 4.59 × 10-1 5.33 × 10-1

RNA 9.18 × 10-2 6.51 × 10-2 2.88 × 10-3 2.46 × 10-3

DNA 4.28 × 10-2 2.40 × 10-2 1.39 × 10-3 1.09 × 10-3

Lipids 0.1370 7.40 × 10-2 3.89 × 10-3 3.00 × 10-3

Phycocyaninb 2.60 × 10-2 3.67 × 10-2 4.45 × 10-2 5.37 × 10-2

Chlorophyllb 8.91 × 10-3 0.424 × 10-3 9.99 × 10-3 7.37 × 10-3

Soluble Pool 2.86 × 10-2 2.86 × 10-2 3.79 × 10-2 3.79 × 10-2

Total 0.914 1.04 -

The biomass equation is the molar concentration of the metabolite predicted by the computational molar mass and uses the values from the ambient air (N2)
grown cultures. The “Soluble Pool” is a collection of soluble metabolites that are more or less conserved between organisms for survival (including small sugars,
energy carrying molecules, etc.) aSubset of protein measurement. bSubset of lipid measurement

Gardner and Boyle BMC Systems Biology  (2017) 11:4 Page 4 of 22



reaction analysis, where reactions are removed from the
model instead of genes; this analysis found 370 reactions
essential in a photoautotroph and 363 in a diazotroph
(see red coded reactions in Additional file 6: Reactions
Table S6). Most reactions overlapped, but 6 carbon

fixation reactions and 3 gluconeogenesis reactions were
unique to essentiality in photoautotrophs while ammo-
nium output and 2 nitrogen fixation reactions were
unique to diazotrophs. Unfortunately, T. erythraeum
has not been reported to be genetically tractable and

Table 3 Unannotated metabolic reactions in the T. erythraeum genome but included in the model based on homology to related
organisms and/or to close gaps for biomass formation

Pathway Proposed function E.C. Number Gene Annotated function Closest organism

Newly/Improved Annotated

Amino Acid Metabolism L-alanine: glyoxylate
aminotransferase

2.6.1.44 Tery_3167 Serine: glyoxylate
transaminase

Leptolyngbya sp. NIES 3755

L-serine: pyruvate
aminotransferase

2.6.1.44,
2.6.1.45,
2.6.1.51

Tery_3167 Serine: glyoxylate
transaminase

Leptolyngbya sp. NIES 3755

L-aspartase 4.3.1.1 Tery_1328 Fumarase Nitrosococcus oceani

L-arogenate:
2-oxoglutarate
aminotransferase

2.6.1.79 Tery_0293 L-aspartate
aminotransferase

Pleurocapsa sp. PCC 7327

L-threonine
ammonium-lyase

4.3.1.19 Tery_4742 Pyridoxal-5’-phosphate
-dependent enzyme,
beta subunit/
cysteine synthase A

Zymomonas mobilis
subsp. NRRL B-12526

Isoprenoid Synthesis Tocopherol
phytyltransferase

2.5.1.117 Tery_3881 Homogentisate
phytyltransferase

Nostoc sp. NIES-3756

Pigment Metabolism Chlorophyllide-a:
NADP+ oxidoreductase

1.1.5.31.3.1.75 18445Tery_3563 NmrA-like Amborella trichopoda

Secondary Carbon
Metabolism

Citramalate synthase 2.3.1.182 Tery_2253 2-Isopropylmalate
synthase

Dehalococcoides
mccartyi VS

Sulfur Metabolism O-succinylhomoserine
thiol lyase

2.5.1.48 Tery_0352 8-Amino-7-oxononanoate
synthase

Nostoc sp. PCC 7524

Tricarboxylic Acid Cycle Isocitrate lyase 4.1.3.1 Tery_4268 2,3-Dimethylmalate lyase/
methylisocitrate lyase

Candidatus
Nitrososphaera gargensis

Assumed Promiscuous

Amino Acid Metabolism 4-Hydroxyglutamate
transaminase

2.6.1.23 Tery_0293 L-aspartate
aminotransferase

T. erythraeum

Cofactor and Energy
Carrier Metabolism

Dihydroneopterin
Pi dephosphorylase

3.6.1.1 Tery_1519 Inorganic diphosphatase

Dihydroneopterin
PPPi dephosphorylase

3.6.1.1 Tery_1519 Inorganic diphosphatase

Lipid Metabolism/Secondary
Carbon Metabolism

Glycoaldehyde
dehydrogenase

1.2.1.21 Tery_2599 Aldehyde dehydrogenase

Nucleotide Metabolism 3’-5’-Nucleotide
phosphodiesterase: cAMP

3.1.4.17 Many 3’-5’-Nucleotide
phosphodiesterase: NMP

Missing (but Essential) Gene

Cofactor and Energy
Carrier Metabolism

(R)-Pantoate:NADP+

2-oxidoreductase
1.1.1.169 None None None

Table 4 Predicted yields and selected fluxes for T. erythraeum

Cell type Carbon Uptake (moles C/ g DW) NH4
+ Flux (mole NH4

+/ mole C) Biomass yield (g DW/mole C) Biomass yield (g DW/mole N)

Diazotroph 0.0572 0.204 17.5 55.3

Photoautotroph 0.0643 -0.0996 15.6 156

Biomass and exchange differences between the two cell types are a result of different sources of energy. The carbon mass percent (45.8%) is identical for both
cell types because the same biomass formation equation was used (based on growth on N2)
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therefore it is not possible to experimentally validate
these results.

Flux variability analysis (FVA)
Flux balance analysis uses optimization techniques to pre-
dict fluxes in the cell, but most (if not all) genome-scale
models are underdetermined so there exists the possibility
of multiple flux distributions that lead to the same solution
(in our case biomass/growth rate). To evaluate the flexibil-
ity in our model, we performed flux variability analysis
(FVA) to estimate how much variability a particular
reaction can tolerate and still give the same solution. En-
zymes, selected from important pathways and by
comparing different metabolic distributions in the dia-
zotrophic and photoautotrophic FBA, are shown in
Fig. 3 and a table of bounds provided as Additional file
7: Table S7. Overall, photoautotrophic cells display
tighter metabolic regulation and have required flux
through every major pathway except for nitrogen fix-
ation. In comparison, the diazotrophic model displays high
variability through these central pathways with the excep-
tion of nitrogenase function. For the photoautotrophic
model, two genes exhibit fully nonzero flux: phosphoglycer-
ate kinase (PGK) and ribulose-1,5-bisphosphate carboxyl-
ase/oxygenase (RuBisCO). Otherwise, two genes, D-
fructose-1,6-bisphosphate D-glyceraldehyde 3-phosphate

lyase (FPAL) in upper glycolysis, and sedoheptulose-7-
phosphate: D-glyceraldehyde-3-phosphate (TAGSFE) in the
pentose phosphate pathway exhibit wide ranges with
TAGSFE possibly functioning in both directions while the
same optimum is achieved. The complete tricarboxylic acid
(TCA) cycle is invariably nonfunctional for energy metabol-
ism in optimization of the photoautotrophs (ACCOASYN,
MDH, ICLY, and ICIT) and only functions for precursor
biosynthesis. Diazotrophs ultimately demonstrate more
variability due to their energy source as more redundancy
exists in carbon oxidation than in photosynthesis: all reac-
tions can accommodate zero flux except nitrogen fixation.
FPAL and TAGSFE both show reversibility (same as photo-
autotroph with respect to TAGSFE). Although there are
similar patterns in the different cell types, energy metabol-
ism is significantly different.

Dynamic flux balance analysis
Dynamic Flux Balance Analysis (dFBA) was conducted to
predict how well the model performed when compared to
laboratory experiments using the same data to constraint
the model as reported earlier (see Table 6). No additional
constraints on diatomic nitrogen or carbon dioxide uptake
were applied except for the demand from the other cell
type We used the dFBA model to test a number of differ-
ent growth conditions and hypotheses. First, to predict the

Fig. 2 Predicted central metabolic fluxes for (a) diazotrophic and (b) photoautotrophic cells of T. erythraeum. Flux balance analysis was used to
predict fluxes for both metabolic modes in a trichome of T. erythraeum. The thickness of the arrows depicts the amount of flux through the
reaction normalized to the uptake of the carbon source. Dotted gray lines are available unused pathways. Diazotrophic cells have high flux
through respiratory pathways, this protects nitrogenase from oxygen. As expected, photoautotrophic cells have high fluxes in the Calvin Benson
Basham Cycle, which is the carbon fixing pathway. Abbreviations for metabolites are provided in abbreviations section. Full catalog of fluxes are
provided in Additional file 5: Table S5

Gardner and Boyle BMC Systems Biology  (2017) 11:4 Page 6 of 22



equilibrium trichome composition, the model was run
with an inoculum of equal parts photoautotrophic and
diazotrophic cells. Once equilibrium was determined, ini-
tial concentrations of each cell type were calculated from
experimental data and the simulation was re-run to valid-
ate that the most efficient growth and metabolite produc-
tion occurred at this equilibrium. The resulting colony
fractions to which the cells invariably converged were
found to be 0.15:0.85 diazotrophs:photoautotrophs, simi-
lar to experimental evidence [10]. To understand how the
initial inoculum effects the lag phase of the cells, we ran
simulations for a number of different inoculums. Given
that the algorithm requires a sequential progression of
metabolism (with the photoautotroph calculating its me-
tabolism and then the diazotroph reacting), a “grace
period” of 3 time steps was built in where the cells could
borrow substrates from an arbitrary cache in their envir-
onment so that they could grow initially. However, if a
population is unable to produce metabolites or biomass
after those three consecutive time steps, the cells were as-
sumed to be unviable and were terminated. How the
growth rate evolves over time to reach the experimental
value (0.0146 h-1) is shown in Fig. 4. The expected growth
rate is obtained rapidly for near-equilibrium starting pop-
ulations (15:85, 20:80) and more slowly for populations far

Fig. 4 Growth rate evolution at different initial compositions. The
growth rate between time points, taken by measuring biomass
generated by dFBA at ti = t and tf = t + 5, was plotted versus time.
Each line represents a different initial composition as listed on the
graph (15:85 corresponds to 0.1 diazotroph:0.9 photoautotroph, etc.).
All other conditions were held equal, and carbon uptake and
nitrogen fixation were adapted from physiological data over 400 h
intervals. The gray line represents the initial composition being set
to the equilibrium composition. Growth was unachievable at initial
compositions of 0:100 and 100:0

Fig. 3 Allowable variation in flux for central metabolic reactions. Bars visualize the flux variability through important pathways. . Blue/lined bars
are diazotrophic fluxes and green/solid bars are photoautotrophic fluxes. High variability implies adaptable responses while low variability implies
a narrow essentiality for biomass and energy generation. Greater variability was displayed between cell types in similar pathways including
glycolysis (FPAL, PYRK, PGK), the Calvin Cycle (TAGSFE, RuBisCO) and nitrogen processing (GLNSYN) while smaller variability was through the TCA
cycle (ACCOASYN, MDH, ICIT) and the glyoxylate shunt (ICLY). Non-zero fluxes were found for the photoautotroph in PGK and RuBisCO while
reversibility was found in both cell types for FPAL and TAGSFE. Greater variabilities through carbon processing were due to redundancies in
cellular processing, while less variability or non-zero variability was found in non-redundant pathways like carbon and nitrogen fixation. Abbreviations
are found under “Enzymes” in the Abbreviations section
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from equilibrium (90:10). Populations of 0:100 and 100:0
were nonviable. More detailed figures of how the model
predicts composition changes when far from equilibrium
is shown in Fig. 5 with initial equality of cell types. Cells
appear to have three distinct growth phases, the first
where they are adjusting their ratios to move closer
toward equilibrium (lag phase) while not able to leak me-
tabolites. When the cells are near equilibrium (at ~0.22
diazotroph: 0.78 photoautotroph), they are able to grow
exponentially, but are unable to leak ammonium con-
sistent with their exponential growth (Fig. 5c). When
they finally reach equilibrium, growth and ammonium
leakage is exponential, indicating most efficient growth.
In the dFBA model, photoautotrophic cells are unable
to grow without diazotrophic cells and vice versa; however,
if the models are optimized assuming nutrient unlimited
environments (unrestricted availability of glycogen or
ammonium), the photoautotroph can grow at a rate of
0.0182 h-1 and the diazotroph can grow at a maximum rate
of 0.0188 h-1. From these results, the equilibrium found in
nature and this study represents the best-case growth
scenario for T. erythraeum; this growth appears to be

stoichiometrically and metabolically motivated instead of
regulated through other means.
This experiment generated several important parame-

ters to compare against literature. Intercellular metabol-
ite production, cell fraction, and percent released of total
fixed nitrogen were all predicted using dFBA. The model
was run for 1000 iterations with different inoculum
compositions to investigate the effect of initial composi-
tions of population development. The generated values
for an ideal population (beginning with equilibrium con-
centrations of each cell type) are summarized in Table 5.
The model over predicts nitrogenase flux (0.490 mol N2

(g DW h)-1 for the model versus 0.132 mol N2 (g DW
h)-1 for published measurements but is similar to litera-
ture values for carbon dioxide exchange (0.922 mol CO2

(g DW h)-1 for the model versus 0.927 mol CO2 (g DW
h)-1 for laboratory results) [29]. The model resulted in a
total biomass of 13.8 mg/L when simulated at equilib-
rium starting composition, compared to the 10–40 mg/L
found in our laboratory experiments. Variability in
growth occurred as illustrated in Fig. 6: growth rates
peaked at 0.0146 h-1 for growth rate as expected due to

Fig. 5 Computational population rates for T. erythraeum. Dotted blue lines indicate diazotroph or fixed nitrogen, green lines indicate
photoautotroph or glycogen. a Fraction of population for each cell type. Three phases of growth are present: linear redistribution of cells to
create enough photoautotrophs, steady preferential allocation to photoautotrophs to drive biomass generation, and achievement of equilibrium.
Equilibrium is 0.1544 diazotroph and 0.8456 photoautotroph. b Growth rates of each cell type. Biomass is modeled using a batch reactor model
with growth rate determined by FBA using the genome-scale reconstruction and time steps of 1 h. c Medium concentration for metabolites.
These indicate the metabolite accumulation in the medium as determined by the amount of metabolite produced by each cell type less the
metabolite consumed plus the amount of metabolite already existing in solution. d Total growth rate of population. This is the total growth rate
and is plotted with experimental growth rates in Fig. 1. It is calculated by adding the two biomasses in B together

Gardner and Boyle BMC Systems Biology  (2017) 11:4 Page 8 of 22



constraints (47.5 h for doubling time) at initial cell frac-
tions of 0.15 diazotrophs: 0.85 photoautotrophs). Initial
diazotroph concentrations at zero resulted in no growth
while photoautotroph dominated inoculums had the
minimum nonzero values of 2.80 10-4 h-1. Fixed nitrogen
release rate distributions and growth rate distributions
through all iterations are illustrated in Fig. 7a and b
respectively.
Finally, dFBA was conducted to investigate the effect

of different nitrogen sources on the growth rate of T.
erythraeum. All other constraints on the mode were held
constant and the resulting growth curves are given in
Fig. 8. As expected, growth rates increase with increas-
ing levels of nitrogen reduction and carbon in the nitro-
gen source. Unfortunately, growth on nitrogen sources
other than N2 or NO3 have proven to be problematic

and there is no evidence of T. erythraeum’s ability to
utilize other nitrogen sources.

Discussion
In this work, we present a genome-scale metabolic net-
work reconstruction of T. erythraeum which has been
experimentally validated and used to predict growth
under a variety of conditions.

Experimental data
An important aspect of any metabolic model is to collect
experimental data to aid in the development of the
model (biomass equation) and for validation (metabolic
production and cellular equilibrium). Major biomass
constituents were measured experimentally with direc-
tion from literature to define the scope of the biomass
constituents (such as inclusion of biliproteins and cyano-
phycin [8, 23]). It should be noted that T. erythraeum
differs from other nitrogen fixing organisms and cyano-
bacteria. Species like Cyanothece and Anabaena either
temporally regulate nitrogen fixation using circadian
rhythms or through spatial segregation by forming spe-
cial cells called heterocysts. T. erythraeum, while it does
exhibit some circadian regulation [44], can fix nitrogen
at all times, day or night. It does form two cell types, but
the only evidence of different structures is indicated by
accumulation of starches [23]. Cyanophycin granules
exist, but are distributed throughout the cells, indicating
that they are nitrogen storage compounds rather than
structural devices. After assessing the literature based
behavior of T. erythraeum and its differences from other
bacteria, biomass was evaluated when grown on nitrogen
or nitrate. The existence of two separate cell types
(diazotrophic and photoautotrophic) within a trichome
implies a locally nitrogen limited and nitrogen replete
environment. We sought to mimic these effects. As
expected, the nitrogen provided to the cell culture has
a significant impact on biomass composition, and cells
partition their carbon in different ways depending on
availability of reduced nitrogen. Since the reduction of
diatomic nitrogen to ammonia requires a large amount
of energy (16 ATP), it is likely that the cells activate
their nitrogen sparing mechanisms in order to limit
the amount of nitrogen needed for growth. This is evi-
dent in the ratio between carbohydrates and lipids

Table 5 Productivities of T. erythraeum according to literature, laboratory experiments, and the dFBA model

Source Population fraction
(Diazotroph: Photoautotroph)

Growth rate
(h-1)

Doubling Time
(h)

% Nitrogen
released

Nitrogenase flux
(mmol N (g DW h)-1-)

CO2 Uptake
(mmol CO2 (g DW h)-1)

Literature 0.1:0.9 – 0.2:0.8 [10] 0.0146 [29] 47.5 [29] 7.7 [62] – 52 [22] 0.132 [29] 0.927 [29]

Boyle Lab N/A 0.0108 ± 8.53 × 10-4 64.4 ± 5.10 N/A N/A N/A

dFBA
Model

0.1544: 0.8456 0.0146 47.5 39.7% 0.490 0.922

NE corresponds to exported nitrogen in the form of ammonium

Fig. 6 Growth rate at different initial compositions. The average
growth rate dependent on different relative values of diazotroph to
photoautotrophic cells. 1000 iterations were generated with random
values of initial biomass for each cell type. The initial fraction was
calculated using the ratio of these two randomly generated numbers
and dFBA was run for 400 h to simulate population development over
that time period. Where growth rate was zero over three or more time
steps (1 h each) or the cells were unable to manufacture their own
nutrients, cell death was assumed and occurred at zero for initial
fraction of diazotroph. Optimal growth was found at 0.1544 and
suboptimal non-zero growth was found with diazotroph dominated
initial populations. The bracket and asterisk refers to the literature
predicted equilibrium concentration of cells
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(Fig. 1a), which is significantly lower – only 54% – in
cells grown on diatomic nitrogen compared to those
grown on nitrate. This is similar to reports of algae
which accumulate lipids in response to nitrogen star-
vation [45–50]. Here, we assume that growth on di-
atomic nitrogen causes the cells to act like nitrogen is
limiting. Cells grown on nitrate have an increased pro-
tein content, again highlighting that the cell is no lon-
ger acting as if nitrogen is limiting. This increase in
protein is also commensurate with an increase in the
major photosynthetic pigment-protein complex phyco-
erythrin. Cultures grown on diatomic nitrogen convert
their fixed nitrogen to higher quantities of cyanophy-
cin, a molecule used for nitrogen storage. Meanwhile,
this study also sought to characterize the laboratory

growth rate of T. erythraeum grown on different
sources of nitrogen. Unfortunately, T. erythraeum
showed a reticence to grow on ammonium in the la-
boratory and has no evidence of a putative trans-
porters for amino acids, commensurate with heuristic
knowledge of other cyanobacteria, which limited this
experimentation. Even so, growth rates are similar to
previous laboratory measurements (0.0108 h-1 for the
Boyle Lab and 0.0146 h-1 from [29]) but are dissimilar
to in situ studies with values measured as low as
1.46 × 10-4 h-1 in the North Atlantic [22]. This is not
surprising, it is well known that the open ocean is ex-
tremely nutrient deplete and thus a challenging
growth environment. Also, our measurements of
growth on different nitrogen sources do not indicate a

Fig. 7 Nitrogen and biomass production based on variable initial cell concentrations. 1000 iterations were run with randomly generated initial
biomasses of each cell type and run for 400 h to simulate laboratory measured behavior. a Fraction of fixed nitrogen released calculated by the
average amount of fixed nitrogen accumulated in the medium of a Batch Reactor model divided by the average fixation rate over the time
period. Values are clustered between 25% and 45% except for non-growth cases where no nitrogen was released because death was assumed.
b Growth Rate over all iterations. Non-growth cases resulted in zero, but otherwise a bimodal distribution existed. This can be coupled with
0.1544:0.8456 diazotroph: photoautotroph ratio determined by simulation.photoautotroph ratio determined by simulation. The dotted black line
refers to laboratory measured growth at 0.0146 h-1

Fig. 8 Predicted in silico growth rates on different nitrogen and nitrogen/carbon sources. Each line represents an excess of a compound. The
slowest rate is given by ambient nitrogen which is the same set of values used for the computational curve. The accompanying table relays
growth rates and nitrogens or carbons in the source
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statistically significant disparity in growth rate based
on nitrogen source despite significant changes in cel-
lular composition. As such, the data implies that nitro-
gen availability is not the major limiting factor in
cellular growth. This is supported by literature which
demonstrates that T. erythraeum is much more effi-
cient in higher CO2 concentrations [51]. This means
that the major effect of nitrogen source is on cellular
composition and implies that carbon fixation is the
growth limiting function of T. erythraeum.

Metabolic network reconstruction
Equipped with a high-level biological understanding of
the organism, a genome scale reconstruction was built
using the annotated genome, enzyme databases, models
of related organisms, and the laboratory biomass mea-
surements. The first draft of the genome-scale metabolic
network for T. erythraeum was created using the SEED
RAST algorithm [33] followed by manual curation. Man-
ual curation was conducted by adding all possible reac-
tions predicted by databases, similar organisms, and
gaps based on data in primary literature and publicly
available databases [52]. This was pruned to the current
model (986 metabolites, 647 unique genes and 971 re-
actions) by vetting each reaction through BLAST and
essentiality. These numbers are comparable to meta-
bolic network reconstructions of similar organisms
(Additional file 8: Table S3). Reactions relating to cen-
tral metabolism, including carbon fixation, glycolysis,
the TCA cycle, photosynthesis and the pentose phos-
phate pathway, are conserved between T. erythraeum
and the other cyanobacteria listed in Additional file 8:
Table S3. Biomass equations were based on the Cya-
nothece ATCC 51142 model [36] for lipid and protein
formation. The reactions were mass balanced to predict
molar masses, and the biomass measurements were
interpreted using these computational predictions. Fi-
nally, closure was obtained through proteomic assess-
ment of transport reactions in conjunction with the
metabolic network and biomass equations. Overall, the
manually curated model of T. erythraeum is a strong
summary of the majority of metabolic processes and re-
lates well to previous models.
One of the more challenging aspects of building a

metabolic network of a non-model organism is the lack
of (or completeness of) genome annotation. However, in
performing a genome-scale reconstruction, shortcom-
ings in annotation can be identified. In order to achieve
closure, 16 reactions were added that are not linked dir-
ectly to a gene in the T. erythraeum genome by assum-
ing enzyme promiscuity, hypothetical protein function,
or a lack of evidence for its existence. To validate or
refute the presence of these genes in the genome, we did
extensive BLAST analysis with related organisms with

more complete annotations (other cyanobacteria, E. coli
and A. thaliana). We identified 5 genes encoding en-
zymes which had evidence of the desired function but
were annotated differently (Table 3); we assumed these
enzymes to be promiscuous and perform the necessary
functions to fill gaps in the network. These assumptions
were possible because the genes are often found to have
redundant or generic function (the promiscuous genes
include phosphatases and transaminases). We identified
an additional 10 genes which were previously unanno-
tated but are predicted to be present in the T. ery-
thraeum based on homology to related organisms
(Table 3). Most of these genes encode enzymes associ-
ated with the glyoxylate cycle, aminotransferases, and
amino acid metabolism. Again, some of these enzymes
have traditionally exhibited generic behavior (like trans-
aminases), but other enzymes were unannotated due to
their single-function synthetic purposes (like amino acid
synthesis). Interestingly, enzymes associated with the
glyoxylate cycle show the most similarity with ammo-
nium oxidizing bacteria. The aminotransferases and
amino acid metabolism enzymes, which generate some
of the carbon molecules that participate in the glyoxylate
cycle, show most similarity to other colony forming
cyanobacteria like Leptolyngbya and Nostoc. This indi-
cates that nitrogen metabolism may have impacts on
peripheral carbon metabolism that merits future inves-
tigation. Finally, one enzyme which was necessary for
the model to produce biomass, (R)-pantoate: NADP+

2-oxidoreductase (E.C. 1.1.1.169), was not found to be
present in the genome. This implies that T. erythraeum
may have evolved an alternative pathway which has not
yet been identified, or that the synthetic route for (R)-
pantoate has significant structural differences. Main
pathways included in the model along with the several
of the newly annotated enzymes are presented in Fig. 9.
Confidence levels in the model reflect the strength of
prediction of the enzymes, with ones referring to the
enzymes discussed above.

Predicting central metabolic fluxes
With a vetted series of metabolic interactions, the
model was used to study whole-cell behavior for both
diazotrophs and photoautotrophs separately using flux
balance analysis (FBA). The two cell types share the
same genome but have distinct metabolisms based on
differences in regulation due to cellular differentiation:
diazotrophic cells provide biologically available nitrogen
for the community and photoautotrophic cells provide
a reduced carbon source, in the form of glycogen, to
the diazotrophs. To model metabolic fluxes for each
type of cell, we developed two sets of strict constraints
(see Table 6) to reflect the laboratory constraints mea-
sured by literature [29]. We fit the predicted growth
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rate from the model by changing maintenance energy
and used metabolite production (of the metabolites ex-
changed between cells) as the objective equation to en-
sure satisfaction of both objectives. As expected, flux
distributions were specific to cell type. Carbon fixation
is central to photoautotrophic function and is evident
by high flux through the Calving Benson Bassham
cycle. For diazotrophs, the absence of Photosystem II
requires a functional TCA cycle for production of cellu-
lar energy. Interestingly, the oxidative pentose phos-
phate pathway was preferred over glycolysis, likely due
to minimizing carbon oxidation and/or redox balan-
cing. This same phenomenon explains the activation of
the glyoxylate shunt which has evolved to conserve car-
bon [53–56]. The flux maps envision crucial, but ex-
pected, differences in metabolism between cell types
that are similar to previous findings.

Fig. 9 Genome scale reconstruction and filled pathways. The green cell is the photoautotroph, the blue cell is the diazotroph. Red arrows
indicate missing pathways; appended genes indicate BLAST derived genes. Zoomed out sections are pathways that were completed. Omissions
are summarized in Table 3 and describe amino acid metabolism and secondary carbon metabolism as the majority of gap-filled reactions. Only
1.1.1.169 (top zoom-out) had no significant correlation to another T. erythraeum or related organism enzyme

Table 6 Constraints for each cell type in model simulations for
FBA and FVA

Parameter Diazotroph Photoautotroph

Carbon Uptake
(mmol C (g DW)-1 h-1)

0.927 (glycogen) [29] 0.927 (CO2) [29]

Nitrogen Uptake
(mmol N (g DW)-1 h-1)

Unlimited (N2) Unlimited (NH4
+)

Nitrogenase Flux
(mmol (g DW)-1 h-1)

0.132 0

Maintenance Energy
(mmol ATP (g DW)-1 h-1)

64.3 67.2

hνPSI 80 80 − hνPSII

hνPSII 0 80 − hνPSI

Growth Rate (h-1) 0.0146 [29] 0.0146 [29]

Metabolite Output NH4
+ Glycogen

Objective Function Maximize biomass Maximize biomass
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Gene and reaction essentiality were also performed
using the same constraints and agree well with flux bal-
ance analysis (see Additional file 6: Table S6) and gene
essentiality in related organisms. Essential genes include
carbon fixation, biomass synthesis, and central metab-
olism (gluconeogenesis and lower glycolysis) for photo-
autotrophs and nitrogen fixation, biomass synthesis,
and carbon oxidative cycles for diazotrophic cells. Most
notably, ammonium export is required for biomass pro-
duction in diazotrophs, predicting that ammonium
leakage is necessary for redox/energy balancing in these
cells. These findings correlated with previous studies
which find that photosynthetic pigments and certain
amino acid pathways are essential [42] while some car-
bon metabolism like the later parts of the TCA cycle
are dispensable in cyanobacteria [57]. The model is ef-
fective, then, in in silico predictions of essential and
conserved metabolic motifs.
The flux maps we present here represent only a single

possible solution due to the underdetermined system
used for optimization. To assess the bounds and possible
adaptations of the model, FVA was conducted and visu-
alized for important pathways (Fig. 3). The photoauto-
trophic cells showed much tighter bounds for central
metabolic processes than their diazotrophic counter-
parts, likely because their metabolites (glycogen) re-
quire roughly 64 ATP/mol as opposed to ammonium
which requires 8 ATP/mol (16/mol N2) plus additional
maintenance energy. Consistent with gene essentiality
and intuition, Ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO) requires a non-zero flux to main-
tain optimal behavior. Phosphoglycerate kinase (PGK)
– which is in lower glycolysis/gluconeogenesis – is a
less intuitive non-zero reaction, but the reaction represents
an important step in both optimal carbon oxidation and
reduction. For both cell types, D-fructose-1,6-bisphosphate
D-glyceraldehyde 3-phosphate lyase (FPAL) and sedohep
tulose-7-phosphate: D-glyceraldehyde-3-phosphate (TAG
SFE), which correspond to reactions in upper glycolysis and
the non-oxidative pentose phosphate pathway, show high
variability; TAGSFE can even function reversibly while
maintaining optimality. Otherwise, the photoautotrophic
cells have zero or near-zero flux for all TCA_Cycle enzymes
(acetyl-coA synthase: ACCOASYN, malate dehydrogenase:
MDH, isocitrate lyase: ICLY, and bifunctional aconitate
hydratase 2/2-methylisocitrate dehydratase: ICIT) because
of a lack of electron donors available for carbon oxidation.
Glutamine synthase (GLNSYN) displays a small flux for
ammonium metabolism and incorporation while PEP
carboxylase (PCX) can accommodate flux using its role
as an alternative to RuBisCO for single-carbon incorp-
oration. In the diazotrophic cells, pyruvate kinase
(PYRK) and glutamine synthase (GLNSYN) exhibit high
flux capacities due to their substrates being precursors

for many essential metabolites in the cell and the ener-
getic latitude given by the reduced carbon supply, but
are irreversible. TCA cycle has intermediate flux cap-
acity because the reactions in it represent best-case
processing for carbon oxidation, while the glyoxylate
shunt (isocitrate lyase, or ICLY) is used for carbon con-
servation [53–56]. Diazotrophic metabolism only has
one significant deviation: the flux through the nitroge-
nase enzyme is invariable. These data are similar to
findings for other photoautotrophic and diazotrophic
organisms [36, 58, 59] and illustrate similar conserved
energetic and metabolic behaviors.

Modeling equilibrium colony composition
Simulations to this point showed the metabolic differ-
ences between the cell types, but had not accommodated
their function as a community. For this reason, dynamic
FBA (dFBA) was used to expand the study to simulate
how gene-predicted metabolism causes higher order
community behaviors. Previous studies have used dFBA
for similar applications, including diauxic growth in E.
coli and the competition between Rhodoferax and Geo-
bacter [32, 60, 61], but this study presents the idea of dy-
namic allocation of cells based on metabolite production
to simulate need-based differentiation. Since all cells are
defined by the same genome, differentiate based on the
needs of the community and are invested in the viability
of surrounding cells, there is a third level of interaction
within these communities. To model this, diazotrophs
and photoautotrophs were treated like separate, symbi-
otic, interdependent populations that could achieve per-
fect diffusion of substrate. Then, based on the deficiency
of one metabolite, cells would be allocated from the defi-
ciency generating cell (the consumer) in proportion to
the shortage to correct it. If there was only metabolite
surplus, all excess cells from the diazotroph would be al-
located towards photoautotrophic production which was
implied to drive biomass growth. This was run with both
this and the opposite assumption (that all excess would
be allocated to the diazotroph) with identical results,
meaning that this assumption was an artifact of the algo-
rithm rather than a pivotal administration. Importantly,
this algorithm requires the photoautotrophs to act by
generating biomass and enough glycogen for the prior
generation plus a predictive amount based on growth
rate before the diazotroph reacts and creates ammo-
nium. Therefore, the model can inappropriately fail since
metabolites are not being simultaneously synthesized.
The model was “seeded” with initial ammonium and
glycogen substrates that served to prevent this from af-
fecting the model with a “grace period” of three time
steps to allow the model to correct the initial “loan”
from the environment. Once the algorithm was devel-
oped, it was used to interrogate population efficiency by
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determining equilibrium compositions of cells, predict-
ing metabolite excretion fluxes, and to predict the effect
of changing environments on the cell (especially for con-
ditions that are not possible experimentally). The
laboratory imposed constraints used for FBA were con-
verted to relaxed, optimal constraints to reflect the lower
growth rates measured in our lab. When optimized inde-
pendently, assuming replete nutrients for each cell type,
both cells grow much faster than in limited, co-
dependent conditions (0.0182 h-1 for photoautotrophs
and 0.0188 h-1 for diazotrophs versus 0.0146 h-1 for the
population). This is logical: when nutrients are limited
overall growth is limited. Another observation is that
photoautotrophic growth is slower even ideal conditions,
reinforcing the hypothesis that biomass generation is
limited more by carbon than nitrogen.
To determine equilibrium behavior by the community

and how well the model could predict the behaviors we
observed, we conducted dFBA using this algorithm over
360 h with several different starting conditions. First, a
50:50 starter culture was used to model both how a col-
ony might achieve equilibrium through cellular differen-
tiation and the resulting equilibrium. In order to achieve
efficiency, three phases govern cell response to metabol-
ite deficiencies as illustrated by Fig. 5. First, photoauto-
trophs are generated to correct for carbon deficiency
over the first 120 h (steeper slopes in Fig. 5a and linear
slopes in Fig. 5a and d) and without excretion of metab-
olites (Fig. 5c). Meanwhile, the diazotrophs are tasked
with producing enough fixed nitrogen to support the
community, but all biomass generation is diverted to-
wards photoautotrophs because the “seed” carbon or
nitrogen is rapidly depleted. In the second phase from
hours 120 to 250, where the cells are near but not at
equilibrium, the cells redistribute more slowly as the
community is able to support itself without reaching a
deficiency while producing some metabolites (Fig. 5c).
Finally, after about 250 h, equilibrium is reached where
more photoautotrophs will deplete the environment of
fixed nitrogen and fewer will reduce biomass gener-
ation. This is also the stage where metabolite produc-
tion is most rapid, and ammonium and glycogen are
exchanged between cells and the environment expo-
nentially Fig. 5. These results are encouraging because
they justify our observation that the model converges
to an equilibrium regardless of initial composition, and
the equilibrium falls within experimental and in situ
levels.
Convergence toward equilibrium was investigated

further by incrementally changing initial biomass ratios
and plotting growth rate versus time. Rapid conver-
gence by an inoculum of 15:85 diazotroph:photoauto-
troph is expected and promotes this as ideal behavior
by cellular populations (Fig. 4). The convergence by

other inoculums reinforces the idea of an equilibrium
composition and shows the inefficiency of other start-
ing populations. Finally, since the model assumes no
diffusional limitation and similarly structured cells, this
convergence to an equilibrium demonstrates that meta-
bolic interactions play a large role in community regu-
lation of T. erythraeum. We repeated this analysis 1000
times to see how the composition of the inoculum
affected equilibrium composition of the cells (Fig. 6). In
agreement with the single simulation results from
above, starting with compositions that were not close
to equilibrium resulted in suboptimal growth (for ex-
cess diazotrophs) or no growth (for excess photoauto-
trophs). “Death” (defined as a growth rate of zero for
three time steps or more), was strictly contained within
the initial phase of growth when the inoculum was
0:100 or 100:0. This is because either nitrogen gener-
ation or glycogen generation is too low to support the
population before efficient biomass production is
achieved and the cells do not have enough exogenous
resources to correct this. The equilibrium composition
and nitrogen release fraction are both close to observed
data: a starter culture closer to the cell composition
measured in the ocean (10–20% diazotrophic cells and
80–90% photoautotrophic cells [10, 12–15]) grows
nearest the constrained growth rate, while composi-
tions further from that equilibrium result in depressed
rates. The full distribution of possible growth rates can
be seen in Fig. 7b and illustrates a bimodal distribution.
The separation between the two peaks can be explained
by the extent of domination by either cell type. When
diazotrophs dominate, suboptimal growth occurs; when
photoautotrophs dominate, the cells operate optimally
or die due to deficient nitrogen production. Figure 7a
depicts the range of nitrogen release rates dependent
on initial inoculum and display a fairly narrow range.
In non-death situations, it is consistent within 25% and
45% of total fixed nitrogen, well within the literature re-
corded values of 7.7% [62] –52% [22]. Across all growth
rates, nitrogen leakage is 29.4% of total fixed nitrogen,
but for optimal growth rates ( μ

μmax
≥0:9), nitrogen leakage

is 37.5%. Again, nitrogen leakage appears essential to effi-
ciency in biomass generation as evidenced both by obser-
vation and simulation. The repetition of the simulation
show that an equilibrium composition similar to observa-
tion was invariable and is mediated by metabolism while
nitrogen is a required side-effect of this optimal growth.
The model was also used to simulate growth condi-

tions that have not been possible to perform in the la-
boratory. To date, T. erythraeum has not been reported
to grow on more reduced nitrogen sources; however,
we are able to predict how growth on these other N
sources using our model (Fig. 8). With increasingly
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more reduced nitrogen sources and higher carbon con-
tent (N2 > NH4

+ > Urea > Glutamate > Glutamine), the
growth rate increases from 0.0146 h-1 to 0.0262 h-1

with the exception of urea, which has the second lowest
growth rate (0.0151 h-1) due to its requirement of ATP
consuming active transport and a byproduct of moder-
ately useful CO2. In the Boyle laboratory, T. erythraeum
only grows on N2 or nitrate and this general trend is
also seen in other laboratory data. T. erythraeum, there-
fore, lives in a very narrow optimum between two im-
portant objectives: carbon and nitrogen fixation. The
availability of carbon (or lack thereof ) particularly
limits growth. In reality, light also has an important
role in growth rate because a few centimeters below the
surface of the ocean light becomes severely limited. Dif-
fusion, predation, colony shape, and other influential
factors can also limit the cell’s ability to grow optimally.
Even so, biomass generation predictions correlate well
between with laboratory data and predicted equilibrium
compositions of cells are close to observed values. In
order to more effectively leverage this model for colony
modeling more sophisticated methods should be used,
however, the model has already enabled genome discov-
ery and investigation into the metabolic regulation of
this unique and significant cyanobacterium.

Conclusions
A genome-scale metabolic network reconstruction was
performed for the filamentous diazotrophic cyanobacter-
ium, T. erythraeum. This organism has a prominent role
in the global nitrogen cycle; it is responsible for 42% of
the annual biological nitrogen fixation and secretes be-
tween 7.7% [62] and 52% [22] of the nitrogen it fixes
into the ocean, providing an important source of bio-
available nitrogen to other organisms. This model was
then subjected to constraints based modeling, such as
FBA, FVA and dFBA to investigate the effect of changing
environmental conditions and initial cell composition on
equilibrium cell compositions and to predict inter- and
intra-cellular fluxes. Our simulations indicate that cells
exhibit traditional metabolic diversions to conserve car-
bon in nitrogen-fixing cells (diazotrophs) and to con-
serve energy in carbon fixing cells (photoautotrophs).
From simulations with unconstrained carbon/nitrogen
uptake, it appears that photoautotrophs have a lower
optimal growth rate than diazotrophs; however in na-
ture, these conditions would never exist. Diazotrophs
rely on photoautotrophs for their required carbon and
cannot grow in their absence. The model predicts an
optimal growth rate for a trichome made up of 15.4%
diaztroph, this agrees well with published reports of
10–20% [10, 12–15]. Thus, the model is capable of ac-
curately predicting the required cellular compositions
for optimal growth, implying that the composition of

cells within a trichome is largely determined by stoichi-
ometry. The success of this and other correlations
between our model and laboratory and in situ measure-
ments infers that the hypothesis that metabolites are
the main influence for cell differentiation for T. ery-
thraeum is correct.
The genome-scale metabolic network reconstruction

and subsequent model simulations lay the foundation
for further interrogation of the metabolism of T. ery-
thraeum. This globally significant diazotroph plays an
integral role in the ocean, providing a much needed
nitrogen source in a very deplete environment. The
modeling techniques we have employed above perform
well in terms of predicting the growth of a trichome in
an ideal environment; but to fully capture the role of
T. erythraeum in the ocean, more advanced modeling
techniques must be developed. In its native environ-
ment, T. erythraeum interacts with many other species
and therefore multiscale models which can capture not
only the interaction of the cells with their environment
but interactions between cells (identical and other spe-
cies) must be developed. These types of multi-scale
models may also prove useful in modeling and predict-
ing the effect of rising temperatures and carbon diox-
ide levels in the atmosphere.

Methods
Cell cultivation
Trichodesmium erythraeum IMS101 cells were acquired
from the Bigelow Laboratory for Ocean Sciences (East
Boothbay, ME, USA). They were grown in an New
Brunswick (Hamburg, Germany) Innova 44R incubator
at 24 °C with 80 μE/m2/s with 12h light/12h dark cycles.
Cells were grown in artificial seawater YBC-II medium
[44] at pH 8.15-8.20. Where specified, KNO3 was added
to final concentration of 100 μM. All chemicals were ob-
tained from Sigma-Aldrich (St. Louis, MO). Growth rate
was monitored by measuring chlorophyll absorbance
[63] from 50 mL of culture every two days.

Biomass composition
Total biomass mass was determined by dry weight ana-
lysis, cells were filtered with a Whatman 0.22 μm
cellulose-nitrate filter and dried in an oven overnight.

Protein quantitation
Total protein was quantified using the Pierce BCA
Protein Assay Kit (Waltham, MS, USA). Cyanophycin
and phycoerythrin are both protein-based compounds,
so to avoid double counting, their mass fractions were
subtracted from the total protein content. Proteins
were hydrolyzed, derivatized and analyzed on an
Agilent 5973 Mass Detector with an Agilent 6890N
Network GC System on an HP-5 column to determine
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the amino acid composition following the method by
Antoniewicz et al. [64].

Carbohydrate quantitation
Carbohydrates were measured colorimetrically using the
anthrone method [65] against glycogen as a standard.

Cyanophycin quantitation
Cyanophycin is a primary nitrogen storage molecule for
diazotrophs and is polymerized arginine and asparta-
mine in a 1:1 ratio [66]. Cyanophycin was extracted by
disrupting 740 μL of 250 mL cells concentrated to 2 mL
via filtration and rinsing with TE buffer with 2.70 mg/mL
lysozyme overnight at 37 ºC, centrifuging at 16,100 x G
for 5 min, and resuspending the pellet in 1 mL of 0.01 M
HCl (in which cyanophycin is soluble) for 2 h. The extrac-
tion was repeated on the pellet, the supernatant fractions
were combined, and cyanophycin was quantified colori-
metrically using the Sakaguchi reaction [67].

Phycoerythrin quantitation
Phycoerythrin is a protein-pigment complex that is abun-
dant in T. erythraeum and absorbs light for photosynthesis.
It is soluble in neutral and slightly basic environments and
the supernatant resulting from disruption of 740 μL of cells
concentrated from 250 mL to 2 mL via 2.70 mg/mL lyso-
zyme was collected and measured spectrophotometrically
at 455 nm, 565 nm, and 592 nm, and quantitated using the
equation [R − PE] = 0.12 × [(A565 −A592) − 0.20 × (A455 −
A592)] [68].

Lipid quantitation
Lipids were extracted using the Bligh and Dyer method
[69]. Chlorophyll a and phycocyanin are both lipids, so
their masses were subtracted from the total lipid to
avoid double counting.
Total lipids were assumed to be made up of the four

major subclasses: SQDGs, MGDGs, DGDGs, and PGPs
[70]. Fatty acid composition was determined via GC/MS
to determine the relative carbon length that constituted
lipids in total. The carbon length ratios (C18:C16:C14,
etc.) was assumed to be the same distribution for every
lipid subclass. Otherwise, lipid pathways were consistent
with the methods described in the Cyanothece ATCC51422
model [36] and the relative amounts of lipid subclasses
(SQDG:MGDG:DGDG:PGP) were assumed to be consist-
ent with Cyanothece.
Fatty acid methyl esters (FAMEs) were analyzed using

GC/MS methods previously described for Synechococcus
sp. PCC7002 [71].

Chlorophyll A quantitation
The only chlorophyll pigment T. erythraeum contains is
chlorophyll a, which was extracted using an 80%

acetone/20% methanol solvent according to Harris [63].
First, 250 mL cells were filtered using a 0.45 μm glass
fiber filter and were then washed with 2 mL solvent to
yield a 2 mL green solution. The resulting liquid was
centrifuged at 4 °C at 13,100 x G for 10 min and the 1
mL of the supernatant was diluted to 2 mL and assayed
spectrophotometrically through measurement at 646.6
nm, 663.6 nm, and 750 nm, and using the equation:
[ChlA] = [0.01776(A646.6 − A750) + 0.00734(A663.6 −A750)].

Phycocyanin quantitation
2.70 mg.mL lysozyme was used to disrupt 740 μL cells
concentrated from 250 mL to 2 mL via filtration over-
night and phycocyanin was measured in the resulting
medium according to established techniques [72, 73].

DNA and RNA quantitation
DNA and RNA were extracted using MoBio Ultra-
Clean Microbial Isolation Kits (Carlsbad, CA, USA)
with 50 mL cells concentrated to 2 mL, of which 740
μL was disrupted using 2.70 mg/mL lysozyme over-
night at 37 °C/proteinase K for 2 h at 55 °C instead of
bead disruption. The concentration of DNA and RNA
were assessed spectrophotometrically using 1 cm
path-length extinction coefficients [74].

Genome scale metabolic network reconstruction
The genome scale network reconstruction was based on
the publically available genome sequence [75] and an au-
tomated annotation program [33]. This first draft was
manually curated using primary literature [76, 77], en-
zyme/metabolic databases [34, 35, 78, 79], and compari-
son to similar organisms [36, 38, 59, 80]. Reactions were
considered reversible unless indicated by a database, an
annotation in a similar organism, or significant thermo-
dynamic infeasibility to be otherwise. For conserved or
metabolically necessary reactions that were not con-
tained in a database, NCBI’s BLAST with an acceptable
e-score of 1e-6 [81] algorithm was used and compared
to related genera like Leptolyngbya, Anabaena, Synecho-
coccus, and Cyanothece to identify unannotated genes.
Where these organisms failed to predict genome similar-
ity, proteins displaying the function as the unannotated,
or insufficiently annotated, reaction were BLASTed
against all available organisms. This resulted in similar-
ities to the organisms in Table 3, and included Nitroso-
coccus oceani, Pleurocapsa sp. PCC 7327, Zymomonas
mobilis subsp. NRRL B-12526, Amborella trichopoda,
Dehalococcoides mccartyi VS, Nostoc sp. PCC 7524, and
Candidatus Nitrosophaera gargensis. Photosynthesis was
modeled similarly to other cyanobacterial genome scale
reconstructions [36, 38, 59, 80] by converting the com-
plex protein interactions to a series of redox reactions
with photons as an initial substrate and subsequent
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reduction reactions being passed to energy carriers and
ATP synthase. Gene-protein-reaction associations were
assumed using sequence data in conjunction with exist-
ing models and protein structures to predict conditional-
ity of their assignments (e.g., if a reaction required a
protein complex, the GPRs were assigned an and oper-
ator; redundant genes were assigned an or operator).
These were done with consultation of KEGG [35], Bio-
Cyc [34], BRENDA [78], and CyanoBase [79]. Finally,
transport reactions included in the model were validated
based on proteomic data or diffusion (CO2, H2O, N2,

etc.) [16]. Manual curation efforts built the model out
to 1035 reactions; closer inspection of the reactions
revealed that several were predicted by the SEED algo-
rithm but had no significant homology to the T. ery-
thraeum genome and were non-essential, therefore they
were removed. Irreversibility was assumed where data-
bases indicated significant energetic unfavorability
(such as in redox reactions) or where other models
demonstrated consistent unidirectionality. Reactions
were finally elementally and charge balanced using
built-in COBRA functionality in conjunction with the
PubChem Database [82]. Small molecules with known
properties like pyruvate were used to build out into
summary biomass reactions and predict summary
macromolecule and biomass constitution. Confidence
intervals were added to the model to reflect the source
of the reported gene linking: fours were assigned to the
transport reactions because of their proteomic data,
twos were assigned to all reactions with significant se-
quence similarity to known protein reactions, and ones
were assigned to all gap-filling reactions or reactions
with insignificant similarity. The model was assessed
using built-in COBRA functionality to determine Type
III Reactions by closing all exchange reactions and
evaluating the flux variability of the internal reactions.
This resulted in no variability, meaning that futile cy-
cles were eliminated [83].

Model simulations
Defining constraints
The genome scale metabolic network was used to pre-
dict fluxes using FBA [84]. The constraints applied to
the model were determined from experimental data or
laboratory or in situ data found in literature [22, 29].
Two different sets of constraints were used in order to
model the different cell types: diazotrophic and photoau-
totrophic. Diazotrophic involved Photosystem II deacti-
vation [85], nitrogenase activation, and carbon/nitrogen
sources available for uptake. Photoautotrophic cells up-
take CO2 and ammonium while exporting glycogen,
diatomic oxygen, and diatomic nitrogen. Available nutri-
ents, trace metals, and ions which are allowed to be used
for growth were restricted according to the YBC-II

medium formulation. Table 6 details the differences in
constraints for each modeled cell type. An upper limit
for photon uptake was set to 80 μEinsteins because this
represents the total light provided to the cells in the la-
boratory. Then, biomass related ATP was set to values
similar to Cyanothece sp. ATCC 51142, another photo-
synthetic diazotroph [36], at 544 mmol ATP (g DW h)-1

and maintenance related ATP was set so that the growth
rate matched literature derived physiological data [29].
The model was constrained by the growth rate provided
by literature using dFBA to define biomass maintenance
energy constraints [29] and then concurrently constrain-
ing nitrogenase and carbon dioxide uptake rates from
the same study. The maintenance flux for photoauto-
trophs was determined to be 64.3 mmol (g DW h)-1 and
67.2 mmol (g DW h)-1 for diazotrophs by matching the
growth rate in the dFBA model to the growth rate
measured in literature. This is significantly higher
than other reported values, but is justified by the lack
of substantial light restrictions. It is assumed that
light uptake restrictions and maintenance ATP are
both contained within this constraint. All other nitro-
gen and carbon sources except for those specified in
Table 6 were set to zero.

Problem formulation for FVA and FBA
FBA and FVA were conducted using COBRA toolbox
functions [43]. The optimization problem was con-
structed around the steady-state assumption with objec-
tives of biomass generation subject to different cell type
constraints specified by Table 6. Table 7 shows the ab-
breviations and notations for equations.
The cell-specific uptake and export rules as well as the

seawater constraints generated a suite of constraints of
the form (where DZ means diazotroph, PA means pho-
toautotroph, and M means macroscopic):
The cell-specific uptake and export rules as well as the

seawater constraints generated a suite of constraints of
the form:

−1000 ≤ vis≤ 0 ∀s∈S; ∀i ð1Þ

Diazotroph Cell Bounds:

−1000 ≤vDZn ≤0 ∀n ∈ N2;Glycogen; ;O2f g
0 ≤vDZμ ≤ 1000 ∀μ ∈ NHþ

4 ;CO2
� �

vDZPSII ¼ 0

vDZchIL ¼ 0:206

ð2Þ

Phtotoautotroph Cell Bounds:
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−1000 ≤ vPANHþ
4
≤0

0 ≤ vc
PA ≤1000 ∀c ∈ N2;Glycogenf g

0 ≤ vPSII
PA ≤ 1000

νPACO2
¼ −0:927

vPAchIL ¼ 0

ð3Þ

It should be noted that seawater ingredients are as-
sumed to be replete in this model.
Steady state was assumed to make the model solvable:

S⋅v ¼ 0 ð4Þ

Essentially, this means that mass is conserved and all
inputs exit either through the biomass equation or
through export. The second major assumption was that
the only outputs would be biomass, glycogen, or am-
monium; energy or mass balancing mechanisms, such
as through organic acid spilling, were assumed to be
negligible because of efficient, exponential growth
conditions.
Gene deletions, reaction deletions, and Dead End reac-

tion analysis were run using these constraints. These
problem formulations were solved using the COBRA
toolbox [43] in conjunction with the Gurobi (Houston,
TX, USA) solver in MatLab (Natick, MS, USA).

Dynamic FBA (dFBA)
dFBA was executed with the aid of the Dynamic Multispe-
cies Metabolic Modeling (DyMMM) framework as a tem-
plate [61]. Both this model and the DyMMM model built
on traditional dFBA which estimates solutions to the
time-dependent equations governing population growth
and substrate utilization. This is done using FBA methods
to determine interactive fluxes (exchange, biomass, and
objective reaction fluxes) from a genome scale. Metabo-
lites were assumed to perfectly diffuse since the relevant
study was assumed to center around metabolism and dif-
ferentiation of cells in response to shortage. The growth
rate is also sufficiently slow as to reduce the effects of
transport versus diffusion phenomena in ideal, exponen-
tial conditions. To model the differentiation between cell
types, dFBA allowed a portion of a period’s growth rate to
be proportionally allocated to the underproducing cell. If
there was no metabolite deficiency in a period, excess
growth of all cells was allocated to photoautotrophic
cells. Otherwise, the carbon dioxide uptake, nitrogen
uptake, and metabolite export rates were constrained
only by the requirements of the population (therefore
eliminating the strict carbon dioxide and nitrogenase
constraints). Only the biomass maintenance energy was
constrained to match laboratory growth rates with ini-
tial ideal (equilibrium) concentrations of cells at bio-
mass similar to initial biomass measured in laboratory
studies. These maintenance fluxes became 64.3 mmol
ATP (g DW)-1 h-1 for the photoautotroph and 67.2
mmol ATP (g DW)-1 h-1 for the diazotroph.

Table 7 Variables and notations used in simulations

Variables Identifiers Sets Indices

α: allocation coefficient ‘: uncorrected value C: consumers γ: consumer of glycogen/consumer
cell in allocation

C: concentration 0: initial P : producers c: producer of glycogen

f: fraction of cell type γ: consumed metabolite for
photoautotroph

S: seawater
nutrients

i: species

μ̂ : maximum growth rate c: produced metabolite for
photoautotroph

μ: consumer of ammonium

μ: growth rate chIL: nitrogenase n: producer of ammonium

ν: flux cons: consumer π: producer cell in allocation

N: number of steps δ: differentiation pool

σ: portion control for allocation DZ: diazotroph

S: stoichiometric matrix f: final

t: time m: metabolite

X: biomass n: step

YN→ Env: fraction of nitrogen released to the
environment

PA: photoautotroph

prod: producer

PSI/II: Photosystem I/II

T: total
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maxCi
Glycogen;t;μ

i;vPACO2
; vmDZ ; f DZ μPA and vDZ

NHþ
4

� �
s:t: CPA

Glycogen

h i
t
≥ CDZ

Glycogen

��� ���h i
t−1

vDZ
Glycogen ≤

1
6

vPACO2

f DZ

ð5Þ

For the purpose of this program, the final constraint is
estimated (knowing that μ and Δt are non-negative) by:

CPA
Gly

h i
t
¼ μDZΔt þ 1
� 	

CDZ
Glycogen

��� ���h i
t−1

XDZ
f

XPA
f

" #
t−1

ð6Þ

The dFBA model was built assuming Batch Reactor
behavior which has the design equation:

dX
dt

¼ μX ð7Þ

Assuming constant growth rate:

X
0
f ¼ X0e

μΔt ð8Þ

ΔX
0 ¼ X 0

f −X0 ð9Þ
Cells were allocated to a pool of differentiated cells

from the preliminary ΔX ', meaning that a cell can only
lose as much biomass as it gains in a period. The
amount of cells was determined according to the sub-
strate shortage in a period.

CT
cons;m ¼

X
γ

ΔXγ ⋅vγm⋅X
0γ
f ⋅Δt

� �
∀γ ∈Cm

CT
prod;m ¼

X
π

ΔXπ⋅vπm⋅X
0π
f ⋅Δt

� �
∀π ∈Pm

σγ ¼ Cγ
cons;m

CT
cons;m

¼ X 0γ
f ⋅Δt⋅ v

γ
m

�� ��X
γ

ΔXγ⋅vγm⋅X
0γ
f ⋅Δt

� � ∀γ ∈Cm

σπ ¼ Cπ
cons;m

CT
cons;m

¼ X 0π
f ⋅Δt⋅ v

π
m

�� ��X
γ

ΔXπ⋅vπm⋅X
0π
f ⋅Δt

� � ∀π ∈Pm

α ¼ STprod;m þ STcons;m
STcons;m

ð10Þ
The differentiated cell pool, Xδ, was determined by ap-

plying the allocation coefficient to the productive cells
according to their relative production coefficient:

Xδ ¼
X

γ
α⋅σγ⋅ΔX

0
γ

� �
∀γ ∈Cm ð11Þ

Xγ
f ¼ ΔX 0γ þ σγ⋅Xδ þ Xγ

0 ∀γ ∈Cm ð12Þ

And cells are “dealt” according to those same coeffi-
cients for consumers:

Xπ
f ¼ ΔXπ þ σπ⋅Xδ þ Xπ

0 ∀π ∈Pm ð13Þ

Adjusted values are calculated for final concentrations
and, during the next iteration, the new initial values are
the final values from the previous iteration. This ends at
a defined maximum time (400 h) and cell fractions are
calculated as a function of biomass of cell type i divided
by total biomass. Convergence was assessed using ran-
domized initial compositions, assuming the same total
initial biomass amount, and comparing the incremental
growth rate, or biomass generation at each time step, as
it changed over the time period. Incremental growth rate
(μt), total growth rate (μT), and fixed nitrogen yield
(YN→ Env) were calculated by:

μt ¼
ln

X
i
Xi

tX
i
Xi

t−1

 !

1

μT ¼
ln

X
i
Xi

fX
i
Xi

0

 !

Δt
ð14Þ

YN→Env ¼
ΔCNHþ

4

CNHþ
4 ;prod

ð15Þ

Since multiple steady states exist for population com-
position, growth rate, and substrate release rate, ran-
domized initial cell concentrations (both in terms of
composition and initial biomass) were generated using
MatLab over 1000 iterations. Also, FBA was run indi-
vidually on each cell type once more to determine the
growth rate of each cell type in replete (independent,
unlimited) conditions.
The hypothetical viability of T. erythraeum on differ-

ent nitrogen sources was assessed by “opening” reaction
boundaries for exchange reactions corresponding to the
nutrient and assuming the nutrient was in excess. Then,
the dFBA simulation was run assuming equilibrium
starting composition. The growth profiles and growth
rates were recorded in the same way as previous simula-
tions. Where proteomics data did not infer transport of
a particular compound, a simple, diffusion style trans-
porter was temporarily added to the model.
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Additional files

Additional file 1: Genome scale metabolic reconstruction for T.
erythraeum. This file contains the full SBML formatted genome scale
reconstruction of Trichodesmium erythraeum (iTery101) described by this
study without constraints. (XML 1720 kb)

Additional file 2: List of reactions and metabolites included in the
model. This file contains the more readable format of the Genome scale
reconstruction with a catalog of reactions in one tab and of metabolites
in the other, supplemented by relevant information for both sets. (XLS 442 kb)

Additional file 3: This file contains the list of dead end reactions
generated by the study, not including exchange reactions. This means all
reactions which include a metabolite that cannot be otherwise resolved
(through reaction to another compound) is included. Dead ends are
ignorant to photoautotroph or diazotroph because of the similar genetic
background. (XLSX 50 kb)

Additional file 4: MakeTERY function to establish constraints and create
separate models. This file contains all relevant constraints for the two
different cell types. By default, it also generates the optimal solutions
subject to literature constraints as described in the FBA and FVA sections
of the paper. (M 2 kb)

Additional file 5: Flux reactions for ideal, exponential growth with fixed
biomass/growth rate and objective metabolite production. This file
contains the entire simulations data used to generate Fig. 2 and based
on the flux balance analysis described by the study. It includes the entire
catalog of reactions, the corresponding flux for both diazotroph and
photoautotroph, and the reaction formula. (XLSX 58 kb)

Additional file 6: List of effects of gene and reaction deletion identified
by in silico knockout analysis. This file contains the list of effects from
each gene and reaction deletion in separate tabs. Gene/reaction
deletions that result in lethality are colored red, those that reduce
function are colored yellow, and those that cause no change are white.
The single green reaction (deletion of biomass maintenance, EN_ATP)
improves gene function. Reactions have associated genes listed
alongside and genes have associated reactions listed alongside. There are
reports for both diazotrophs and photoautotrophs. Data is reported as
ratio (growth rate of knockout divided by “wild type” growth rate), raw
knockout growth rate, and change in growth rate calculated using the
following equation: Δμfg = ¼ μWT−μmutantμWT (XLSX 182 kb)

Additional file 7: List of lower and upper bounds of flux identified by
flux variability analysis. Flux Variability for ideal, exponential growth with
fixed biomass/growth rate and objective metabolite production with the
same bounds as Flux Balance Analysis. Included are lower and upper
bounds for acceptable fluxes along with the total range for each
reaction. Reactions are organized by the “Euclidean Range”, the square
root of the ranges squared, which give an image for the most consistently
variable and non-variable reactions between cell types. (XLSX 80 kb)

Additional file 8: Table S1. Average protein composition of T.
erythraeum. Proteins were hydrolyzed and amino acid concentrations
were measured using gas chromatography/mass spectrometry. The molar
fraction from ambient air (N2) was used for the protein and lipid
assembly equations. Starred quantities were derived from a previous
study [1] because our method was not able to detect them. Table S2.
Average lipid composition of T. erythraeum. Extracted lipids then analyzed
as fatty acid methyl esters on a gas chromatograph/ mass spectrometer.
Relative amounts of subclasses of lipids were assumed from previous
literature [2]. Table S3: Comparison to related genome-scale metabolic
network reconstructions. Summary figures for related genome scale
reconstructions for relevant photosynthetic organisms. (DOCX 22 kb)

Abbreviations

General
BLAST: Basic local alignment search tool; COBRA: Constraint based
reconstruction and analysis; dFBA: Dynamic flux balance analysis; DW: Dry
weight; DyMMM: Dynamic multispecies metabolic model; FAME: Fatty acid
methyl ester; FBA: Flux balance analysis; FVA: Flux variability analysis;
GC/MS: Gas chromatography/mass spectrometry; PSI: Photosystem I;

PSII: Photosystem II; RAST: Rapid annotation using subsystems technology;
TCA: Tricarboxylic acid
Enzymes
TAGSFE: sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate
(E.C. 2.2.1.2); PCX: PEP carboxylase (E.C. 4.1.1.31); MDH: Malate dehydrogenase
(1.1.1.37); PYRK: Pyruvate kinase (E.C. 2.7.1.40); ICLY: Isocitrate lyase
(E.C. 4.1.3.1); ACCOASYN: Acetyl-CoA synthetase (E.C. 6.2.1.1); PDH: Pyruvate
dehydrogenase (E.C. 1.2.4.1); RuBisCO: D-ribulose-5-phosphate
1-phosphotransferase (E.C. 2.7.1.19); chIL: nitrogenase (E.C. 1.18.6.1);
GLNSYN: L-glutamate: ammonium ligase (E.C. 6.3.1.2); PGK: 3-phospho-D-
glycerate 1-phosphotransferase (E.C. 2.7.2.3); ATP: ATP synthase (E.C. 3.6.3.14);
FPAL: D-fructose-1,6-bisphosphate D-glyceraldehyde 3-phosphate lyase
(E.C. 4.1.2.13); ICIT: bifunctional aconitate hydratase 2/2-methylisocitrate
dehydratase (E.C. 4.2.1.3, E.C. 4.2.1.4)
Lipid subclasses
DGDG: Digalactosyldiacylglycerol; MGDG: Monogalactosyldiacylglycerol;
PG: Phosphatidylglycerol; SQDG: Sulfoquinovosyldiacylglycerol
Metabolites
6PG: 6-phospho-D-gluconate; 6PGDL: 6-phosph-D-glucono-1,5-lactone;
AcCoA: Acetyl-CoA; AKG/αKG: α-ketoglutarate/2-oxoglutarate; ALA: L-alanine;
cAMP: cyclic-AMP; CIT: Citrate; CoA: Coenzyme-A; DHAP: Dihydroxyacetone
phosphate; E4P: Erythrose-4-phosphate; F6P: Fructose-6-phosphate;
FDP: Fructose 1,6-diphosphate; FOR: Formate; FUM: Fumarate; G6P: Glucose-
6-phosphate; GAP: Glyceraldehyde 3-phosphate; GLX: Glyoxylate;
GLY: Glycine; GLYR: Glycerate; GOL: Glycerol; GP: 3-phosphoglycerate;
ICIT: Isocitrate; MAL: Malate; NMP: Nucleotide monophosphate;
OAA: Oxaloacetate; PEP: Phosphoenolpyruvate; PGOL: Phosphoglycolate;
PYR: Pyruvate; R5P: Ribose-5-phosphate; Ru5P: Ribulose-5-phosphate;
RuBP: Ribulose 1,5-bisphosphate; S17P: Sedoheptulose 1,7-bisphosphate;
S7P: Sedoheptulose 7-phosphate; SUCC: Succinate; SUCSAL: Succinic
semialdehyde; X5P: Xylulose 5-phosphate; βG6P: β-glucose-6-phosphate
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