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Kinetic stability analysis of protein
assembly on the center manifold around
the critical point
Tatsuaki Tsuruyama

Abstract

Background: Non-linear kinetic analysis is a useful method for illustration of the dynamic behavior of cellular biological
systems. To date, center manifold theory (CMT) has not been sufficiently applied for stability analysis of biological systems.
The aim of this study is to demonstrate the application of CMT to kinetic analysis of protein assembly and disassembly,
and to propose a novel framework for nonlinear multi-parametric analysis. We propose a protein assembly model with
nonlinear kinetics provided by the fluctuation in monomer concentrations during their diffusion.

Results: When the diffusion process of a monomer is self-limited to give kinetics non-linearity, numerical simulations
suggest the probability that the assembly and disassembly oscillate near the critical point. We applied CMT to kinetic
analysis of the center manifold around the critical point in detail, and successfully demonstrated bifurcation around the
critical point, which explained the observed oscillation.

Conclusions: The stability kinetics of the present model based on CMT illustrates a unique feature of protein assembly,
namely non-linear behavior. Our findings are expected to provide methodology for analysis of biological systems.

Keywords: Protein assembly, Nonlinear kinetics, Fluctuations

Background
Numerical simulation based upon multi-parametric
kinetic equations is the principal methodology for the
analysis of the behavior of biological systems. Researchers
often encounter a number of parameters in the governing
equations of the system. Here, we introduce the center
manifold theory (CMT) for simplification of the study of
dynamic biological systems. CMT provides mathematical
prescription for carrying out reduction of the number of
parameters near the steady state, as well as information
regarding the stability of the steady state. As a result,
simulation is oriented to illustrate behavior around the
critical point, at which system behavior drastically changes
in the qualitative structure. The observable change is
termed bifurcation, and the threshold values of the param-
eters are referred to as critical values or bifurcation values.
The aim of this study was to provide a simple algorithm
for the application of CMT to multi-parametric kinetic

equations, in order to clearly illustrate the behavior of the
biological system. The CMT has been applied to the
Lotka-Volterra model of predator–prey system to provide
important simulation results [1, 2]. In addition, several
pioneering studies have applied CMT to neural network
analysis [3]. Time-delay and diffusive effects play import-
ant roles in bifurcation phenomena [1, 4]. However, to
date, there are few applications of the CMT to biochem-
ical reaction models. We previously reported a model of
cell signaling systems using non-linear kinetics and
demonstrated the phase transition phenomenon via a
numerical simulation [5].
Pivotal protein-protein interactions during cytoskel-

eton formation were selected as the application model
for the present CMT method. Among the interactions
between protein monomers, tubulin and actin
polymerization are well-known events that have been
analyzed using the numerical method [6–10]. The physical
robustness of the cytoskeleton is based on the biophysical
properties of actin and tubulin. In particular, various
mathematical models have been proposed to explain
the kinetic behavior of tubulin assembly [6–11]. A

Correspondence: tsuruyam@kuhp.kyoto-u.ac.jp
Department of Pathology, Kyoto University, Graduate School of Medicine,
Yoshida-Konoe-Cho 1, Kyoto, Kyoto Prefecture 606-8501, Japan

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Tsuruyama BMC Systems Biology  (2017) 11:13 
DOI 10.1186/s12918-017-0391-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0391-7&domain=pdf
mailto:tsuruyam@kuhp.kyoto-u.ac.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


theory of polymerization of macromolecules has been
established on the basis of the kinetic model of aggre-
gation [12, 13]. Oosawa and Asakura previously
reported that polymerization is similar to micelle for-
mation or crystallization, and that there is a critical
monomer concentration above which monomers
effectively polymerize. The authors additionally suggested
that the nucleation step represents the rate-limiting step
for polymerization. Nucleation and growth occur in paral-
lel during the progression of polymerization. There is a
gap in free energy change between initial nucleation and
progression of linear polymerization [13]. The stable
nucleus for polymerization consists of trimers or tetra-
mers, and the growth of aggregates through elongation/
dissociation follows the formation of a thermodynamically
unfavorable size of the nucleus. In the current study, we
focused on the polymerization in the absence of de novo
nucleation and the interaction between polymer and
monomer (PM) interaction.
For stable growth, the lifespan of tubules is controlled

by a guanidine triphosphate (GTP)-cap that forms at
their ends [14]. The structure and motility of growing
tubules is influenced by intrapolymeric Brownian motion
and fluctuation; this provides elasticity to the microtu-
bules [15]. Polymerization/de-polymerization is con-
trolled by binding of adenosine triphosphate (ATP)/GTP,
resulting in the assembly of monomeric proteins. The
intermittent transition between slow growth and rapid
shrinkage in polymeric assemblies of microtubules is
termed dynamic instability [14]. Numerous models have
been proposed to explain this instability; in particular,
Zapperi and Mahadevan successfully identified two
parameters: a structural mechanical parameter that char-
acterizes the ratio of longitudinal to lateral interactions
in an assembly, and a kinetic parameter that character-
izes the ratio of timescales for growth and conformation
change. These parameters serve to demarcate a region of
uninterrupted growth from that of collapse [16].
In the current study, we consider a model assembly

system that shows the unstable dynamics of assembly
around the critical concentration of ATP/GTP. The
present model utilizes CMT for describing the behavior
of monomers in the solvent and polymer for simplifica-
tion of analysis. We applied a kinetic model that unifies
de novo nucleation and growth by considering the
monomer-monomer interactions as a diffusion process.
In addition, the diffusion process of the monomeric pro-
tein has been considered from the perspective of non-
linearity. According to Fick’s law, the continuity of
monomer concentration of ci (i = 1, n) including chem-
ical reaction items, may be described using diffusion
coefficients Di, kinetic coefficients ki, and the concentra-
tions of individual compounds ci. Protein assembly is
limited by the slow diffusion rate of monomer proteins,

which is a diffusion-rate limiting aggregation process.
Therefore, diffusion items and reaction items cannot ne-
cessarily be separated; therefore, we described kinetic
rate of ci as follows [8]:

dci
dt

¼ kiDici þ f cið Þ ð1Þ

Here, the first item on the right represents the diffu-
sion rate. The second item, f (ci), denotes the function of
kinetic rate of reactions other than the diffusion process.
ki represents a coefficient.

Methods
Numerical simulation Numerical calculations were per-
formed using Mathematica 8 (Wolfram Research, Inc.,
Champaign, IL).

Results
General formulation of an assembly
The model consists of several steps: (i) the monomer
achieves an interactive state by binding a cofactor
(ATP/GTP) that provides the monomer with the abil-
ity to interact; (ii) the monomer itself possesses the
ability to hydrolyze the cofactor and lose assembly ac-
tivity; (iii) the monomer has the ability to exchange
the inactive hydrolyzed cofactor (ADP/GDP) with an
active non-hydrolyzed one; and (iv) ATP/GTP are
supplied continuously from the external environment.
The second requirement indicates a self-limiting
property of the monomer that causes dynamic in-
stability during monomer-monomer interaction. When
examining protein interaction kinetics, analysis of the
fluctuation in monomer concentrations was per-
formed using Mathematica 9.

Protein interaction kinetics
The model scheme is shown in Fig. 1. There are three
types of monomer: ATP/GTP-binding monomer X,
ADP/GDP-binding monomer Y in the oligomer (W),
and the released ADP/GDP-binding monomer Z. X has
the higher assembly activity, and Y and Z have lower as-
sembly activity. We set the oligomer concentration W to
be a constant, as de novo assembly is considered much
slower than monomer interaction in the steady state
[11–14]. The individual steps are shown below:
First, X associates with the assembly nucleus W to be

Y at the end of W.

X þW→WþY m1; kinetic coefficientsð Þ ð2Þ

In the next step, the intermediate species Y is released
to be Z:
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Y→Z m2ð Þ ð3Þ
Z recovers its interaction activity by exchanging the

active cofactor ATP/GTP (P) for the inactive cofactor
ADP/GDP (P’), returning to X (see Fig. 1):

Z þ P→X þ P′ ðk0Þ ð4Þ
In addition, direct slow conversion is supposed:

X → Z k3ð Þ ð5Þ
The kinetic equations were set according to the simple

reaction cascade described above. We obtained equa-
tions for the protein interaction kinetics using the diffu-
sion coefficient:

dX=dt ¼ −m1WX þ k0PZ−k3X ð6Þ
dY=dt ¼ m1WX−m2Y ð7Þ
dZ=dt ¼ m2Y−k0PZ þ k3X ð8Þ

In addition, the total concentration of the monomer is
maintained constant.

X þ Y þ Z ¼ M ð9Þ
M, which represents the total concentration of the

monomeric proteins, is maintained constant. A simple
consideration of the diffusion-limited step implies that,
when the kinetic rate can be described according to
Fick’s law using the diffusion coefficients DX, DY and DW

then [17–19]:

m1∝ DX þ DWð Þ=2≃DX=2 ð10Þ
m2∝ DW þ DYð Þ=2≃DY=2 ð11Þ

As the oligomer diffusion rate is small, we set DX,
DY > >DW. Therefore, m1, and m2 are substantially
proportional to DX and DY, respectively. Accordingly.
kinetic coefficients k1 and k2 were defined as the pro-
portional coefficients below:

m1≜k1DX

m2≜k2DY

Rewriting (6), (7), and (8) using (10) and (11),

dX=dt ¼ −k1DXWX þ k0PZ−k3X ð12Þ
dY=dt ¼ k1DXWX−k2DYY ð13Þ
dZ=dt ¼ k2DYY−k0PZ þ k3X ð14Þ

In the above equations, k1 and k2 represent the kinetic
coefficients for the addition of the monomer to the
oligomer and the release of the monomer from the
oligomer, respectively.
In order to obtain the monomer concentration at the

steady state of the reaction system, the right-hand side
of Eqs. (12), (13), and (14) were set to be equal to zero
and Eq. (9) were used to give:

Xe ¼ DYk2Mp
DXk3k2 þ DYk2pþ DXDYk1k2W þ DXk1pW

∼
DYk2M

DYk2 þ DXk1W

ð15Þ

Y e ¼ DXk1MpW
DYk3k2 þ DYk2pþ DXDYk1k2W þ DXk1pW

∼
DXk1MW

DYk2 þ DXk1W

ð16Þ

Ze ¼ DYk2Mðk3 þ DXk1W Þ
DYk3k2 þ DYk2pþ DXDYk1k2W þ DXk1pW

∼
DYk2MðDXk1W Þ
DYk2pþ DXk1pW

∼0

ð17Þ
In the above approximation, we omitted DXDY and k3

as the diffusion coefficients and the direct conversion
rate of X into Z is small.

Fluctuation of diffusion coefficient
Next, we considered the fluctuations of participant pro-
teins using small letters x, y, and z:

Fig. 1 Scheme of monomer interaction. Individual globules or
oblongs represent monomers X, Y, Z, and oligomer W. Kinetic
coefficients, k0, k1, k2, and k3 are shown next to the arrows. Outside
and inside signify the outside and inside of the cell, respectively. Y is
located at the end of the oligomer W
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X ¼ Xe þ x;Y ¼ Y e þ y;Z ¼ Ze þ z ð18Þ

In Eq. (14), the subscript ‘e’ signifies values at the
steady state.
In an assembly, monomers associate with other mono-

mers. From Eq. (9),

xþ yþ z ¼ 0 ð19Þ

Therefore, the fluctuation y may be represented using
−x−z. The fluctuation kinetics are thus provided by two
parameters, namely x and z.
Given the nonlinearity during diffusion, we assume

kinetic instability in the monomer-monomer interaction,
and that the sensitivity of the assembly in response to
environmental change may be evaluated. Indeed, the dif-
fusion coefficient Di of one macromolecule in the solu-
tion may generally be represented using the fluctuation
concentration ci:

Di ¼ Di
0−Σαijci

¼ Di
0−dDi with dDi≡Σαijcið1≤i≤3; i

¼ X;Y ;ZÞ ð20Þ

cj denotes the concentration of the solute, αi is a coef-
ficient, and Di

0 is the diffusion coefficient when the fluc-
tuation of monomeric protein is negligible. The
dependence of the diffusion coefficient on the protein
concentration has been reported [20, 21]. O’Learly
reported that diffusion coefficients of proteins linearly
decrease in proportion to the concentration, when the
latter is sufficiently small. The fluctuation of the diffu-
sion coefficient is obtained by considering the depend-
ence of the coefficients on the concentration of the
monomer from Eq. (20) [8]:

dDX ¼ αx−βz ð21Þ

dDZ ¼ γx−δz ð22Þ

Here, the fluctuation term αx (α >0) and γx (γ >0)
contributes to a decrease in DX and DZ, as higher
assembly activity reduces diffusion. In contrast, an in-
crease in the fluctuation terms βz (β >0) and δz (δ >0
serves to increase the diffusion coefficients DX and
DZ, as lower interaction or assembly activity increases
diffusion. When the assembly activity of Z is lower,
the fluctuation item δz is negligible, in accordance
with the fluctuation kinetic equations given by (19),
Eqs. (12), (14), (21), and (22):

dx=dt ¼ −k1W ðDX−αxþ βzÞðXe þ xÞ
þ k0PðZe þ zÞ−k3ðXe þ xÞ ð23Þ

dz=dt ¼ k3ðXe þ xÞ−k2ðDY−γxþ δzÞðY e þ yÞ
−k0PðZe þ zÞ

ð24Þ
Here, y, fluctuation of intermediate species Y is negli-

gible as the value is sufficiently small. In addition, we
used the following equations to describe the balance in
detail:

−k1DXWX þ k0PZ−k3X ¼ 0 ð25Þ
and

k2DYY−k0PZ þ k3X ¼ 0 ð26Þ
To simplify the notation in (23) and (24), we set:

k1DXW ¼ D1; k1DXW α ¼ a; k1DXWβ ¼ b

k2γ ¼ c; k0P ¼ p; k3 ¼ k

ð27Þ
and obtained:

dx=dt ¼ −ðD1−aXe−kÞxþ ð−bXe þ pÞz
þ ax2−bxz ð28Þ

dz=dt ¼ ðk−cY eÞx−pz þ cx2 þ cxz ð29Þ

Eqs. (28) and (29) represent a master equation for the
application of CMT.

Calculus simulation of concentration oscillations
For analysis of the behavior of the system, including
multi-parameters, the examination of the linearization of
behavior of the system near a steady state provides in-
sights into the qualitative behavior of the system in the
neighborhood of the point. In particular, the eigenvalues
of the linear part of the governing kinetic equations en-
able determination of the stability of the system behav-
ior. CMT is a rigorous formulation of this observation
that enables the reduction of a large number of parame-
ters [22].
Around the steady state (x, z) = (0, 0) of Eqs. (28) and

(29), the Jacobian matrix of (dx/dt, dz/dt) is given by:

L ¼ −D1 þ aXe−k −bXe þ p

k−cY e −p

#"
ð30Þ

Subsequently, the time-course of the monomer con-
centrations was simulated by substituting appropriate
numerical values into Eqs. (28) and (29). The simulation
results under the above conditions are shown in Fig. 2.
A numerical calculation was performed over a suffi-
ciently long period to evaluate the assembly trend. The
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Fig. 2 (See legend on next page.)
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steady-state concentrations of X and Z are given by Eqs.
(15) and (17). The critical value of pc is given by

det½L� ¼ ð−D1 þ a Xe−kÞð−pÞ−ðk−cY eÞð−bXe þ pÞ ¼ 0

ð31Þ

Here, the small affix c indicates the critical point of
ATP/GTP concentration. Next, we conducted a simula-
tion with values of M = 0.1, Xe = 0.002, D1 = 0.28, D2 =
0.012, a = 150, b = 150, k = 0.005, c = 0.0, and d = 0. Solv-
ing the above with respect to p with substitution of these
values in Eq. (31), we find the critical value:

pc ¼ 0:011 ð32Þ

As a result, the fluctuations oscillate between decrease
and increase in monomer concentrations, as shown in
Fig. 2. When p <pc, the fluctuation was found tobe atten-
uated (Fig. 2d) and the monomer concentration reached
a plateau. However, when p >pc, the fluctuation was
found to diverge (Fig. 2f ).

Evaluation of model stability using the center manifold
around the equilibrium state
In order to demonstrate the Hopf-bifurcation around
the critical state, in which p = pc, we firstly defined the
Jacobian matrix Lc according to (30) :

Lc ¼
−D1 þ aXe−k −bXe þ pc

k−cY e −pc

#"
ð33Þ

Using the eigenvectors of Lc, [l1 l2], we performed the
following coordinate transformation using novel param-
eters defined by following formulae:

u
v

� �
¼ l1 l2½ �−1 x

z

� �
ð34Þ

With reference to the numerical simulation (Fig. 2),
when D1, k, Ye, and pc are sufficiently small,

l1 l2½ � ¼ −a Xe 1
aXe 1

� �
ð35Þ

Eigenvalues λ of Lc are

λe aXe; 0 ð36Þ
Using (34), we obtained:

du=dt ¼ f uðu; vÞ
¼

�
D1

2pc þ k2v
�
bðu−vÞ þ av

�
þ D1k

�
pcðu−vÞ þ buv

��
=kðD1 þ kÞ ð37Þ

dv=dt ¼ f v u; vð Þ ¼ ð−k2vþ D1u −pc þ bvð Þ

þk pc −uþ vð Þ þ v −D1 þ buþ a−bð Þvð Þð Þ= D1 þ kð Þ
ð38Þ

dε=dt ¼ 0 ð39Þ
The center manifold around the critical point (p = pc)

is then given as follows.

u ¼ h ε; vð Þ ¼ a1v
2 þ a2vεþ a3ε

2 þ a4v
3 þ a5v

2ε

þ a6vε
2 þ a7ε

3 þ Ο ε4
� �

ð40Þ
The eigenvalues of the Jacobian matrix, λ, in (33) are 0

and 2.9 × 10−4. The given center manifold is an invariant
manifold that is a tangent space of the center subspace,
which is an eigenspace when the eigenvalue is equivalent
to zero. The behavior of the fluctuation is complex when
the real part of the eigenvalue is equivalent to zero. The
above result in (36) shows that it is systematically neces-
sary to analyze the behavior of the given system on the
center manifold [22]. In order to analyze the behavior of
the system, we investigated whether the change of the
value in p around the critical value pc gives u that satis-
fies du/dt = 0. When the two values of u are given, i.e.,
bifurcation of the system is shown, and oscillation and/
or other interesting behaviors may be predicted.
Using (40), we obtained:

(See figure on previous page.)
Fig. 2 Time-course of the fluctuation in monomer concentrations displays a oscillation. Diffusion of active cofactor binding monomer (X) and of
inactive cofactor binding monomer (Z). p is (a) 0.000, (b) 0.001, (c) 0.002, (d) 0.004, (e) 0.008, (f) 0.009, (g) 0.01000, (h) 0.010705, (i) 0.011000. The
graphs show plots of X (black), Y(red), and Z (blue). Lines represent the concentration of X and Z. The horizontal axis represents time (0≤ t ≤ 1000)
and the vertical axis represents the concentration of X and Z. When p exceeds 0.01, oscillations are observed. The Mathematica (version 9, Wolfram
Research, Inc., Champaign, IL) code for p = 0.01 is as follows: p = 0.01 X = ((D2 M p)/(D2 k + D2 p + D1 D2 W+D1 p W)) Y = ((D1 M p W)/(D2 k + D2 p
+ D1 D2 W+D1 p W)) Z = ((D2 M (k + D1 W))/(D2 k + D2 p +D1 D2 W+D1 p W)) M = 0.1 W= 1 D1 = 0.28 D2 = 0.012061855670103093` a = 150 b =
156 k = 0.005 c = 0.1 d = 0 NDSolve[{Derivative[1][x][t] == − (D1 - a X) x[t] + a x[t]^2 + (p - b X) z[t] - b x[t] z[t] - k x[t], Derivative[1][z][t] == k x[t] + c x[t]^2 +
d x[t] z[t] - p z[t], x[0] == 1.̀ *^-6, z[0] == 1.`*^-6}, {x, z}, {t, 0, 3300}, MaxSteps - >50000] g001 = Plot[{X + x[t]} /. %, {t, 0, 1000}, PlotRange - > All, PlotStyle
- > {RGBColor[0, 0, 0]}] g002 = Plot[{Y - x[t] - z[t]} /. %%, {t, 0, 1000}, PlotRange - > All, PlotStyle - > {RGBColor[1, 0, 0]}] g003 = Plot[{Z + z[t]} /. %%%, {t, 0, 1000},
PlotRange - > All, PlotStyle - > {RGBColor[0, 0, 1]}, PlotRange - > All] Show[g001, g002, g003]
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u ¼ dv=dtð Þ∂h u; εð Þ=∂uþ dε=dtð Þ∂h u; εð Þ=∂ε
¼ 2a1 vþ a2εð Þf u u; vð Þ

ð41Þ
Using Eqs. (40) and (41), we then obtained:

2a1 vþ a2εð Þf u u; vð Þ ¼ a1v
2 þ a2vεþ a3ε

2 þ a4v
3

þ a5v
2εþ a6vε

2 þ a7ε
3 þ Ο ε4

� �
ð42Þ

Solving Eq. (42) gives the coefficients of ai (1 ≤ i ≤7)
in Eq. (40): a3 = a7 = 0. Substituting u in Eq. (40) given
by ν and ε into fv (u,v), we obtained the kinetic sta-
bility equation for fluctuation ν using the coefficients
ni (i = 1 …, 7) as follows:

dv=dt ¼ n1v
2 þ n2 vεþ n3ε

2 þ n4v
3 þ n5v

2εþ n6vε
2

þ n7ε
3 þ Ο ε4

� �
ð43Þ

Independent of the numerical values in Eq. (43),

n3; n6; n7 ¼ 0 ð44Þ
Then, we obtained:

dv=dt ¼ n1v
2 þ n2 vεþ n4v

3 þ n5v
2εþ Ο ε4

� � ð45Þ

By setting left-hand side equivalent to zero,

v ¼ 0;

−n1−n5ε� n1 þ n5εð Þ2−4n2n4ε
� �1=2� �

=2n4
ð46Þ

We obtained an approximate solution to Eq. (46):

v ¼ 0;

−2n1 þ ð2n2n4=n1−2n5Þε;−2n1 n2 ε=n4
ð47Þ

From (40), we obtained the formulation of u using a
constant coefficient c’,

u≈0; c’ n1=n4ð Þ2 ð48Þ
When D1, k, p are sufficiently small, substituting [l1 l2]

in (35) into (33) approximately gives :

x ¼ − aX=kð Þuþ vev ð49Þ
As a result, as we described v and x had two ampli-

tudes in (47) demonstrating the oscillation of the fluctu-
ation by bifurcation in v-ε plane (Fig. 2). Thus, stability
analysis enables prediction of the behavior of the fluctu-
ation around the critical point of the protein assembly
system.

Discussion
In this work, we presented a model for protein assembly
kinetics and analyzed the stability around the critical
point using CMT. The nonlinear kinetic equations in-
clude three parameters (X, Y, and Z); however, only two
are independent. In the simulations, ATP/GTP- or ADP/
GDP-binding monomers periodically exhibit an oscilla-
tion between assembly and disassembly. This accurately
reflects the microtubule kinetics showing unstable as-
sembly [8].
To the best of our knowledge, this is one of the first

reports on the application of CMT to the analysis of bio-
logical reaction systems [8]. The fluctuation of monomer
concentrations was subjected to a perturbation expan-
sion using a minimal increase in the supply of ATP/GTP
near the concentration at the critical point. This
mathematical method precisely treats nonlinear and
multi-parameter systems around the critical point. The
fluctuation kinetics is expected to change from conver-
gence to divergence of the concentration fluctuation of
the monomer, i.e., from stable to unstable around the
critical point, as shown in Fig. 2. Because of this high
sensitivity to the concentration of ATP/GTP, protein
assembly is dynamically regulated by minimal changes
in the supply of ATP/GTP, which in turn is subject to
metabolic control. Via modeling of microtubule growth
at the mesoscopic scale, Zapperi et al. showed the time
course of transition between slow growth and rapid
shrinkage during microtubule polymerization [16]. The
present simulation may explain microscopic tubulin
oligomerization oscillations during the initial steps of
microtubule assembly. In addition, the present model may
explain the transition from microscopic oligomerization
and aggregation to mesoscopic scale assembly. The
quantitative evaluation of the theoretical basis of pro-
tein assembly requires further investigation through
experimental studies.
The present center manifold analysis enables elucida-

tion of detailed behavior around the steady state and os-
cillatory dynamics of protein monomer concentration.
In the current study, we further developed the mathem-
atical framework using CMT and aimed to describe
Hopf-bifurcation around the steady state, through the
center manifold analysis, in a simple model. Coveney et
al. have described a detailed model of protein assembly,
including nucleation, its catalysis, and inhibition pro-
cesses and performed a kinetic analysis of the initial nu-
cleation process [23, 24]. The kinetic model of
monomer-oligomerization or nucleation requires mul-
tiple concentrations that describe variable oligomer and
nucleation. As shown by Coveney et al., it was challen-
ging to predict the behavior of the system using a multi-
parametric (dimensional) center-manifold on the model.
In the current study, we utilized a monomeric parameter
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and showed bifurcation of the system around the critical
point. Therefore, CMT in a simple model serves to
reduce the dimensions of the system to signal dimen-
sions, as shown in this study. We expect that the the-
oretical framework in the current study provides a
general theory of protein assembly kinetics and signal
transduction [5, 25].
The analysis of growth kinetics of polymerization,

according to Oosawa’s model, has recently been reported
by Michaels et al. [12]. The authors focused primarily on
the dynamic phase of protein polymerization. As nucleation
and polymerization to the nucleus proceeds in parallel, the
analysis requires a detailed kinetic model of interaction be-
tween the nucleation and polymerization process [13, 14].
However, after the dynamic phase and before the plateau
phase of polymerization, PM interactions are dominant
during signal transduction. The present analysis illustrates
the dynamics of cytoplasm in the stable state, and the cor-
responding influence on cell motility.
The present simulation was applied to such a quasi-

statistic state, and the results revealed a possibility that
oscillation of monomer concentration may occur when
the ATP/GTP concentration exceeds the critical concen-
tration. The calculated critical concentration of ATP/
GTP, based on Hopf-bifurcation in (46) and amplitude
of the fluctuation, coincided well with the amplitude ob-
tained via the present simulation. The consistency in
values in the simulation is important for verification.
The periodic change in concentration may contribute to
the coherently spatial-periodic viscosity and subse-
quently to contraction and elongation during cell move-
ment. A recent study demonstrated the role of
cytokeratin in determining keratinocyte motility and
shape [26] and experimental method has greatly devel-
oped [27]. Structural components of cells determine
non-linear cellular structural behavior and the contribu-
tion of various cell components to stability in response
to mechanical stimuli. The cytoskeleton plays key roles
in determining cellular stiffness. Our model captures
non-linear structural behaviors including variable
compliance along the cell surface and resistance to pull--
out force [28]. The role of the microtubules in dynamic
behavior may be investigated from the viewpoint of cell
geometries. Measurement of the oscillation and deter-
mination of the critical concentration of ATP/GTP may
reveal physical properties such as elasticity and
compressibility.

Conclusion
Our model is expected to be useful for computing bio-
physical behavior in response to minute changes in
GTP/ATP concentration using fluorescence intensity
meter in two-dimensional cell geometries. In addition,
the present model is expected to be suitable for use in

algorithms for simulation of metabolic processes. Al-
though further experimental studies are necessary for
verification, our findings show that the current non-
linear model of dynamic instability analysis captures the
non-linear behaviors of cellular chemical and mechanical
responses.

Abbreviations
ATP: Adenosine triphosphate ATP; CMT: Center manifold theory;
GTP: Guanidine triphosphate; PM: Polymer and monomer (PM)

Acknowledgements
We are very thankful for Prof. Kenichi Yoshikawa, Dr. Masatoshi Ichikawa, and
Prof. Masayuki Imai.

Funding
This work was supported by the Ministry of Education, Culture, Sport,
Science and Technology, Japan, under the project name “Synergy of
Fluctuation and Structure”. Project number 2502. The funders had no role in
the study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Availability of data and materials
The dataset supporting the conclusions of this article is included within the
article.

Author’ contributions
TT designed the study, implemented the final model, and wrote the
manuscripts.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 3 June 2016 Accepted: 5 January 2017

References
1. Chang X, Wei J. Stability and Hopf bifurcation in a diffusive predator-prey

system incorporating a prey refuge. Math Biosci Eng. 2013;10:979–96.
2. Zhang X, Zhao H. Bifurcation and optimal harvesting of a diffusive predator-

prey system with delays and interval biological parameters. J Theor Biol.
2014;363:390–403.

3. Xiao M, Zheng WX, Cao J. Hopf bifurcation of an (n + 1) -neuron
bidirectional associative memory neural network model with delays. IEEE
Trans Neural Netw Learn Syst. 2013;24:118–32.

4. Yamaguchi I, Ogawa Y, Jimbo Y, Nakao H, Kotani K. Reduction theories
elucidate the origins of complex biological rhythms generated by
interacting delay-induced oscillations. PLoS One. 2011;6:e26497.

5. Tsuruyama T. A model of cell biological signaling predicts a phase transition
of signaling and provides mathematical formulae. PLoS One. 2014; (in
press).

6. Hazra P, Inoue K, Laan W, Hellingwerf KJ, Terazima M. Tetramer formation
kinetics in the signaling state of AppA monitored by time-resolved
diffusion. Biophys J. 2006;91:654–61.

7. Wu Z, Wang HW, Mu W, Ouyang Z, Nogales E, Xing J. Simulations of tubulin
sheet polymers as possible structural intermediates in microtubule
assembly. PLoS One. 2009;4:e7291.

8. VanBuren V, Cassimeris L, Odde DJ. Mechanochemical model of
microtubule structure and self-assembly kinetics. Biophys J. 2005;89:
2911–26.

9. Symmons MF, Martin SR, Bayley PM. Dynamic properties of nucleated
microtubules: GTP utilisation in the subcritical concentration regime. J Cell
Sci. 1996;109:2755–66.

Tsuruyama BMC Systems Biology  (2017) 11:13 Page 8 of 9



10. Voter WA, Erickson HP. The kinetics of microtubule assembly. Evidence for a
two-stage nucleation mechanism. J Biol Chem. 1984;25:10430–8.

11. Zilberman M, Sofer M. A mathematical model for predicting controlled
release of bioactive agents from composite fiber structures. J Biomed Mater
Res A. 2007;80:679–86.

12. Oosawa F, Kasai M. A theory of linear and helical aggregations of
macromolecules. J Mol Biol. 1962;4:10–21.

13. Michaels TC, Garcia GA, Knowles TP. Asymptotic solutions of the Oosawa
model for the length distribution of biofilaments. J Chem Phys. 2014;140:
194906.

14. Chretien D, Jainosi I, Taveau JC, Flyvbjerg H. Microtubule’s conformational
cap. Cell Struct Funct. 1999;24:299–303.

15. Oosawa F, Asakura S. Thermodynamics of the Polymerisation of Proteins.
New York and London: Acdemic Press; 1975. p. 204.

16. Zapperi S, Mahadevan L. Dynamic instability of a growing adsorbed
polymorphic filament. Biophys J. 2011;101(2):267–75.

17. Wustner D, Solanko LM, Lund FW, Sage D, Schroll HJ, Lomholt MA.
Quantitative fluorescence loss in photobleaching for analysis of protein
transport and aggregation. BMC Bioinformatics. 2012;13:296.

18. Dorsaz N, De Michele C, Piazza F, Foffi G. Inertial effects in diffusion-limited
reactions. J Phys Condens Matter. 2010;22:104116.

19. Kasche V, de Boer M, Lazo C, Gad M. Direct observation of intraparticle
equilibration and the rate-limiting step in adsorption of proteins in
chromatographic adsorbents with confocal laser scanning microscopy. J
Chromatogr B Analyt Technol Biomed Life Sci. 2003;790:115–29.

20. O’Leary TJ. Concentration dependence of protein diffusion. Biophys J. 1987;
52:137–9.

21. Kenneth H. A diffusion model with a concentration-dependent diffusion
coefficient for describing water movement in legumes during soaking. J
Food Sci. 1983;48:618–23.

22. Guckenheimer J, Holmes PJ. Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields. 1st ed. New York: Springer; 1983. p. 1–459.

23. Wattis JAD, Coveney PV. Analysis of a generalized becker-doring model of
self-reproducing micelles. Proc T Soc Lond A. 1996;452:2079–102.

24. Wattis JAD, Coveney PV. Mesoscopic models of nucleation and growth
processes : a challenge to experiment. Phys Chem Chem Phys. 1999;1:2163–76.

25. Babu CVS, Song EJ, Yoo YS. Modeling and simulation in signal transduction
pathways: a systems biology approach. Biochimie. 2006;88:277–83.

26. Nakata T, Okimura C, Mizuno T, Iwadate Y. The role of stress fibers in the
shape determination mechanism of fish keratocytes. Biophys J. 2016;110:
481–92.

27. McGarry JG, Prendergast PJ. A three-dimensional finite element model of an
adherent eukaryotic cell. Eur Cell Mater. 2004;7:27–33.

28. Burk AS, Monzel C, Yoshikawa HY, Wuchter P, Saffrich R, Eckstein V, et al.
Quantifying adhesion mechanisms and dynamics of human hematopoietic
stem and progenitor cells. Sci Rep. 2015;5:9370.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Tsuruyama BMC Systems Biology  (2017) 11:13 Page 9 of 9


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Results
	General formulation of an assembly
	Protein interaction kinetics
	Fluctuation of diffusion coefficient
	Calculus simulation of concentration oscillations
	Evaluation of model stability using the center manifold around the equilibrium state

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Author’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

