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Abstract

Background: Clostridium difficile is a bacterium which can infect various animal species, including humans. Infection
with this bacterium is a leading healthcare-associated illness. A better understanding of this organism and the
relationship between its genotype and phenotype is essential to the search for an effective treatment. Genome-scale
metabolic models contain all known biochemical reactions of a microorganism and can be used to investigate this
relationship.

Results: We present icdf834, an updated metabolic network of C. difficile that builds on iMLTC806cdf and features
1227 reactions, 834 genes, and 807 metabolites. We used this metabolic network to reconstruct the metabolic
landscape of this bacterium. The standard metabolic model cannot account for changes in the bacterial metabolism
in response to different environmental conditions. To account for this limitation, we also integrated transcriptomic
data, which details the gene expression of the bacterium in a wide array of environments. Importantly, to bridge the
gap between gene expression levels and protein abundance, we accounted for the synonymous codon usage bias of
the bacterium in the model. To our knowledge, this is the first time codon usage has been quantified and integrated
into a metabolic model. The metabolic fluxes were defined as a function of protein abundance. To determine
potential therapeutic targets using the model, we conducted gene essentiality and metabolic pathway sensitivity
analyses and calculated flux control coefficients. We obtained 92.3% accuracy in predicting gene essentiality when
compared to experimental data for C. difficile R20291 (ribotype 027) homologs. We validated our context-specific
metabolic models using sensitivity and robustness analyses and compared model predictions with literature on

C. difficile. The model predicts interesting facets of the bacterium’s metabolism, such as changes in the bacterium’s
growth in response to different environmental conditions.

Conclusions: After an extensive validation process, we used icdf834 to obtain state-of-the-art predictions of
therapeutic targets for C. difficile. We show how context-specific metabolic models augmented with codon usage
information can be a beneficial resource for better understanding C. difficile and for identifying novel therapeutic
targets. We remark that our approach can be applied to investigate and treat against other pathogens.
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Background

Clostridium difficile is a gram-positive, spore-forming,
anaerobic bacterium, which infects or colonizes vari-
ous animal species. Clinical manifestations in humans
range from asymptomatic colonization to mild diarrhea,
pseudomembranous colitis, and death [1]. Infection by
this bacterium is associated not only with significant
patient morbidity and mortality, but also with a large
economic burden for healthcare systems [2]. The pri-
mary risk factor for development of C. difficile infection
among hospitalized patients is antibiotic use, which pro-
motes toxicogenic C. difficile strains to proliferate, pro-
duce toxins, and induce disease [3]. Infection by this
bacterium is most commonly associated with antibi-
otics such as clindamycin and amoxicillin [4]. Current
recommendations for treatment of C. difficile infection
(CDI) call for other antibiotics, such as metronidazole
for mild infection cases and vancomycin for more severe
cases [5]. The emergence of hypervirulent and antibiotic-
resistant strains of this bacterium has motivated the
search for novel methods of treating CDI. One method
involves searching the bacterial central metabolic path-
ways for drug targets to create the next generation of
antibiotics [6].

The quest to better understand this bacterium and iden-
tify novel drug targets against it can benefit vastly from
a model of the genotype-phenotype relationship of its
metabolism. Methods to model the genotype-phenotype
relationship range from stochastic kinetic models [7] to
statistical Bayesian networks [8, 9]. Kinetic models are
limited as extensive experimental data is required to
determine the rate laws and kinetic parameters of bio-
chemical reactions. An alternative to kinetic models is
metabolic modeling, which has been used to depict a
range of cell types without the need for difficult-to-
measure kinetic parameters [9]. Metabolic models have
been able to predict cellular functions, such as cellular
growth capabilities on various substrates, effect of gene
knockouts at genome scale [10], and adaptation of bacteria
to changes in their environment [11]. Metabolic models
require a well-curated genome-scale metabolic network of
the cell. Such networks contain all the known metabolic
reactions in an organism, along with the genes that encode
each enzyme involved in a reaction. The networks are
constructed based on genome annotations, biochemical
characterizations, and published literature on the target
organism. The different scopes of such networks include
metabolism, regulation, signaling, and other cellular pro-
cesses [10].

Despite the success of metabolic modeling in capturing
large-scale biochemical networks, the approach is lim-
ited as it describes cellular phenotype simply in terms of
biochemical reaction rates and is thereby disconnected
from other biological processes that impact phenotype.
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Moreover, metabolic models cannot account for changes
in the metabolism of the bacterium in response to dif-
ferent environmental conditions. Recent advances in the
omic technologies, such as genomics (genes), transcrip-
tomics (mRNA), and proteomics (proteins), have enabled
quantitative monitoring of the abundance of biological
molecules at various levels in a high-throughput man-
ner. Integration of transcriptomic data has been shown
to be effective in improving metabolic model predic-
tions of cellular behavior in different environmental
conditions [12].

Here we present an integrated model of the metabolism
of C.difficile strain 630. We expanded the network
iMLTC806cdf [13] with regards to various pathways,
such as fatty acid, glycerolipid, and glycerophospholipid
metabolism. Fatty acids are not only important com-
ponents of bacterial cell membranes but they are also
important intermediate metabolites in the production of
vitamins, lipid A, and quorum sensing molecules [14]. The
metabolism of phospholipids is also of interest as these
compounds have been found to be closely tied to the
growth phase in bacteria such as Bacillus subtilis [15, 16].

To bridge the gap between gene expression data
and protein abundance, we accounted for the codon
usage bias of the bacterium. During translation of a
mRNA to a protein, the information contained in the
form of nucleotide triplets (codons) in the RNA is
decoded to derive the amino acid sequence of the result-
ing protein. Most amino acids are coded by two to
six synonymous codons. These codons, which code for
the same amino acid, are surprisingly used differen-
tially in protein-encoding sequences [17]. The codon
usage has been found to alter the translation time
and the abundance of the resulting protein [18, 19].
To our knowledge, this is the first time codon usage has
been quantified and incorporated into a genome-scale
metabolic reconstruction.

We used the modified network and flux balance anal-
ysis [20] to simulate the steady-state metabolism of the
bacterium. To understand the behavior of the bacterium
in different environments, we integrated gene expression
data. We incorporated the codon usage of the bacterium
to bridge the gap between gene expression levels and
protein abundance in the model. We then validated our
metabolic models against the literature on the bacterium.
Following this validation process, we used our models
to identify potential drug targets. Essential genes have
been previously proposed as potential therapeutic tar-
gets. [13]. We propose an additional method of predicting
therapeutically-relevant genes through metabolic path-
way sensitivity analysis and calculation of flux control
coefficients. The choice of gene to target can be further
refined by eliminating genes with a human homolog to
reduce the off-target effects of the selected drug [13].
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Methods

Construction and validation of the metabolic model
icdf834: an expansion of the iMLTC806cdf network

In modifying the iMLTC806cdf network [13], we con-
sulted KEGG [21] and incorporated some of the out-
put from the review and curation of the MetaCyc [22]
database for C. difficile, which was released on March
20, 2015. During curation, we manually considered the
directionality and gene-reaction associations of each reac-
tion in the existing network. We also manually expanded
the existing network according to the procedure speci-
fied by Thiele et al. in [23]. We supported additions to
the network with published literature on the bacterium.
For example, the fatty acid profile found in Clostridium
difficile is mostly dominated by C16:0, C16:1, C18:1, and
C18:0 [24]. The major phospholipid types in this bac-
terium are phosphatidylglycerol analogs, with PG(31:2),
PG(32:1), PG(33:2), PG(33:1) constituting the majority of
these species [24]. Our modified network icdf834 mod-
ifies and expands pathways concerning lipid metabolism
in the existing network, such as those where compounds
and reactions involved had been grouped together. By
expanding the metabolism of the bacterium, we can also
account for the wide array of fatty acids C. difficile can
metabolize from its environment. This can provide impor-
tant insights as many Gram-positive bacteria have been
found to be able to incorporate and metabolize extracellu-
lar fatty acids [25]. When defining metabolic pathways in
the expanded network, we used KEGG pathway identifiers
so to remain consistent with the conventions employed in
iMLTC806cdf [13].

The lipid component of the biomass equation of
iMLTC806cdf had been obtained from the metabolic net-
work of Staphylococcus aureus [26], where lipid com-
pounds had been lumped together. There is a paucity of
analyses on the chemical content of C. difficile’s biomass.
Therefore, upon increasing the granularity of the network,
we assumed coefficients from the biomass equation of the
iBsu1103 metabolic network developed for Bacillus sub-
tilis, where these lumped lipid and teichoic acid species
have been replaced by explicit species.

Constraint-based reconstruction and modeling approach
One constraint-based method for simulating the
metabolic steady-state of a cell is flux-balance analysis
(FBA), which can be used to analyze the metabolic
network solely on the basis of systemic mass-balance
and reaction capacity constraints. FBA simulations have
been able to capture microorganism growth, nutritional
resource consumption, and waste-product secretion rates
of various cell types [27].

The first step of FBA involves representing the
metabolic network in the form of a numerical matrix S
of size (m x n). This matrix contains the stoichiometric
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coefficients of each of the m metabolites in the # different
reactions. In the matrix, each row represents one unique
metabolite and each column represents one reaction. The
stoichiometric matrix helps enforce a mass balance con-
straint on the system. The mass balance on the cell for
i=1,...,m metabolites and j=1,...,n reactions constrains
the metabolite concentrations x;, as shown in Eq. 1, where
v; is the flux through reaction j.

dx; " .
d—;:ZS,jVj,l:L...,m. (1)
j=1
Under the steady state assumption % = 0, Vi, the total
amount of any compound being produced equals the total
amount being consumed:

n
D Sy=0i=1,...,m. @)
j=1

In most metabolic models, there are more reactions
than there are compounds [20]. Because there are more
unknown variables than equations (n>m), any v that satis-
fies Eq. 2 is considered to be in the null space of S.

FBA can be used to find and determine points within the
solution space that are most representative of the biolog-
ical system using linear programming methods. Studies
have revealed that metabolic fluxes in microorganisms are
best predicted by maximizing the cellular objectives of
growth [27]. To determine the point corresponding to the
maximum growth rate within the constrained space, the
objective function shown in Eq. 3 was maximized:

fo) =cl, 3)

where c is a vector of weights and indicates how much
each reaction flux contributes to the biomass objective
function. The maximum growth rate can be achieved by
determining the flux distribution v that results in max-
imal biomass flux. Additional constraints can be added
through the upper bound vju and the lower bound VIL for
the flux v;. These bounds mandate the minimum and max-
imum fluxes allowed for a certain reaction and further
decrease the space of allowable flux distributions for the
relevant system. The mathematical representation of the
metabolic reactions, the objective function, and the capac-
ity constraints define a linear system as shown in Eq. 4.

max v
subjectto Sy =20 (4)
VjL <v §vju, j=1...,n

The model fluxes are usually given units of mmol/gDW -
h, where gDW is the dry weight of cell mass in grams and
h is the reaction time in hours. The bounds enforce ther-
modynamic constraints by dictating whether reactions
are reversible or irreversible. The lower and upper flux
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bounds were arbitrarily chosen to be -10 mmol/gDW - h
and 10 mmol/gDW - h for reversible reactions. For irre-
versible reactions, v/L was chosen to be 0 mmol/gDW - h

and Vju was set to 10 mmol/gDW - h. For our analysis,
we used the COBRA toolbox 2.0 [28] in Matlab (version
R2015b, Mathworks, Inc.).

Multi-objective optimization in metabolic models

One limitation of using only biomass as the objective is
that goals in metabolism are often different and simul-
taneously competing so the scalar notion of “optimality”
does not hold; examples of such trade-offs include maxi-
mizing energy production while minimizing protein costs
[29]. Moreover, the biomass objective vector is usually
perpendicular to one of the surfaces of the solution space
of the FBA problem. Consequently, biomass maximizing
flux states are usually degenerate; there exist multiple flux
distributions that yield the same maximal biomass value
[30]. To choose between the various flux distributions,
additional criteria must be considered. For these reasons,
we modeled metabolism as a multiobjective phenomenon.
By modeling the metabolism of bacterium as a multi-
objective problem, we address a conflict problem whereby
maximizing one objective (eg. biomass) might involve a
trade-off in the other objective (eg. intracellular flux); cells
are thought to face a trade-off that is described by the
set of Pareto-optimal solutions. We used a multi-objective
optimization approach to address the z objectives, as
shown in Eq. 5.

max S =W, LW),....L(0)
subjectto Sv=0 (5)
vi<y<vl,j=1...,n

Note that, without loss of generality, we assumed that
all the functions have to be maximized since minimizing a
function f(v) is equivalent to maximizing —f (v).

Various works have attempted to systematically evaluate
the ability of different objectives functions to reliably pre-
dict intracellular flux [31, 32]. According to their findings,
bacterial metabolism can be better described by the objec-
tive of maximization of biomass or ATP production paired
with the objective of minimization of intracellular flux
[32]. Introducing the minimization of intracellular flux
as a secondary objective allows for economic allocation
of resources by the bacterium by selecting for metabolic
routes that contain the fewest number of steps [33]. Thus,
for our analyses we used maximization of biomass, along
with minimization of intracellular flux as our objectives.

In a maximization multi-objective problem, a vector
that is part of the feasible space is considered to be
Pareto-optimal if all other vectors have the same or a
lower value for at least one of the objective functions.
Therefore, a Pareto-optimal solution is found when there
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exists no other feasible solution which would increase one
objective without decreasing another objective. The set of
Pareto-optimal solutions constitutes the Pareto-optimal
front [34]. In the absence of additional information, no
one Pareto-optimal solution can be said to be better than
the other; higher-level information is required to choose
one of the solutions [35].

As proposed by Costanza et al. [36], to solve this multi-
objective optimization problem one can use bilevel lin-
ear programming coupled with evolutionary algorithms,
namely stochastic optimization methods that simulate the
process of natural evolution. Evolutionary algorithms are
well suited to multi-objective problems because they can
generate multiple Pareto-optimal solutions after one run
and can use recombination to make use of the similarities
of solutions [35]. The input to the evolutionary algorithm
is a set of arrays, also called individuals, representing
potential solutions to the problem. These arrays are then
ranked based on the values of their objective functions.
Potential optimal solutions are generated by retaining
the best individuals and by generating new individuals
through the use of variation. This process is continued
until no further improvements are detected on the Pareto
front. The population size and the number of populations
used with this algorithm were 140 and 1400, respectively.
To solve the linear programs, we used the Gurobi solver
(v5.6.3, Gurobi Inc.) [37].

To validate our choice of objectives, we conducted a
genetic analysis using multi-objective optimization. In this
analysis, binary “knockout” vectors were created, with
each containing a 1 in the location of a gene set to be
off [36]. This analysis allowed us to determine how the
growth of the organism changes in different environ-
ments, when genes may be turned on or off.

Robustness analysis

A facet of living organisms is their homeostasis, other-
wise known as their ability to remain robust to exter-
nal and internal perturbations within a certain range.
External perturbations include changes in temperature or
food supply while internal perturbations include spon-
taneous mutations. The robustness of biological systems
is partly due to the presence of parallel metabolic path-
ways. Robustness represents the insensitivity of a system
to changes in system parameters.

Global Robustness (GR) analysis can be used to sur-
vey the parameter space to determine the region where
the cell exhibits specific features. More specifically, we
perturbed the flux bounds of the metabolic model and
observed the resulting effects on biomass production.
The perturbation function y(y,0) where y applies
noise o, assumed to be Gaussian, to the system
for the trial t. As proposed in [38], a robust trial is
associated with a p of 1:
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L iflp(¥) — (1) <€

0, otherwise

P(lﬂ:fﬂﬁ; 6) = { (6)

where ¢ is the robustness threshold. The GR was defined
as the percentage of trials determined to be robust. We
arbitrarily defined € to be 1% of the metric ¢ () and we
arbitrarily limited the noise to 1%.

Incorporating transcriptomic and codon usage data in
genome-scale models

To increase the reliability of the model, gene expression
data was added to the FBA framework (Fig. 1). To relate
this gene expression data to protein abundance, codon
usage bias data was also incorporated. The translation
rate of a codon is determined in part by the speed of
diffusion of a translationally-competent tRNA to the ribo-
some. Because tRNAs are differentially abundant in the
cell, codons pairing to high-abundance tRNAs are trans-
lated faster than those pairing to low-abundance tRNAs.
Although synonymous codons produce the same amino
acid sequence, they can alter the translation speed and
the protein expression levels depending on the abun-
dance of their associated tRNA [39]. Studies have revealed
that a large codon bias generally resulted in higher pro-
tein expression levels [18, 19]. Therefore, the inclusion of
codon bias can help improve the metabolic model pre-
dictions by helping link gene expression levels to protein
levels.
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The codon usage table for C. difficile was obtained
from the Kazusa Codon Usage Database [40], which lists
the frequency of different codons in the genome. The
weights for synonymous codons was determined as the
ratio between the observed frequency of the codon k and
the frequency of the most preferred synonymous codon
for that amino acid:

S

o (fm),where k, m € [synonymous codons] .

(7)

Wi =

We obtained the mRNA sequence associated with the
834 genes of C. difficile from UniProt [41]. The counts
of different codons were determined for each mRNA
sequence. To obtain a measure of the codon bias, we cal-
culated the Codon Adaptation Index (CAI) for each gene.
The CAI represents the relative adaptiveness of the codon
usage of the relevant gene to the codon usage of highly
expressed genes [42]. The CAI ranges from 0 to 1, with a
value of 1 indicating high expression and, by correlation,
high abundance of the associated protein. The CAI repre-
sents the geometric mean of the weights corresponding to
the codons in the sequence:

L
|:% > ln(Wk(l))]
CAI = el =! , (8)
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Fig. 1 Framework for modeling the metabolism of C.difficile. The updated metabolic network of the bacterium was used to create a metabolic
model that was assessed using sensitivity and robustness analyses. Integrating gene expression and codon usage data yielded context-specific
metabolic models that were evaluated against biological rationale and found fit for clinical applications. The augmented metabolic models were
then used to identify potential therapeutic targets using gene essentiality analysis, PoSA, and flux control coefficient calculations
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where L is the number of codons in the genes and wy,
is the weight associated with codon type k for /th codon
along the length L of the gene. Because a large codon bias
has been shown to result in higher protein expression lev-
els, the gene expression data g; for each gene ¢ was scaled
by CAI such that genes with the low codon bias had lower
expression g;:

g =g - (CAL). 9)

Each of the reactions in the metabolic model depends
on a gene set, which is represented through the use of
AND/OR operators. In this formulation, if a gene set is
composed of two genes and an AND operator, both genes
are required to carry out the corresponding reaction. On
the other hand, if two genes connected by OR, one gene
is sufficient in carrying out the reaction. This formulation
can be transformed to derive the gene set expression GSE;
for gene set j of reaction j from the expression of individual
genes g;, which in our case has been scaled by their respec-
tive codon usage. When two genes are connected through
an AND operator, the gene set expression for reaction i, g;,
is the minimum of the scaled expression of the individual
genes ¢t making up the gene set. The gene set expression
for two genes connected by an OR operator is the sum
of the scaled expression of the individual genes. In each
reaction of the model, to map the gene set expression into
a specific condition of the model, we used the piecewise
muliplicative function /2 and the associated /; was adopted
as a multiplicative factor for the flux bounds [43] :

vih(GSE) < v; < vi' h(GSE)),

where

GSE/-—I
h(GSEj) = { (1+ |log(GSE|) 1SS if GSEj e R\ {1}
1if GSEj =1

(10)

The function /# was chosen because at high mRNA
abundance, an increase in mRNA abundance has been
found to produce a relatively small increase in the protein
synthesis rate. On the other hand, at low mRNA abun-
dance, an increase in mRNA abundance has been found to
produce a large increase in the protein synthesis rate [44].

Finally, we validated our context-specific metabolic
models by incorporating codon usage and differential
gene expression data into our model. We then compared
trends in our models’ biomass predictions to literature on
the bacterium.

Prediction of therapeutic targets

Essential gene analysis

For each gene in the model, essential gene analysis
involved removing reactions catalyzed by the gene or by
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a complex involving that gene and then using FBA [20]
to predict growth. Genes were considered essential if fol-
lowing their removal, the predicted maximum growth
rate was zero. The C. difficile R20291 (ribotype 027),
for which gene essentiality data was available for com-
parison with our in silico results, had been grown on
Tryptone-Glucose-Yeast Extract (TGY) broth. To approx-
imate this medium, we used the complex medium defined
by Larocque et al. during essential gene analysis of
iMLTC806cdf [13].

Pathway-oriented sensitivity analysis
The growing research attention on metabolic pathways,
rather than on specific reactions, is motivated by novel
methods that allow for a better understanding of the func-
tionality of complex webs of metabolic reactions. To date,
much of the study of metabolic pathways, their crosstalks,
and their role in the overall metabotype has been carried
out with statistical and model-based approaches [45, 46].
Sensitivity analysis is used to identify model inputs that
have a large influence on the model outputs. To find the
metabolic pathways that have the largest effect on the
outputs of iIMLTC806cdf and icdf834, we used Pathway-
oriented Sensitivity Analysis (PoSA) [36]. PoSA involves
genetically manipulating the metabolic model to find the
sensitive pathways, which make a large impact on model
outputs. In other words, we perturbed pathways by mutat-
ing the genes that govern their biochemical reactions and
analyzed the result on the outputs. In the knockout vector
y = {b1,ba,...,b,...,by}, bs represents the perturba-
tions on the genes governing the metabolic pathway s,
where |b;] = W; (number of genes partaking in the sth
pathway). Because the gene knockouts are represented
through the use of binary variables, we perform combi-
natorial perturbations, namely the bits in b, are switched
from 0 to 1 or from 1 to 0; note that if a gene in by is set to
1, this gene is knocked-out in the model.
According to [36], the Pathway Elementary Effect (PEE)
for the genetic perturbation b, can be defined as follows:
| E(b1,b2,...,bs,...,by) —F®) |

PEE, = X
S

, (11)

where by represents the genetic manipulation of the input
bg; y is the mutation carried out on the knockout vector
y; F(y) is the vector v of fluxes as produced by the model;
finally, Ay is a scale factor defined as:

A
1 S~

Asz—g bs(i), s=1,...,p. (12)
S =1

Next, the sensitivity indices © and o are determined by
calculating the mean and the standard deviation of the
distribution of the PEE for each input. Pathways with a
large 1 have a large influence on the output. A large o
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indicates an input whose influence highly depends on the
value of other inputs. By perturbing the genes through
the use of knockouts and comparing the outputs of the
model with and without the genetic manipulations, we
detected the most sensitive pathways of the metabolic
models.

Calculation of flux control coefficients

PoSA provides valuable information on sensitive pathways
that can be targeted by therapies, but often more specific
drug target predictions are desired. To understand how
a metabolic pathway is controlled and can be altered, its
control structure has to be determined. The flux control
coefficient [47] is the flux v,g, through a particular reac-
tion, catalyzed by enzyme ydh, of the metabolic pathway
with respect to the concentration x,, of an enzyme xase:

Vydh aVydh Xxase dln Vydh

Kxase ~

= (13)
0Xxase Vydh 9 In xya5e

In our calculations, the enzyme concentration was
assumed to be equal to the gene expression level adjusted
by CAI When calculating the flux control coefficients,
we considered a 1% perturbation in the enzyme concen-
tration xy4e. Flux control coefficients provide a quan-
titative measure of the degree of control an enzyme
exerts on a metabolite flux and can quantitatively sub-
stitute for the qualitative concept of essential gene
[48]. Thus, they can be used to identify steps that
should be modified to achieve a successful alteration
of the flux in outputs of clinical (e.g. drug therapy)
relevance.

Analysis of cDNA microarrays

We used microarray analysis to determine the combina-
tion of genes which were up-regulated or down-regulated
in different environmental conditions. We used Limma
[49], a package in Bioconductor 3.1, for statistical analy-
sis of gene expression. We preprocessed the data through
background correction, within-array normalization, and
between-array normalization. After normalization, we
used filtering to remove probes that did not appear to
be expressed in any of the experimental conditions. Next,
we used linear models to analyze the microarray data. To
conduct statistical analysis and assess differential expres-
sion, we used an empirical Bayes method to modulate the
standard errors of the log-fold changes. To test for the
comparisons of interest, we used an analysis of variance
(ANOVA) model.

Results and discussion

Expansion and modification of iMLT806cdf to icdf834

The genome of C. difficile strain 630 is composed of a
circular chromosome of 4,290,252 bp coding for 3968
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open reading frames (ORFs), along with a plasmid con-
taining 7881 bp coding for 11 ORFs [50]. The modified
metabolic network draft contains 21% of the ORFs present
in the chromosomal genome of the bacteria with 834
ORFs, a modest improvement upon iMLTC806cdf, which
contains 806 ORFs, as shown in Table 1. Our expanded
metabolic network also consists of 807 metabolites and
1227 reactions. The final version of the network is avail-
able as an SBML file and as an Excel file that indicate the
reactions, metabolites, genes, and compartments involved
in the metabolic network, along with references to lit-
erature that support additions or modifications to the
existing network. The new network has two additional
dead-end metabolites as compared with those found in
iMLTC806cdf. The Excel and SBML file, along with the
the justification for keeping the dead-end metabolites
in the model, have been uploaded to http://github.com/
ssahebkashaf/Peptoclostridiumdifficile630. The code for
all of the analyses employed in our work is also freely
available on this repository.

We repeated analyses previously conducted by
Larocque et al. to validate IMLTC806cdf [see Additional
file 1]. Namely, we compared the ability of icdf834 and
iIMLTC806cdf to identify essential amino acids and
metabolizable carbon sources. The removal of amino
acids that were not found to be essential or to affect
growth, did not affect model-predicted biomass produc-
tion in both models. Moreover, no biomass was produced
in the absence of essential amino acids (cysteine, leucine,
isoleucine, proline, tryptophan and valine) [51] in both
models. Therefore, similar to the previous network, our
network is able to account for the essentiality of various
amino acids on the growth of C.difficile.

With regards to carbon sources, both models were able
to correctly predict a range of carbon sources that are uti-
lized by the bacterium. Moreover, the bacterium was able

Table 1 Comparison of the metabolic network iMLTC806cdf
published by [13] and the modified and expanded network
icdfg34

Features Number
Genomic Informa-
tion of C. difficile
Genome size (bp) 4,290,252
Open reading frames 3968
Reconstructed
models
IMLTC806cdf icdf834
Metabolites 703 807
Reactions 1091 1227
Open reading frames 806 834



http://github.com/ssahebkashaf/Peptoclostridiumdifficile630
http://github.com/ssahebkashaf/Peptoclostridiumdifficile630

Saheb Kashaf et al. BMC Systems Biology (2017) 11:25

to generate biomass in the absence of other carbon sub-
strates, such as fructose, mannose, mannitol, and sorbitol.
This finding is consistent with literature, which maintains
that C. difficile is not restricted to metabolizing sugars
and can ferment other compounds, even amino acids, to
obtain both its carbon and energy [52].

Validation of metabolic models

Genetic analysis using multi-objective optimization

Our modeling approach is intended to simulate the con-
flicting objectives faced by the bacterium, where optimal
performance in one objective coincides with sub-optimal
performance in another objective. We used a knockout
parameter space to find the genetic designs that would
optimize the two objectives. In Fig. 2, we show the areas
of objective space discovered by the genetic algorithm
during the genetic analysis from the first generation to
generation 1400. The optimization algorithm adaptively
moves to regions that maximize biomass while minimiz-
ing the total intracellular flux, as evident in the curva-
ture of the plot in Fig. 2. After conducting the genetic
analysis, the Pareto front, shown in black in the inset
of Fig. 2, was determined. The Pareto front is the set
of nondominated solutions that represents the range of
phenotypes resulting from different trade-offs between
the two objectives. The presence of a Pareto front, as
opposed to a singular dominated solution, aligned with
our a priori expectations regarding the metabolic plas-
ticity inherent to the bacterium [53]. Our findings, along
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Fig. 2 Genetic analysis using multi-objective optimization. Regions of
objective space explored by the optimization algorithm for the
objectives of maximization of biomass and minimization of total
intracellular flux. Solutions are represented by progressively warmer
colors depending on the time step of the algorithm in which they
had been adaptively generated from the initial point. The Pareto front
is shown in black in the inset
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with previous literature on the choice of objectives, sup-
ported our choice of objectives to model C. difficile’s
metabolism.

Robustness analysis

We gauged the robustness of our model by determining
the change in the maximal biomass flux in response to
different perturbations. Global Robustness (GR) analysis
revealed that the biomass production was fully robust to
perturbations for a flux bound perturbation (o) and a tol-
erance (¢€) of 1% [see Additional file 2]. The GR falls when
o is increased or € is decreased. This facet of the bac-
terium’s metabolism was biologically relevant as bacteria
such as C. difficile are able to grow despite small fluctu-
ations in their physical environment. Robustness analysis
illustrated that the global behavior of our metabolic model
matches our expectations from biological rationale and
supported the use of our models to predict the behavior of
the bacterium in different environments.

Changes in C. difficile’s growth in different conditions
We obtained the relevant microarray datasets from the
Gene Expression Omnibus (GEO) database [54] under the
accession numbers GSE22423 and from the ArrayExpress
database [55] under the accession numbers E-GEOD-
37442 and E-BUGS-56. Context-specific models for C. dif-
ficile were generated by incorporating gene expression
data obtained for the bacterium in different environmen-
tal conditions. To improve the reliability of the model, we
also integrated codon usage data. Model predictions of
these context-specific models were compared to expecta-
tions about the organism’s behavior from literature.

Previous work suggests that sub-MIC concentrations
of amoxicillin, metronidazole, and clindamycin slowed
growth of toxigenic C. difficile as compared with the
controls [56]. To test these findings in silico, we incor-
porated gene expression levels of C. difficile in response
to sub-MIC levels of different antibiotics into our model.
As compared with the C. difficile grown on BHI broth,
toxigenic strains of C. difficile grown on sub-inhibitory
concentrations of antibiotics exhibited reductions in their
biomass, with those grown on amoxicillin showing the
smallest growth (as shown in Table 2). This finding is
supported by literature [57] that has shown that in vitro,
amoxicillin is effective against C. difficile. These findings
have lead to speculations that in vivo, this antibiotic is
effective aginst vegetative forms of the bacterium but not
against C. difficile spores [58]. Another potential explana-
tion is that this broad-spectrum antibiotic may impair the
intestinal microflora in a way that supports proliferation
of C. difficile.

Additionally, the decline in biomass production follow-
ing heat shock from 30 to 43 °C shown in Table 2 could
be due to the general stress response employed by the
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Table 2 Percent change in model-predicted biomass production
(growth) of C. difficile in different conditions

Microarray data accession Condition % change in

number/database biomass (h~ 1)
E-GEOD-37442/
ArrayExpress
Heat shock from J 243%
30°Cto43°C
E-BUGS-56/
ArrayExpress
Sub-MIC level of 3 274%
amoxicillin
Sub-MIC level of J 16.6%
clindamycin
Sub-MIC level of J23%
metronidazole
BHI broth 4+ 1.0%
GSE22423/GEO
Supplementation 1+ 1.1%

of 10mM cysteine

The microarray data for each condition was obtained from the GEO or ArrayExpress
databases, using the specified accession numbers. The differential gene expression
levels obtained from analysis of this microarray data was used to make a metabolic
model for each condition. These context-specific metabolic models were used to
predict change in biomass production for each condition compared with the
control of each microarray dataset

bacterium. The heat shock response of C. difficile has
been found to be involve gene clusters homologous to E.
coli heat-shock operons [59]. The heat shock response in
E. coli has been found to be associated with a decrease
in central carbon metabolism and a decline in cellular
growth [60]. Literature on related bacteria is thereby in
agreement with the model’s prediction of a significant
reduction in growth in C. difficile following the heat
shock. Additionally, according to the work of Dubois et al.,
the supplementation of 10mM cysteine to the medium did
not affect C. difficile’s growth [61]. After integrating the
microarray data from their work, we found that our in
silico findings agreed with their experimental results.
Validation of the findings of our context-specific
metabolic models against the literature on the bacterium
showed that metabolic models allow for an enriched view
of omic data and may be valuable tools for better under-
standing the behavior of C. difficile in different conditions.

Prediction of therapeutic targets

Gene essentiality analysis

Essential genes have been cited as promising targets for
development of new antimicrobials due to their impor-
tance for bacterial survival [62]. Using FBA, we performed
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an in silico gene deletion study to predict potential essen-
tial genes that may lead to the identification of new
drug targets. This analysis had already been conducted
for iIMLTC806cdf based on a 5% threshold, and gene
essentiality results had been compared to genes deemed
essential for B. subtilis, for which this data had been
available [13]. We performed gene essentiality analysis
for both iIMLTC806cdf and icdf834 and validated our
results using recently available literature on the essen-
tial genes of the C. difficile R20291 (ribotype 027) [63].
While iMLTC806cdf predicted 48 essential genes and had
a 86.5% accuracy in predicting gene essentiality, icdf834
predicted 46 essential genes and had a 92.3% accuracy [see
Additional file 3].

Pathway-oriented sensitivity analysis and flux control
coefficients

For our PoSA analysis, we chose the gene expression
profile of the bacterium when grown on BHI broth.
Each pathway was assessed through random pertur-
bations of its reactions, and the average perturbation
w and the standard deviation o were computed as a
result. We performed the pathway-based sensitivity anal-
ysis and identified sensitive pathways before and after
modifying the metabolic model as shown in Fig. 3.
The pathway with the largest u, and thereby the great-
est control on biomass production or growth in both
iMLTC806cdf and icdf834 is the valine, leucine, and
isoleucine metabolism pathway. These three amino acids
are essential to the bacterium and their metabolism was
also expected to be essential. The second most sensitive
pathway is alanine, aspartate, and glutmate metabolism in
iMLTCB806cdf and glycolysis/gluconeogenesis in icdf834.
Additional sensitive pathways in icdf834 include pyrimi-
dine metabolism and pyruvate metabolism. Model find-
ings suggest that therapies against infection may likely be
more effective if they target key enzymes in these sensitive
pathways.

To find more specific therapeutic targets, flux con-
trol coefficients for enzymes on biomass production in
the metabolic model were determined and compared
for BHI broth (E-BUGS-56), cysteine supplementation
(GSE22423), and heat shock (E-GEOD-37442) gene
expression data. The four enzymes with largest flux con-
trol coefficients in each condition are shown in Fig. 4,
while the complete list of flux control coefficients in
different conditions has been uploaded to the public
repository. These flux control coefficients were inter-
estingly involved in pathways deemed sensitive during
PoSA. These enzymes varied amongst the four condi-
tions, suggesting that access to the in vivo gene expres-
sion profile of C. difficile can be used to predict better
drug targets for patients. Therapies aimed at reducing
growth of C. difficile should target enzymes with high flux
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Fig. 3 PoSA was used to compare the most sensitive pathways of iIMLTC806cdf and icdf834. The iMLTC806cdf model is composed of 48 metabolic
pathways and the icdf834 model is composed of 50 metabolic pathways. Biomass production is most sensitive to pathways with higher calculated

coefficients as, according to our model, their activity is
most closely tied to biomass production.

Conclusion

In this study, we expanded the existing metabolic net-
work for C. difficile and used it to create context-specific
metabolic models of its metabolism that allow us to
understand how the bacterium alters its metabolism
depending on its environment. To predict the bac-
terium’s behavior in different environmental conditions,
the model was integrated with transcriptomic and codon
usage data to generate reliable and context-specific
metabolic flux distributions. We validated the model
by conducting robustness and sensitivity analyses. We

further assessed its predictive potential by comparing
model predictions with published experimental data to
gauge the consistency of model findings with the cur-
rent knowledge of C. difficile’s metabolism. Through
this literature-based validation, we found that the model
is a valuable tool for qualitatively understanding the
behavior of the bacterium in different settings. The
model can also be used to find potential therapeutic
targets by allowing for determination of essential genes
and context-specific sensitive pathways and flux control
coefficients.

Context-specific metabolic models can allow for a bet-
ter understanding different medically-relevant conditions
(eg. pre-infection, post infection) and can be continuously
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coefficients for biomass production in different conditions (top). Table
of metabolic pathway(s) hosting the genes and of gene descriptions
[64] (bottom). A flux control coefficient of 1 implies full control of the
metabolite flux by the associated enzyme

refined by integrating novel information regarding C. dif-
ficile’s metabolism. Our model can be used by biomedical
researchers to study the bacterium and devise targeted
treatments. Our approach can also be scaled-up to simu-
late the interactions between the gut microbiota and the
host using a bottom-up modeling approach. By account-
ing for the gut microbiota-host interactions, we can con-
struct a whole gut model response to infections and
other inflammatory events, paving the path towards more
informed and effective treatments.
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