
Dalle Pezze and Le Novère BMC Systems Biology (2017) 11:46
DOI 10.1186/s12918-017-0423-3

SOFTWARE Open Access

SBpipe: a collection of pipelines for
automating repetitive simulation and analysis
tasks
Piero Dalle Pezze* and Nicolas Le Novère

Abstract

Background: The rapid growth of the number of mathematical models in Systems Biology fostered the development
of many tools to simulate and analyse them. The reliability and precision of these tasks often depend on multiple
repetitions and they can be optimised if executed as pipelines. In addition, new formal analyses can be performed on
these repeat sequences, revealing important insights about the accuracy of model predictions.

Results: Here we introduce SBpipe, an open source software tool for automating repetitive tasks in model building
and simulation. Using basic YAML configuration files, SBpipe builds a sequence of repeated model simulations or
parameter estimations, performs analyses from this generated sequence, and finally generates a LaTeX/PDF report.
The parameter estimation pipeline offers analyses of parameter profile likelihood and parameter correlation using
samples from the computed estimates. Specific pipelines for scanning of one or two model parameters at the same
time are also provided. Pipelines can run on multicore computers, Sun Grid Engine (SGE), or Load Sharing Facility (LSF)
clusters, speeding up the processes of model building and simulation. SBpipe can execute models implemented in
COPASI, Python or coded in any other programming language using Python as a wrapper module. Future support for
other software simulators can be dynamically added without affecting the current implementation.

Conclusions: SBpipe allows users to automatically repeat the tasks of model simulation and parameter estimation,
and extract robustness information from these repeat sequences in a solid and consistent manner, facilitating model
development and analysis. The source code and documentation of this project are freely available at the web site:
https://pdp10.github.io/sbpipe/.

Keywords: Pipeline, Modelling, Simulation, Parameter estimation

Background
The range of software tools developed by the Systems
Biology community has grown considerably in the last
few years, in particular aimed at supporting mathematical
modelling of biological networks. The development of
a mathematical model typically comprises successive
phases: design, parameterisation, simulation and testing.
Model design is the phase where the core of the problem
to investigate is summarised using a mathematical for-
malism. Once designed, the model parameters need to
be calibrated, for example using some experimental data.
After this stage, the model is used for generating predic-
tions which are then tested experimentally. Depending on

*Correspondence: piero.dallepezze@babraham.ac.uk
The Babraham Institute, Babraham Campus, Cambridge CB22 3AT, UK

the outcome, a model can be refined in order to improve
or correct its prediction.
Many tools already exist to generate, simulate and anal-

yse mathematical models [1, 2]. Although these tools pro-
vide modellers with key functionalities for model param-
eter estimation and simulation, it has become clear that
the accuracy of these tasks depends on multiple repeti-
tions. Furthermore, the analysis of this batch of repeats
can reveal important insights regarding the model itself
and the data used for calibration. Therefore, it is useful
to repeat tasks such as parameter estimation or stochastic
simulation, collect statistics and visualise these results.
SBpipe is an open source software tool which provides

modellers with a collection of pipelines for model
development and simulation. A pipeline for parameter
estimation allows users to repeat a model calibration

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0423-3&domain=pdf
http://orcid.org/0000-0003-1695-6763
https://pdp10.github.io/sbpipe/
mailto: piero.dallepezze@babraham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Dalle Pezze and Le Novère BMC Systems Biology (2017) 11:46 Page 2 of 5

many times on a multicore machine or a computer clus-
ter. The generated fit sequence is then analysed, and
information about the profile likelihood from parameter
estimation samples is represented graphically and textu-
ally. Support for model simulation is also provided with
pipelines for time course model simulation, as well as
single and double parameter scans.

Implementation
SBpipe is an open source software package developed
with the Python [3] and R [4] programming languages.
Python is the main programming language connecting all
the package components, whereas R is used for generating
statistics and plots. The use of this statistics-dedicated
programming language for analysing the results allows
users to run the provided R scripts independently of
SBpipe using an R environment. This can be convenient
if further data analyses are needed or plots need to be
annotated or edited.
Pipelines in SBpipe are configured using YAML con-

figuration files. This allows modellers to easily edit their
tasks manually or programmatically if needed. Examples
of configuration files can be found within the main
package in the folder

tests/insulin_receptor/

In order to maintain a flexible and extendible design,
SBpipe abstracts the concepts of simulator and pipeline.
The class Simul is a generic simulator interface
used by the pipelines in SBpipe. This mechanism
uncouples pipelines from simulators which can there-
fore be configured in each pipeline configuration
file. Currently, the available simulators are Copasi
and Python. These simulators process models devel-
oped in COPASI [5] and models coded in Python,
respectively.
SBpipe passes the report file name as an input argu-

ment to the latter. The Python program is then responsible
for generating a report file containing the simulation (or
parameter estimation) results. Python can also be used
as a wrapper module for running models coded in any
programming language. Rather than coding a model itself,
the Python file can call an external program containing the
model. This Python wrapper must forward the report file
name to this external programwhich becomes responsible
of generating the report file. With this simple approach,
users can run their existing models using customised
command options or any program library they need.
The tests/ folder contains examples of models coded
in R, Octave, or Java programming languages, and exe-
cuted using basic Python module wrappers. The supplied
R models depend on the packages minpack.lm, deSolve,
and sde, whereas the supplied Java model requires a

JVM. Dependencies for these additional models must be
installed separately.
The class Pipeline represents a generic pipeline,

which is extended by each SBpipe pipeline. The following
pipelines are currently available:

• simulate: deterministic or stochastic time course
stimulation;

• single_param_scan: scan a model parameter;
• double_param_scan: scan two model

parameters;
• param_estim: model parameter estimation

including sampling of the parameter likelihood.

An SBpipe pipeline performs three tasks: data gen-
eration, data analysis, and report generation. The first
task loads and runs a simulator at runtime and organises
the generated data. The second task computes statis-
tics and plots from these data. Finally, the third task
generates a LaTeX/PDF report containing the computed
plots. Because of the interdependency between these
tasks, their execution is sequential. However, users can
select the tasks to run in the pipeline configuration file.
A typical scenario requiring a task to be turned off would
be the analysis of data previously generated data using
different configuration thresholds. In this case, the data
generation task can be disabled to prevent SBpipe from
re-running the simulations.
Pipelines for parameter estimation or stochastic model

simulation can be computationally intensive. SBpipe
allows users to generate repeats of model simulation or
parameter estimation in parallel. In a configuration file,
users can select the number of repeats, and whether the
jobs should be executed locally using Python multipro-
cessing or in a computer cluster. In this case, SBpipe
supports the cluster types Sun Grid Engine (SGE) and
Load Sharing Facility (LSF).
The project is available on the GitHub repository.

Numerous test cases are also provided within the package.
Every time the source code is updated online, these tests
are automatically executed by Travis.CI, a GitHub appli-
cation for continuous integration service. For standard
users, these tests are useful examples of how to config-
ure SBpipe. User and developer documentations for this
project are available online and within the project folder.

Results
To demonstrate SBPIPE functions we will use a minimal
model of insulin receptor (IR). This IR model is a module
of a more complex Insulin/TOR model [6] (Biomodels
database [7] id: BIOMD0000000581). This choice enables
users to quickly reproduce the results shown in this arti-
cle using the SBpipe test suite and to present the results in
the most compact manner. This model describes the acti-
vation of the insulin receptor upon insulin stimulation. In

Dalle Pezze and Le Novère BMC Systems Biology (2017) 11:46 Page 3 of 5

the presence of insulin, the insulin receptor beta (IRβ) is
phosphorylated on Y1164. The phosphorylated receptor
is then dephosphorylated and enters in a refractory state.
This latter state is used to introduce a delay in the system
succintly representing receptor internalisation, degrada-
tion and synthesis, thus reducing the number of model
parameters. Finally, from this refractory state the recep-
tor can become functional again. Details of the model are
provided in Additional file 1: Table S1, Figure S1. The
generic pipeline work flow is shown for the parameter
estimation pipeline in Fig. 1a. To illustrate how SBpipe
can reveal parameter identifiability issues from multiple
parameter estimations, two fit sequences are indepen-
dently generated using sufficient and insufficient data sets
(Additional file 1: Tables S2–S4). For each group, SBpipe
generates N = 1000 independent parameter estima-
tions using Particle Swarm optimisation algorithm [8] as
implemented in COPASI. These calibrations are then pro-
cessed in the data analysis task. Although SBpipe does
not contain a pipeline for computing identifiability anal-
ysis directly, the parameter estimation pipeline can help
identify issues in parameter estimation by projecting the
estimates for each parameter. This analysis uses not only
the best fit of each of the N estimations, but also the
sub-optimal fits. As these fits represent samples of the
parameter space, they can reveal a sampled profile likeli-
hood estimation (PLE) for each estimated parameter. For
direct methods calculating model parameter profile like-
lihoods using COPASI, see [9] or https://pypi.python.org/
pypi/PyCoTools.
Results of estimation tasks using data sets presented

in Table S2A and Table S2B are shown in the Identifi-
able or Non-identifiable columns of Fig. 1, respectively.
The Identifiable column shows how the parameter k1
presents clear confidence intervals at 66%, 95%, and 99%
percents of confidence levels (CL). The Non-identifiable
column shows how the same parameter is practically non-
identifiable to the right of the confidence interval. Param-
eter distributions and correlations are also computed for
the best fits, and for the fits with objective values lesser
than a confidence level of 95%. For the complete results
generated by this pipeline, see Additional file 1: Tables
S2–S4, Figures S2–S8.
Results generated by the time-course simulation

pipeline are shown in Fig. 1b. Deterministic and stochastic
model simulations are illustrated for the phosphorylated
state of the IR species. For deterministic simulation,
time courses of model variables are simply plotted. For
stochastic simulations, SBpipe can represent time courses
with mean (black line), the 95% confidence intervals of
the mean (cyan bars), and one standard deviation (blue
bars). The second panel in Fig. 1b show this plot using
a sequence of 40 independent stochastic simulations.
If available, data corresponding to model variables can

easily be added to the plot by specifying the data set file
name in the configuration file. For the complete results,
see Additional file 1: Figures S9–S10.
Figure 1c shows the results from the single parame-

ter scan pipeline. Simulations are ran with values of the
parameter k1within the 95% confidence interval as deter-
mined by the parameter estimation using the data with
a sufficient number of data points. If needed, differential
scales can also be configured in order to discriminate pro-
tein levels. This is particularly useful if a simulated protein
knockdown (or overexpression) is investigated. For the
complete results, see Additional file 1: Figures S11–S12.
Results generated by the double parameter scan pipeline

are shown in Fig. 1d. In this analysis two model param-
eters are scanned simultaneously and these data are
reported for each time point separately. For instance, it
can be useful for revealing combinatorial effects of two
drugs affecting a timecourse. For the complete results, see
Additional file 1: Figures S13–S15. An example of this
analysis can be found in [10], where it was applied for
exploring the combination of mTOR and ROS treatments
in a cellular senescence model.

Discussion
SBpipe is a software tool which allows modellers to auto-
matically repeat certain tasks in model development and
analysis, such as parameter estimation and simulation,
and obtain additional information about the robustness of
the model. Its use should increase productivity and the
confidence in the results obtained with the model.
Parameter estimation from experimental data is a chal-

lenging task which can easily produce unreliable results
due to local minima, parameter non-identifiability, or
inadequate optimisation algorithm configuration. From
the generation and analysis of a fit sequence, SBpipe can
reveal crucial insights about a model structure, the relia-
bility of each parameter, as well as indications about the
sufficiency and quality of the experimental data used to
calibrate themodel. This knowledge is required for assess-
ing whether parameters are well defined and the overall
model predictions are reliable.
Several software tools exist to automate aspects model

building and simulation tasks, and a comprehensive
review of these packages is beyond the scope of this
article. Some of these comprehensive packages such as
AMIGO2 [11] and SBPOP [12] rely on proprietary soft-
ware (e.g. Matlab). Condor-COPASI [13] is an example of
open source alternative. This server-based software tool
integrates COPASI with Condor, a high-throughput com-
puting environment. It allows COPASI users to run and
analyse models on a Condor pool. SBpipe distinguishes
fromCondor-COPASI for three main reasons: 1) although
COPASI models are supported, users can run repeated
model parameter estimations and simulations using any

https://pypi.python.org/pypi/PyCoTools
https://pypi.python.org/pypi/PyCoTools

Dalle Pezze and Le Novère BMC Systems Biology (2017) 11:46 Page 4 of 5

Fig. 1 Implemented pipelines in SBpipe. a Example of work flow using the parameter estimation pipeline. Parameter estimations were performed
using data sets of different sizes. The Identifiable column shows the results using a data set sufficient for estimating the parameters with their
confidence intervals, whereas the column Non-identifiable illustrates the results using the same model but a reduced data set, insufficient for
identifying parameter values. Size of the fit sequence: N=1000. For the complete results generated by this pipeline, see Additional file 1: Tables
S2–S4, Figures S2–S8. b Deterministic and stochastic model time courses for the phosphorylated IR_beta species obtained with the model
simulation pipeline. For stochastic simulations, mean (black), 95% confidence interval for the mean (cyan), and 1 standard deviation (light blue) are
reported. Experimental data are added and indicated as red circles. For the complete results, see Additional file 1: Figures S9–S10. c Single parameter
scan pipeline. The k1 parameter regulating the IR_beta phosphorylation was scanned within its 95% estimated confidence interval. The blue area is
the results of 100 time course simulations over this interval. For the complete results, see Additional file 1: Figures S11–S12. d Double parameter
scan pipeline. Signal intensities for the phosphorylated IR_beta receptor different levels of Insulin (x axis) and IR_beta receptor (y axis) at 1, 2, 5, and
10 minutes upon insulin stimulation. The colour representation indicates how the readout signal intensity varies upon two model parameter levels.
For the complete results, see Additional file 1: Figures S13–S15. All the results can be replicated using the test files provided within the SBpipe
package available online on the GitHub repository

other software or programming library; 2) it is a client-
based software tools and therefore it does not require
cluster administration; 3) SBpipe can also run locally via

multithreading, which is ideal for preliminary testing of
themost suitable algorithms for parameter estimation and
simulation, before starting intensive jobs on a cluster.

Dalle Pezze and Le Novère BMC Systems Biology (2017) 11:46 Page 5 of 5

SBpipe requires some familiarity with command line
tools, although no programming skill is needed when
COPASI models are used. Users only need to create a
configuration file and run it using a simple command set.
Users with a background in programming languages can
also benefit from SBpipe functionalities using mathemati-
cal models coded with their preferred language if needed.
In contrast to standard pipeline frameworks, SBpipe does
not currently offer support for dependency management
at coding level and reentrancy at execution level. The for-
mer is defined as a way to precisely define the dependency
order of functions. The latter is the capacity of a program
to continue from the last interrupted task. Althoughmany
pipeline frameworks are available for bioinformatics, the
definition of a clear and spread standard specifying how
pipelines can be configured is still limited in our opinion.
In the future we hope to also use a pipeline framework
as an additional way to run SBpipe tasks. Benefitting of
dependency declaration and execution reentrancy would
in particular be beneficial for running SBpipe on clusters
or on the cloud.
From an implementation standpoint, SBpipe design is

sufficiently generic to permit rapid extension of new
pipelines. With this solid but flexible design, SBpipe aims
to encourage the development of pipelines for systems
modelling into a single community activity.

Conclusions
SBpipe is a novel open source software that enables sys-
tems biology modellers to simulate models, scan and
estimate model parameters in a large scale. Novel anal-
yses from multiple repeats are also computed via publi-
cation quality plots and tables. This project permits to
increase productivity and reliability in model building and
simulation.

Availability and requirements
Project name: SBpipe
Project home page: https://pdp10.github.io/sbpipe/
Operating system(s): Platform independent
Programming language: Python 2.7+ or 3.4+, R 3.3.0+
Other requirements: COPASI 4.19, TexLive 2013.
License: GNU LGPL v3

Additional file

Additional file 1: Supporting information. Additional file containing
supporting Tables S1–S4 and Figures S1–S15. (PDF 29,712 kb)

Abbreviations
CL: Confidence level; IR: Insulin receptor; LSF: Load sharing facility; PLE: Profile
likehood estimation; SGE: Sun grid engine

Acknowledgements
We acknowledge Dr Lu Li, Dr An Nguyen, and Dr Pınar Pir for helpful feedback.

Funding
This work was funded by British BBSRC (BBS/E/B/000C0419).

Authors’ contributions
PDP and NLN conceived and designed the project; PDP implemented the
software. PDP and NLN wrote the manuscript. Both authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 23 February 2017 Accepted: 23 March 2017

References
1. Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H. Software for systems

biology: from tools to integrated platforms. Nat Rev Genet. 2011;12:
821–32.

2. Le Novère N. Quantitative and logic modelling of molecular and gene
networks. Nat Rev Genet. 2015;16:146–58.

3. van Rossum G. Python tutorial, Technical Report CS-R9526. Amsterdam:
Centrum voor Wiskunde en Informatica (CWI); 1995.

4. R Development Core Team. R: A Language and Environment for Statistical
Computing: Vienna; 2008. ISBN 3-900051-07-0.

5. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI - a
COmplex PAthway SImulator. Bioinformatics. 2006;22(24):3067–74.

6. Dalle Pezze P, Sonntag A, Thien A, Prentzell M, Gödel M, Fischer S, et al.
A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent
mTORC2 Regulation. Sci Signal. 2012;5(217):ra25.

7. Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H,
et al. BioModels Database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular
systems. Nucleic Acids Res. 2006;34(Database issue):D689–91.

8. Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of
the Fourth IEEE International Conference on Neural Networks (Perth,
Australia). Perth: IEEE; 1995. p. 1942–1948.

9. Schaber J. Easy parameter identifiability analysis with COPASI. Biosystems.
2012;110(3):183–5.

10. Dalle Pezze P, Nelson G, Otten E, Korolchuk V, Kirkwood T,
von Zglinicki T, et al. Dynamic Modelling of Pathways to Cellular
Senescence Reveals Strategies for Targeted Interventions. PLOS Comput
Biol. 2014;10(8):1–20.

11. Balsa-Canto E, Henriques D, Gábor A, Banga JR. AMIGO2, a toolbox for
dynamic modeling, optimization and control in systems biology.
Bioinformatics. 2016;32(21):3357.

12. Schmidt H, Jirstrand M. Systems Biology Toolbox for MATLAB: a
computational platform for research in systems biology. Bioinformatics.
2006;22(4):514.

13. Kent E, Hoops S, Mendes P. Condor-COPASI: high-throughput
computing for biochemical networks. BMC Syst Biol. 2012;6(91). http://
bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-91.

http://dx.doi.org/10.1186/s12918-017-0423-3
http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-91
http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-91

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Results
	Discussion
	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	References

