Skip to main content

Table 1 EGFR signalling and trafficking.

From: From pathway to population – a multiscale model of juxtacrine EGFR-MAPK signalling

  Species Rate Equation Constants Ref
1 RA d[R A ] dt =  k 1 [R A ][L B ] + k 1 [RL A ] k e [R A ] + k Rsyn . π . x A B . z A B 4 S A A + Ω A B . π . z A B σ . [ R 0 ] A 4 S A 0 A MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGudaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0dccaGae8NeI0IaeeiiaaIaee4AaS2aaSbaaSqaaiabbgdaXaqabaGccqqGBbWwcqqGsbGudaWgaaWcbaGaeeyqaeeabeaakiabb2faDjabbUfaBjabbYeamnaaBaaaleaacqqGcbGqaeqaaOGaeeyxa0Laey4kaSIaee4AaS2aaSbaaSqaaiab=jHiTiabbgdaXaqabaGccqqGBbWwcqqGsbGucqqGmbatdaWgaaWcbaGaeeyqaeeabeaakiabb2faDjab=jHiTiabbUgaRnaaBaaaleaacqqGLbqzaeqaaOGaee4waSLaeeOuai1aaSbaaSqaaiabbgeabbqabaGccqqGDbqxcqGHRaWkjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeOuaiLaee4CamNaeeyEaKNaeeOBa4gabeaacqGGUaGlcqaHapaCcqGGUaGlcqWG4baEdaWgaaqaaiabdgeabjabdkeacbqabaGaeiOla4IaemOEaO3aaSbaaeaacqWGbbqqcqWGcbGqaeqaaaqaaiabisda0iabdofatjabdgeabnaaBaaabaGaemyqaeeabeaaaaGccqGHRaWkcqqHPoWvdaWgaaWcbaGaemyqaeKaemOqaieabeaajuaGdaWcaaqaaiabc6caUiabec8aWjabc6caUiabdQha6naaBaaabaGaemyqaeKaemOqaieabeaacqaHdpWCcqGGUaGlcqGGBbWwcqWGsbGucqaIWaamcqGGDbqxdaWgaaqaaiabdgeabbqabaaabaGaeGinaqJaem4uamLaemyqaeKaeGimaaZaaSbaaeaacqWGbbqqaeqaaaaaaaa@8A48@ k1 = 3 × 10-4
k-1 = 0.23
ke = 0.03
kRsyn = 300
[25]
[31]
2 LB d[L B ] dt = k 1 [R A ][L B ] + k 1 [RL A ] k clv [L B ] + k Lsyn . π . x A B . z A B 4 S A B + Ω A B . π . z A B σ . [ L 0 ] B 4 S A 0 B MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGmbatdaWgaaqaaiabbkeacbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0dccaGae8NeI0Iaee4AaS2aaSbaaSqaaiabbgdaXaqabaGccqqGBbWwcqqGsbGudaWgaaWcbaGaeeyqaeeabeaakiabb2faDjabbUfaBjabbYeamnaaBaaaleaacqqGcbGqaeqaaOGaeeyxa0Laey4kaSIaee4AaS2aaSbaaSqaaiab=jHiTiabbgdaXaqabaGccqqGBbWwcqqGsbGucqqGmbatdaWgaaWcbaGaeeyqaeeabeaakiabb2faDjab=jHiTiabbUgaRnaaBaaaleaacqqGJbWycqqGSbaBcqqG2bGDaeqaaOGaee4waSLaeeitaW0aaSbaaSqaaiabbkeacbqabaGccqqGDbqxcqGHRaWkjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeitaWKaee4CamNaeeyEaKNaeeOBa4gabeaacqGGUaGlcqaHapaCcqGGUaGlcqWG4baEdaWgaaqaaiabdgeabjabdkeacbqabaGaeiOla4IaemOEaO3aaSbaaeaacqWGbbqqcqWGcbGqaeqaaaqaaiabisda0iabdofatjabdgeabnaaBaaabaGaemOqaieabeaaaaGccqGHRaWkcqqHPoWvdaWgaaWcbaGaemyqaeKaemOqaieabeaajuaGdaWcaaqaaiabc6caUiabec8aWjabc6caUiabdQha6naaBaaabaGaemyqaeKaemOqaieabeaacqaHdpWCcqGGUaGlcqGGBbWwcqWGmbatcqaIWaamcqGGDbqxdaWgaaqaaiabdkeacbqabaaabaGaeGinaqJaem4uamLaemyqaeKaeGimaaZaaSbaaeaacqWGcbGqaeqaaaaaaaa@8C29@ kLclv = 0.005
kLsyn = 250
[3133]
3 RLA d[RL A ] dt = k 1 [R A ][L B ] k 1 [RL A ] 2k 2 [ R L A ] [ R L A ] + 2 k 2 [ R L 2 A ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGmbatdaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0Jaee4AaS2aaSbaaSqaaiabbgdaXaqabaGccqqGBbWwcqqGsbGudaWgaaWcbaGaeeyqaeeabeaakiabb2faDjabbUfaBjabbYeamnaaBaaaleaacqqGcbGqaeqaaOGaeeyxa0LaeyOeI0Iaee4AaS2aaSbaaSqaaGGaaiab=jHiTiabbgdaXaqabaGccqqGBbWwcqqGsbGucqqGmbatdaWgaaWcbaGaeeyqaeeabeaakiabb2faDjab=jHiTiabbkdaYiabbUgaRnaaBaaaleaacqqGYaGmaeqaaOGaei4waSLaemOuaiLaemitaW0aaSbaaSqaaiabdgeabbqabaGccqGGDbqxcqGGBbWwcqWGsbGucqWGmbatdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabgUcaRiabikdaYiabdUgaRnaaBaaaleaacqGHsislcqaIYaGmaeqaaOGaei4waSLaemOuaiLaemitaWKaeGOmaiZaaSbaaSqaaiabdgeabbqabaGccqGGDbqxaaa@6ADB@ k2 = 0.001
k_2 = 6.0
[15]
4 RL2A d[RL2 A ] dt = 2k 2 [ R L A ] [ R L A ] 2 k 2 [ R L 2 A ] k 3 [ R L 2 A ] + k 3 [ R P A ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGmbatcqqGYaGmdaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0JaeeOmaiJaee4AaS2aaSbaaSqaaiabbkdaYaqabaGccqGGBbWwcqWGsbGucqWGmbatdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabcUfaBjabdkfasjabdYeamnaaBaaaleaacqWGbbqqaeqaaOGaeiyxa0LaeyOeI0IaeGOmaiJaem4AaS2aaSbaaSqaaiabgkHiTiabikdaYaqabaGccqGGBbWwcqWGsbGucqWGmbatcqaIYaGmdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabgkHiTiabdUgaRnaaBaaaleaacqaIZaWmaeqaaOGaei4waSLaemOuaiLaemitaWKaeGOmaiZaaSbaaSqaaiabdgeabbqabaGccqGGDbqxcqGHRaWkcqWGRbWAdaWgaaWcbaGaeyOeI0IaeG4mamdabeaakiabcUfaBjabdkfasjabdcfaqnaaBaaaleaacqWGbbqqaeqaaOGaeiyxa0faaa@692F@ k3 = 60
k_3 = 0.6
[15]
5 RPA d[RP A ] dt = k 3 [ R L 2 A ] k 3 [ R P A ] V 4 [ R P A ] K 4 + [ R P A ] k int [ R P A ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGqbaudaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0Jaem4AaS2aaSbaaSqaaiabiodaZaqabaGccqGGBbWwcqWGsbGucqWGmbatcqaIYaGmdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabgkHiTiabdUgaRnaaBaaaleaacqGHsislcqaIZaWmaeqaaOGaei4waSLaemOuaiLaemiuaa1aaSbaaSqaaiabdgeabbqabaGccqGGDbqxcqGHsisljuaGdaWcaaqaaiabdAfawnaaBaaabaGaeGinaqdabeaacqGGBbWwcqWGsbGucqWGqbaudaWgaaqaaiabdgeabbqabaGaeiyxa0fabaGaem4saS0aaSbaaeaacqaI0aanaeqaaiabgUcaRiabcUfaBjabdkfasjabdcfaqnaaBaaabaGaemyqaeeabeaacqGGDbqxaaGccqGHsislcqWGRbWAdaWgaaWcbaGagiyAaKMaeiOBa4MaeiiDaqhabeaakiabcUfaBjabdkfasjabdcfaqnaaBaaaleaacqWGbbqqaeqaaOGaeiyxa0faaa@6B55@ V4 = 2.3 × 106
K4 = 3 × 104
kint = 0.19
[25]
  1. Equations relating to juxtacrine receptor – ligand interaction and receptor dimerisation and phosphorylation. Constants are either extracted directly from, inferred from or reported in the cited references. Units – All parameters relate to numbers of molecules – square brackets are for clarity only. Units are: first order rate constant: min-1; second order rate constants molecules-1 min-1, maximal enzyme rates (Vmax) are expressed in units of molecules min-1, Michaelis constants (Km) in molecules. kRsyn and kLsyn are in no. molecules cell-1 min-1. Conversions from concentrations to numbers of molecules assume a cell volume of 10-12 litres.