Skip to main content
Search
Explore journals
Get published
About BMC
My account
Search all BMC articles
Search
BMC Systems Biology
Home
Articles
Table 1 EGFR signalling and trafficking.
From:
From pathway to population – a multiscale model of juxtacrine EGFR-MAPK signalling
Species
Rate Equation
Constants
Ref
1
R
A
d[R
A
]
dt
=
−
k
1
[R
A
][L
B
]
+
k
−
1
[RL
A
]
−
k
e
[R
A
]
+
k
Rsyn
.
π
.
x
A
B
.
z
A
B
4
S
A
A
+
Ω
A
B
.
π
.
z
A
B
σ
.
[
R
0
]
A
4
S
A
0
A
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGudaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0dccaGae8NeI0IaeeiiaaIaee4AaS2aaSbaaSqaaiabbgdaXaqabaGccqqGBbWwcqqGsbGudaWgaaWcbaGaeeyqaeeabeaakiabb2faDjabbUfaBjabbYeamnaaBaaaleaacqqGcbGqaeqaaOGaeeyxa0Laey4kaSIaee4AaS2aaSbaaSqaaiab=jHiTiabbgdaXaqabaGccqqGBbWwcqqGsbGucqqGmbatdaWgaaWcbaGaeeyqaeeabeaakiabb2faDjab=jHiTiabbUgaRnaaBaaaleaacqqGLbqzaeqaaOGaee4waSLaeeOuai1aaSbaaSqaaiabbgeabbqabaGccqqGDbqxcqGHRaWkjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeOuaiLaee4CamNaeeyEaKNaeeOBa4gabeaacqGGUaGlcqaHapaCcqGGUaGlcqWG4baEdaWgaaqaaiabdgeabjabdkeacbqabaGaeiOla4IaemOEaO3aaSbaaeaacqWGbbqqcqWGcbGqaeqaaaqaaiabisda0iabdofatjabdgeabnaaBaaabaGaemyqaeeabeaaaaGccqGHRaWkcqqHPoWvdaWgaaWcbaGaemyqaeKaemOqaieabeaajuaGdaWcaaqaaiabc6caUiabec8aWjabc6caUiabdQha6naaBaaabaGaemyqaeKaemOqaieabeaacqaHdpWCcqGGUaGlcqGGBbWwcqWGsbGucqaIWaamcqGGDbqxdaWgaaqaaiabdgeabbqabaaabaGaeGinaqJaem4uamLaemyqaeKaeGimaaZaaSbaaeaacqWGbbqqaeqaaaaaaaa@8A48@
k
1
= 3 × 10
-4
k
-1
= 0.23
k
e
= 0.03
k
Rsyn
= 300
[
25
]
[
31
]
2
L
B
d[L
B
]
dt
=
−
k
1
[R
A
][L
B
]
+
k
−
1
[RL
A
]
−
k
clv
[L
B
]
+
k
Lsyn
.
π
.
x
A
B
.
z
A
B
4
S
A
B
+
Ω
A
B
.
π
.
z
A
B
σ
.
[
L
0
]
B
4
S
A
0
B
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGmbatdaWgaaqaaiabbkeacbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0dccaGae8NeI0Iaee4AaS2aaSbaaSqaaiabbgdaXaqabaGccqqGBbWwcqqGsbGudaWgaaWcbaGaeeyqaeeabeaakiabb2faDjabbUfaBjabbYeamnaaBaaaleaacqqGcbGqaeqaaOGaeeyxa0Laey4kaSIaee4AaS2aaSbaaSqaaiab=jHiTiabbgdaXaqabaGccqqGBbWwcqqGsbGucqqGmbatdaWgaaWcbaGaeeyqaeeabeaakiabb2faDjab=jHiTiabbUgaRnaaBaaaleaacqqGJbWycqqGSbaBcqqG2bGDaeqaaOGaee4waSLaeeitaW0aaSbaaSqaaiabbkeacbqabaGccqqGDbqxcqGHRaWkjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeitaWKaee4CamNaeeyEaKNaeeOBa4gabeaacqGGUaGlcqaHapaCcqGGUaGlcqWG4baEdaWgaaqaaiabdgeabjabdkeacbqabaGaeiOla4IaemOEaO3aaSbaaeaacqWGbbqqcqWGcbGqaeqaaaqaaiabisda0iabdofatjabdgeabnaaBaaabaGaemOqaieabeaaaaGccqGHRaWkcqqHPoWvdaWgaaWcbaGaemyqaeKaemOqaieabeaajuaGdaWcaaqaaiabc6caUiabec8aWjabc6caUiabdQha6naaBaaabaGaemyqaeKaemOqaieabeaacqaHdpWCcqGGUaGlcqGGBbWwcqWGmbatcqaIWaamcqGGDbqxdaWgaaqaaiabdkeacbqabaaabaGaeGinaqJaem4uamLaemyqaeKaeGimaaZaaSbaaeaacqWGcbGqaeqaaaaaaaa@8C29@
k
Lclv
= 0.005
k
Lsyn
= 250
[
31
–
33
]
3
RL
A
d[RL
A
]
dt
=
k
1
[R
A
][L
B
]
−
k
−
1
[RL
A
]
−
2k
2
[
R
L
A
]
[
R
L
A
]
+
2
k
−
2
[
R
L
2
A
]
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGmbatdaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0Jaee4AaS2aaSbaaSqaaiabbgdaXaqabaGccqqGBbWwcqqGsbGudaWgaaWcbaGaeeyqaeeabeaakiabb2faDjabbUfaBjabbYeamnaaBaaaleaacqqGcbGqaeqaaOGaeeyxa0LaeyOeI0Iaee4AaS2aaSbaaSqaaGGaaiab=jHiTiabbgdaXaqabaGccqqGBbWwcqqGsbGucqqGmbatdaWgaaWcbaGaeeyqaeeabeaakiabb2faDjab=jHiTiabbkdaYiabbUgaRnaaBaaaleaacqqGYaGmaeqaaOGaei4waSLaemOuaiLaemitaW0aaSbaaSqaaiabdgeabbqabaGccqGGDbqxcqGGBbWwcqWGsbGucqWGmbatdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabgUcaRiabikdaYiabdUgaRnaaBaaaleaacqGHsislcqaIYaGmaeqaaOGaei4waSLaemOuaiLaemitaWKaeGOmaiZaaSbaaSqaaiabdgeabbqabaGccqGGDbqxaaa@6ADB@
k2 = 0.001
k_2 = 6.0
[
15
]
4
RL2
A
d[RL2
A
]
dt
=
2k
2
[
R
L
A
]
[
R
L
A
]
−
2
k
−
2
[
R
L
2
A
]
−
k
3
[
R
L
2
A
]
+
k
−
3
[
R
P
A
]
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGmbatcqqGYaGmdaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0JaeeOmaiJaee4AaS2aaSbaaSqaaiabbkdaYaqabaGccqGGBbWwcqWGsbGucqWGmbatdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabcUfaBjabdkfasjabdYeamnaaBaaaleaacqWGbbqqaeqaaOGaeiyxa0LaeyOeI0IaeGOmaiJaem4AaS2aaSbaaSqaaiabgkHiTiabikdaYaqabaGccqGGBbWwcqWGsbGucqWGmbatcqaIYaGmdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabgkHiTiabdUgaRnaaBaaaleaacqaIZaWmaeqaaOGaei4waSLaemOuaiLaemitaWKaeGOmaiZaaSbaaSqaaiabdgeabbqabaGccqGGDbqxcqGHRaWkcqWGRbWAdaWgaaWcbaGaeyOeI0IaeG4mamdabeaakiabcUfaBjabdkfasjabdcfaqnaaBaaaleaacqWGbbqqaeqaaOGaeiyxa0faaa@692F@
k3 = 60
k_3 = 0.6
[
15
]
5
RP
A
d[RP
A
]
dt
=
k
3
[
R
L
2
A
]
−
k
−
3
[
R
P
A
]
−
V
4
[
R
P
A
]
K
4
+
[
R
P
A
]
−
k
int
[
R
P
A
]
MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGqbaudaWgaaqaaiabbgeabbqabaGaeiyxa0fabaGaeeizaqMaeeiDaqhaaOGaeyypa0Jaem4AaS2aaSbaaSqaaiabiodaZaqabaGccqGGBbWwcqWGsbGucqWGmbatcqaIYaGmdaWgaaWcbaGaemyqaeeabeaakiabc2faDjabgkHiTiabdUgaRnaaBaaaleaacqGHsislcqaIZaWmaeqaaOGaei4waSLaemOuaiLaemiuaa1aaSbaaSqaaiabdgeabbqabaGccqGGDbqxcqGHsisljuaGdaWcaaqaaiabdAfawnaaBaaabaGaeGinaqdabeaacqGGBbWwcqWGsbGucqWGqbaudaWgaaqaaiabdgeabbqabaGaeiyxa0fabaGaem4saS0aaSbaaeaacqaI0aanaeqaaiabgUcaRiabcUfaBjabdkfasjabdcfaqnaaBaaabaGaemyqaeeabeaacqGGDbqxaaGccqGHsislcqWGRbWAdaWgaaWcbaGagiyAaKMaeiOBa4MaeiiDaqhabeaakiabcUfaBjabdkfasjabdcfaqnaaBaaaleaacqWGbbqqaeqaaOGaeiyxa0faaa@6B55@
V4 = 2.3 × 10
6
K4 = 3 × 10
4
kint = 0.19
[
25
]
Back to article page