Skip to main content

Table 3 Intracellular pathway model. Rate equations relating to intracellular EGFR-MAPK pathway.

From: From pathway to population – a multiscale model of juxtacrine EGFR-MAPK signalling

  Species Rate equation Constants
11 Shc d[Shc] dt = k 5 c nt = 1 na [RP] [Shc]/(K 5 + [Shc]) + V 6 [Shc-P]/(K 6 + [ShcP]) MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpiiaacqWFsislcqqGRbWAdaWgaaWcbaGaeeynaudabeaakmaaqahabaGaee4waSLaeeOuaiLaeeiuaaLaeeyxa0faleaacqWGJbWycqqGUbGBcqqG0baDcqGH9aqpcqqGXaqmaeaacqqGUbGBcqqGHbqya0GaeyyeIuoakiabbUfaBjabbofatjabbIgaOjabbogaJjabb2faDjabb+caViabbIcaOiabbUealnaaBaaaleaacqqG1aqnaeqaaOGaey4kaSIaee4waSLaee4uamLaeeiAaGMaee4yamMaeeyxa0LaeeykaKIaey4kaSIaeeOvay1aaSbaaSqaaiabbAda2aqabaGccqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGTaqlcqqGqbaucqqGDbqxcqqGVaWlcqqGOaakcqqGlbWsdaWgaaWcbaGaeeOnaydabeaakiabgUcaRiabbUfaBjabbofatjabbIgaOjabbogaJjabbcfaqjabb2faDjabbMcaPaaa@764C@ k5 = 12
K5 = 6 × 103
12 ShcP d[ShcP] dt = k 5 c nt = 11 na [RP] [Shc] K 5 + [Shc] V 6 [ShcP] K 6 + [ShcP] k 7 [ShcP][GrbSos]  + k 7 [ShcGrbSos] +  k 8 [ErkPP][ShcGrbSos] K 8 + [ShcGrbSos] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGceaqabeaajuaGdaWcaaqaaiabbsgaKjabbUfaBjabbofatjabbIgaOjabbogaJjabbcfaqjabb2faDbqaaiabbsgaKjabbsha0baakiabg2da9KqbaoaalaaabaGaee4AaS2aaSbaaeaacqqG1aqnaeqaamaaqahabaGaee4waSLaeeOuaiLaeeiuaaLaeeyxa0fabaGaem4yamMaeeOBa4MaeeiDaqNaeyypa0JaeeymaeJaeeymaedabaGaeeOBa4MaeeyyaegacqGHris5aiabbUfaBjabbofatjabbIgaOjabbogaJjabb2faDbqaaiabbUealnaaBaaabaGaeeynaudabeaacqGHRaWkcqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGDbqxaaaccaGccqWFsisljuaGdaWcaaqaaiabbAfawnaaBaaabaGaeeOnaydabeaacqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGqbaucqqGDbqxaeaacqqGlbWsdaWgaaqaaiabbAda2aqabaGaey4kaSIaee4waSLaee4uamLaeeiAaGMaee4yamMaeeiuaaLaeeyxa0faaOGae8NeI0Iaee4AaS2aaSbaaSqaaiabbEda3aqabaGccqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGqbaucqqGDbqxcqqGBbWwcqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGDbqxcqqGGaaiaeaacqGHRaWkcqqGRbWAdaWgaaWcbaGae8NeI0Iaee4naCdabeaakiabbUfaBjabbofatjabbIgaOjabbogaJjabbEeahjabbkhaYjabbkgaIjabbofatjabb+gaVjabbohaZjabb2faDjabgUcaRKqbaoaalaaabaGaeeiiaaIaee4AaS2aaSbaaeaacqqG4aaoaeqaaiabbUfaBjabbweafjabbkhaYjabbUgaRjabbcfaqjabbcfaqjabb2faDjabbUfaBjabbofatjabbIgaOjabbogaJjabbEeahjabbkhaYjabbkgaIjabbofatjabb+gaVjabbohaZjabb2faDbqaaiabbUealnaaBaaabaGaeeioaGdabeaacqGHRaWkcqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGDbqxaaaaaaa@C756@ V6= 3.0 × 105
K6 = 6 × 103
K7 = 2 × 10-3
k-7 = 3.81
13 GrbSos d[GrbSos] dt = k [ShcP] 7 [GrbSos] + k 7 [ShcGrbSos] + V 9 [GrbSosP] (K 9 + [GrbSosP] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpiiaacqWFsislcqqGRbWAdaWgbaWcbaGaee4naCdabeaakiabbUfaBjabbofatjabbIgaOjabbogaJjabbcfaqjabb2faDjabbUfaBjabbEeahjabbkhaYjabbkgaIjabbofatjabb+gaVjabbohaZjabb2faDjabgUcaRiabbUgaRnaaBaaaleaacqWFsislcqqG3aWnaeqaaOGaee4waSLaee4uamLaeeiAaGMaee4yamMaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeyxa0Laey4kaSscfa4aaSaaaeaacqqGwbGvdaWgaaqaaiabbMda5aqabaGaee4waSLaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeiuaaLaeeyxa0fabaGaeeikaGIaee4saS0aaSbaaeaacqqG5aqoaeqaaiabgUcaRiabbUfaBjabbEeahjabbkhaYjabbkgaIjabbofatjabb+gaVjabbohaZjabbcfaqjabb2faDbaaaaa@8213@ K8 = 1.6;
K8 = 6 × 105
14 GrbSosP d[GrbSosP] dt = k 8 [ErkPP][ShcGrbSos]  K 8 + [ShcGrbSos] V 9 [GrbSosP] K 9 + [GrbSosP] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeioaGdabeaacqqGBbWwcqqGfbqrcqqGYbGCcqqGRbWAcqqGqbaucqqGqbaucqqGDbqxcqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGDbqxcqqGGaaiaeaacqqGlbWsdaWgaaqaaiabbIda4aqabaGaey4kaSIaee4waSLaee4uamLaeeiAaGMaee4yamMaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeyxa0faaGGaaOGae8NeI0scfa4aaSaaaeaacqqGwbGvdaWgaaqaaiabbMda5aqabaGaee4waSLaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeiuaaLaeeyxa0fabaGaee4saS0aaSbaaeaacqqG5aqoaeqaaiabgUcaRiabbUfaBjabbEeahjabbkhaYjabbkgaIjabbofatjabb+gaVjabbohaZjabbcfaqjabb2faDbaaaaa@86A3@ V9 = 75;
K9 = 2.0 × 104
15 ShcGrbSos d[ShcGrbSos] dt = k [ShcP] 7 [GrbSos] k 7 [ShcGrbSos] k 8 [ErkPP][ShcGrbSos]  K 8 + [ShcGrbSos] k 10 [ R a s G D P ] [ S h c G r b S o s ] + k 10 [ S h c G r b S o s R a s ] + k 11 [ S h c G r b S o s R a s ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGceaqabeaajuaGdaWcaaqaaiabbsgaKjabbUfaBjabbofatjabbIgaOjabbogaJjabbEeahjabbkhaYjabbkgaIjabbofatjabb+gaVjabbohaZjabb2faDbqaaiabbsgaKjabbsha0baakiabg2da9iabbUgaRnaaBeaaleaacqqG3aWnaeqaaOGaee4waSLaee4uamLaeeiAaGMaee4yamMaeeiuaaLaeeyxa0Laee4waSLaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeyxa0LaeyOeI0Iaee4AaS2aaSbaaSqaaGGaaiab=jHiTiabbEda3aqabaGccqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGDbqxcqWFsisljuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeioaGdabeaacqqGBbWwcqqGfbqrcqqGYbGCcqqGRbWAcqqGqbaucqqGqbaucqqGDbqxcqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGDbqxcqqGGaaiaeaacqqGlbWsdaWgaaqaaiabbIda4aqabaGaey4kaSIaee4waSLaee4uamLaeeiAaGMaee4yamMaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeyxa0faaaGcbaGaeyOeI0Iaem4AaS2aaSbaaSqaaiabigdaXiabicdaWaqabaGccqGGBbWwcqWGsbGucqWGHbqycqWGZbWCcqWGhbWrcqWGebarcqWGqbaucqGGDbqxcqGGBbWwcqWGtbWucqWGObaAcqWGJbWycqWGhbWrcqWGYbGCcqWGIbGycqWGtbWucqWGVbWBcqWGZbWCcqGGDbqxcqGHRaWkcqWGRbWAdaWgaaWcbaGaeyOeI0IaeGymaeJaeGimaadabeaakiabcUfaBjabdofatjabdIgaOjabdogaJjabdEeahjabdkhaYjabdkgaIjabdofatjabd+gaVjabdohaZjabdkfasjabdggaHjabdohaZjabc2faDjabgUcaRiabdUgaRnaaBaaaleaacqaIXaqmcqaIXaqmaeqaaOGaei4waSLaem4uamLaemiAaGMaem4yamMaem4raCKaemOCaiNaemOyaiMaem4uamLaem4Ba8Maem4CamNaemOuaiLaemyyaeMaem4CamNaeiyxa0faaaa@DD33@ k10 = 1.63 × 10-2
k10 = 10
k11 = 15
16 RasGDP d[RasGDP] dt = k 10 [ R a s G D P ] [ S h c G r b S o s ] + k 10 [ S h c G r b S o s R a s ] + k 13 [ R a s G A P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGHbqycqqGZbWCcqqGhbWrcqqGebarcqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpcqGHsislcqWGRbWAdaWgaaWcbaGaeGymaeJaeGimaadabeaakiabcUfaBjabdkfasjabdggaHjabdohaZjabdEeahjabdseaejabdcfaqjabc2faDjabcUfaBjabdofatjabdIgaOjabdogaJjabdEeahjabdkhaYjabdkgaIjabdofatjabd+gaVjabdohaZjabc2faDjabgUcaRiabdUgaRnaaBaaaleaacqGHsislcqaIXaqmcqaIWaamaeqaaOGaei4waSLaem4uamLaemiAaGMaem4yamMaem4raCKaemOCaiNaemOyaiMaem4uamLaem4Ba8Maem4CamNaemOuaiLaemyyaeMaem4CamNaeiyxa0Laey4kaSIaem4AaS2aaSbaaSqaaiabigdaXiabiodaZaqabaGccqGGBbWwcqWGsbGucqWGHbqycqWGZbWCcqWGhbWrcqWGbbqqcqWGqbaucqGGDbqxaaa@7CE2@ k12 = 5.0 × 10-3
k-12 = 60
17 ShcGrbSosRas d[ShcGrbSosRas] dt = k 10 [ R a s G D P ] [ S h c G r b S o s ] k 10 [ S h c G r b S o s R a s ] k 11 [ S h c G r b S o s R a s ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGtbWucqqGObaAcqqGJbWycqqGhbWrcqqGYbGCcqqGIbGycqqGtbWucqqGVbWBcqqGZbWCcqqGsbGucqqGHbqycqqGZbWCcqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpcqWGRbWAdaWgaaWcbaGaeGymaeJaeGimaadabeaakiabcUfaBjabdkfasjabdggaHjabdohaZjabdEeahjabdseaejabdcfaqjabc2faDjabcUfaBjabdofatjabdIgaOjabdogaJjabdEeahjabdkhaYjabdkgaIjabdofatjabd+gaVjabdohaZjabc2faDjabgkHiTiabdUgaRnaaBaaaleaacqGHsislcqaIXaqmcqaIWaamaeqaaOGaei4waSLaem4uamLaemiAaGMaem4yamMaem4raCKaemOCaiNaemOyaiMaem4uamLaem4Ba8Maem4CamNaemOuaiLaemyyaeMaem4CamNaeiyxa0LaeyOeI0Iaem4AaS2aaSbaaSqaaiabigdaXiabigdaXaqabaGccqGGBbWwcqWGtbWucqWGObaAcqWGJbWycqWGhbWrcqWGYbGCcqWGIbGycqWGtbWucqWGVbWBcqWGZbWCcqWGsbGucqWGHbqycqWGZbWCcqGGDbqxaaa@8CB9@ k13 = 7.2 × 102
k14 = 1.2 × 10-3
18 RasGTP d[RasGTP] dt = k 11 [ShcGrbSosRas] k 12  [RasGTP] [GAP] + k 12 [RasGAP] k 14 [Raf][RasGTP] + k 14 [RasRaf ] + k 15 [RasRaf] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGceaqabeaajuaGdaWcaaqaaiabbsgaKjabbUfaBjabbkfasjabbggaHjabbohaZjabbEeahjabbsfaujabbcfaqjabb2faDbqaaiabbsgaKjabbsha0baakiabg2da9iabbUgaRnaaBaaaleaaiiaacqWFsislcqqGXaqmcqqGXaqmaeqaaOGaee4waSLaee4uamLaeeiAaGMaee4yamMaee4raCKaeeOCaiNaeeOyaiMaee4uamLaee4Ba8Maee4CamNaeeOuaiLaeeyyaeMaee4CamNaeeyxa0Lae8NeI0Iaee4AaS2aaSbaaSqaaiabbgdaXiabbkdaYaqabaGccqqGGaaicqqGBbWwcqqGsbGucqqGHbqycqqGZbWCcqqGhbWrcqqGubavcqqGqbaucqqGDbqxcqqGGaaicqqGBbWwcqqGhbWrcqqGbbqqcqqGqbaucqqGDbqxcqGHRaWkaeaacqqGRbWAdaWgaaWcbaGae8NeI0IaeeymaeJaeeOmaidabeaakiabbUfaBjabbkfasjabbggaHjabbohaZjabbEeahjabbgeabjabbcfaqjabb2faDjab=jHiTiabbUgaRnaaBaaaleaacqaIXaqmcqaI0aanaeqaaOGaee4waSLaeeOuaiLaeeyyaeMaeeOzayMaeeyxa0Laee4waSLaeeOuaiLaeeyyaeMaee4CamNaee4raCKaeeivaqLaeeiuaaLaeeyxa0Laey4kaSIaee4AaS2aaSbaaSqaaiab=jHiTiabbgdaXiabbsda0aqabaGccqqGBbWwcqqGsbGucqqGHbqycqqGZbWCcqqGsbGucqqGHbqycqqGMbGzcqqGGaaicqqGDbqxcqGHRaWkcqqGRbWAdaWgaaWcbaGaeeymaeJaeeynaudabeaakiabbUfaBjabbkfasjabbggaHjabbohaZjabbkfasjabbggaHjabbAgaMjabb2faDbaaaa@A8EE@ k-14 = 3.0
k15 = 27
19 GAP dGAP] dt = k 12 [RasGTP][GAP] + k 12 [RasGAP] + k 13 [ R a s G A P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGhbWrcqqGbbqqcqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpiiaacqWFsislcqqGRbWAdaWgaaWcbaGaeeymaeJaeeOmaidabeaakiabbUfaBjabbkfasjabbggaHjabbohaZjabbEeahjabbsfaujabbcfaqjabb2faDjabbUfaBjabbEeahjabbgeabjabbcfaqjabb2faDjabgUcaRiabbUgaRnaaBaaaleaacqWFsislcqqGXaqmcqqGYaGmaeqaaOGaee4waSLaeeOuaiLaeeyyaeMaee4CamNaee4raCKaeeyqaeKaeeiuaaLaeeyxa0Laey4kaSIaee4AaS2aaSbaaSqaaiabigdaXiabiodaZaqabaGccqGGBbWwcqWGsbGucqWGHbqycqWGZbWCcqWGhbWrcqWGbbqqcqWGqbaucqGGDbqxaaa@66D8@ V16 = 9.7 × 104
K16 = 6 × 103
20 RasGAP d[RasGAP] dt = k 12 [RasGTP][GAP] k 12 [RasGAP] k 13 [ R a s G A P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGHbqycqqGZbWCcqqGhbWrcqqGbbqqcqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpcqqGRbWAdaWgaaWcbaGaeeymaeJaeeOmaidabeaakiabbUfaBjabbkfasjabbggaHjabbohaZjabbEeahjabbsfaujabbcfaqjabb2faDjabbUfaBjabbEeahjabbgeabjabbcfaqjabb2faDjabgkHiTiabbUgaRnaaBaaaleaaiiaacqWFsislcqqGXaqmcqqGYaGmaeqaaOGaee4waSLaeeOuaiLaeeyyaeMaee4CamNaee4raCKaeeyqaeKaeeiuaaLaeeyxa0LaeyOeI0Iaee4AaS2aaSbaaSqaaiabigdaXiabiodaZaqabaGccqGGBbWwcqWGsbGucqWGHbqycqWGZbWCcqWGhbWrcqWGbbqqcqWGqbaucqGGDbqxaaa@6B26@ k17 = 50;
K17 = 9 × 103
21 Raf d[Raf] dt = k 14 [RafP][RasGTP] + k 14 [RasRaf] + V 16 [ R a f P ] K 16 + [ R a f P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGHbqycqqGMbGzcqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpiiaacqWFsislcqqGRbWAdaWgaaWcbaGaeeymaeJaeeinaqdabeaakiabbUfaBjabbkfasjabbggaHjabbAgaMjabbcfaqjabb2faDjabbUfaBjabbkfasjabbggaHjabbohaZjabbEeahjabbsfaujabbcfaqjabb2faDjabgUcaRiabbUgaRnaaBaaaleaacqWFsislcqqGXaqmcqqG0aanaeqaaOGaee4waSLaeeOuaiLaeeyyaeMaee4CamNaeeOuaiLaeeyyaeMaeeOzayMaeeyxa0Laey4kaSscfa4aaSaaaeaacqqGwbGvdaWgaaqaaiabbgdaXiabbAda2aqabaGaei4waSLaemOuaiLaemyyaeMaemOzayMaemiuaaLaeiyxa0fabaGaee4saS0aaSbaaeaacqqGXaqmcqqG2aGnaeqaaiabgUcaRiabcUfaBjabdkfasjabdggaHjabdAgaMjabdcfaqjabc2faDbaaaaa@7457@ V18 = 9.2 × 105
K18 = 6 × 105
22 RasRaf dRasRaf] dt = k 14 [RafP][RasGTP] k 14 [RasRaf] k 15 [ R a s R a f ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGsbGucqqGHbqycqqGZbWCcqqGsbGucqqGHbqycqqGMbGzcqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpcqqGRbWAdaWgaaWcbaGaeeymaeJaeeinaqdabeaakiabbUfaBjabbkfasjabbggaHjabbAgaMjabbcfaqjabb2faDjabbUfaBjabbkfasjabbggaHjabbohaZjabbEeahjabbsfaujabbcfaqjabb2faDjabgkHiTiabbUgaRnaaBaaaleaaiiaacqWFsislcqqGXaqmcqqG0aanaeqaaOGaee4waSLaeeOuaiLaeeyyaeMaee4CamNaeeOuaiLaeeyyaeMaeeOzayMaeeyxa0LaeyOeI0Iaee4AaS2aaSbaaSqaaiabbgdaXiabbwda1aqabaGccqGGBbWwcqWGsbGucqWGHbqycqWGZbWCcqWGsbGucqWGHbqycqWGMbGzcqGGDbqxaaa@6D16@ k19 = 50;
K19 = 9 × 103
23 RafP d[RafP] dt = k 15 [ R a s R a f ] V 16 [ R a f P ] K 16 + [ R a f P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGsbGucqqGHbqycqqGMbGzcqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpcqWGRbWAdaWgaaWcbaGaeGymaeJaeGynaudabeaakiabcUfaBjabdkfasjabdggaHjabdohaZjabdkfasjabdggaHjabdAgaMjabc2faDjabgkHiTKqbaoaalaaabaGaeeOvay1aaSbaaeaacqqGXaqmcqqG2aGnaeqaaiabcUfaBjabdkfasjabdggaHjabdAgaMjabdcfaqjabc2faDbqaaiabbUealnaaBaaabaGaeeymaeJaeeOnaydabeaacqGHRaWkcqGGBbWwcqWGsbGucqWGHbqycqWGMbGzcqWGqbaucqGGDbqxaaaaaa@5E50@ V20 = 9.2 × 105
K20 = 6 × 105
24 Mek d[Mek] dt = k 17 [RafP][Mek]  K 17 + [ Mek] + V 18 [ M e k P ] K 18 + [ M e k P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGnbqtcqqGLbqzcqqGRbWAcqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpjuaGdaWcaaqaaGGaaiab=jHiTiabbUgaRnaaBaaabaGaeeymaeJaee4naCdabeaacqqGBbWwcqqGsbGucqqGHbqycqqGMbGzcqqGqbaucqqGDbqxcqqGBbWwcqqGnbqtcqqGLbqzcqqGRbWAcqqGDbqxcqqGGaaiaeaacqqGlbWsdaWgaaqaaiabbgdaXiabbEda3aqabaGaey4kaSIaei4waSLaeeyta0KaeeyzauMaee4AaSMaeeyxa0faaOGaey4kaSscfa4aaSaaaeaacqqGwbGvdaWgaaqaaiabbgdaXiabbIda4aqabaGaei4waSLaemyta0KaemyzauMaem4AaSMaemiuaaLaeiyxa0fabaGaee4saS0aaSbaaeaacqqGXaqmcqqG4aaoaeqaaiabgUcaRiabcUfaBjabd2eanjabdwgaLjabdUgaRjabdcfaqjabc2faDbaaaaa@6D4D@ k21 = 8.3;
K21 = 9 × 104
25 MekP d[MekP] dt = k 17 [RafP][Mek]  K 17 + [ Mek] V 18 [ M e k P ] K 18 + [ M e k P ] k 19 [ RafP ] [ MekP ] K 19 + [ MekP ] + V 20 [ M e k P P ] K 20 + [ M e k P P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGnbqtcqqGLbqzcqqGRbWAcqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeymaeJaee4naCdabeaacqqGBbWwcqqGsbGucqqGHbqycqqGMbGzcqqGqbaucqqGDbqxcqqGBbWwcqqGnbqtcqqGLbqzcqqGRbWAcqqGDbqxcqqGGaaiaeaacqqGlbWsdaWgaaqaaiabbgdaXiabbEda3aqabaGaey4kaSIaei4waSLaeeyta0KaeeyzauMaee4AaSMaeeyxa0faaOGaeyOeI0scfa4aaSaaaeaacqqGwbGvdaWgaaqaaiabbgdaXiabbIda4aqabaGaei4waSLaemyta0KaemyzauMaem4AaSMaemiuaaLaeiyxa0fabaGaee4saS0aaSbaaeaacqqGXaqmcqqG4aaoaeqaaiabgUcaRiabcUfaBjabd2eanjabdwgaLjabdUgaRjabdcfaqjabc2faDbaadaWcaaqaaiabgkHiTGqaaiab=TgaRnaaBaaabaGaeGymaeJaeGyoaKdabeaacqGGBbWwcqWFsbGucqWFHbqycqWFMbGzcqWFqbaucqGGDbqxcqGGBbWwcqWFnbqtcqWFLbqzcqWFRbWAcqWFqbaucqGGDbqxaeaacqWFlbWsdaWgaaqaaiabigdaXiabiMda5aqabaGaey4kaSIaei4waSLae8xta0Kae8xzauMae83AaSMae8huaaLaeiyxa0faaiabgUcaRmaalaaabaGae8Nvay1aaSbaaeaacqaIYaGmcqaIWaamaeqaaiabcUfaBjabd2eanjabdwgaLjabdUgaRjabdcfaqjabdcfaqjabc2faDbqaaiab=TealnaaBaaabaGaeGOmaiJaeGimaadabeaacqGHRaWkcqGGBbWwcqWGnbqtcqWGLbqzcqWGRbWAcqWGqbaucqWGqbaucqGGDbqxaaaaaa@A5C1@ V22 = 2.0 × 105
26 MekPP d[MekPP] dt = k 19 [RafP][MekP]  K 19 + [ MekP] V 20 [ M e k P P ] K 20 + [ M e k P P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGnbqtcqqGLbqzcqqGRbWAcqqGqbaucqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeymaeJaeeyoaKdabeaacqqGBbWwcqqGsbGucqqGHbqycqqGMbGzcqqGqbaucqqGDbqxcqqGBbWwcqqGnbqtcqqGLbqzcqqGRbWAcqqGqbaucqqGDbqxcqqGGaaiaeaacqqGlbWsdaWgaaqaaiabbgdaXiabbMda5aqabaGaey4kaSIaei4waSLaeeyta0KaeeyzauMaee4AaSMaeeiuaaLaeeyxa0faaOGaeyOeI0scfa4aaSaaaeaacqqGwbGvdaWgaaqaaiabbkdaYiabbcdaWaqabaGaei4waSLaemyta0KaemyzauMaem4AaSMaemiuaaLaemiuaaLaeiyxa0fabaGaee4saS0aaSbaaeaacqqGYaGmcqqGWaamaeqaaiabgUcaRiabcUfaBjabd2eanjabdwgaLjabdUgaRjabdcfaqjabdcfaqjabc2faDbaaaaa@7342@ K22 = 6 × 105
k23 = 8.3;
27 Erk d[Erk] dt = k 21 ( [MekP] + [MekPP] ) [Erk]  K 21 + [ E r k ] + V 22 [ E r k P ] K 22 + [ E r k P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGfbqrcqqGYbGCcqqGRbWAcqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpjuaGdaWcaaqaaGGaaiab=jHiTiabbUgaRnaaBaaabaGaeeOmaiJaeeymaedabeaadaqadaqaaiabbUfaBjabb2eanjabbwgaLjabbUgaRjabbcfaqjabb2faDjabgUcaRiabbUfaBjabb2eanjabbwgaLjabbUgaRjabbcfaqjabbcfaqjabb2faDbGaayjkaiaawMcaaiabbUfaBjabbweafjabbkhaYjabbUgaRjabb2faDjabbccaGaqaaiabbUealnaaBaaabaGaeeOmaiJaeeymaedabeaacqGHRaWkcqGGBbWwcqqGfbqrcqWGYbGCcqWGRbWAcqqGDbqxaaGccqGHRaWkjuaGdaWcaaqaaiabbAfawnaaBaaabaGaeeOmaiJaeeOmaidabeaacqGGBbWwcqWGfbqrcqWGYbGCcqWGRbWAcqWGqbaucqGGDbqxaeaacqqGlbWsdaWgaaqaaiabbkdaYiabbkdaYaqabaGaey4kaSIaei4waSLaemyrauKaemOCaiNaem4AaSMaemiuaaLaeiyxa0faaaaa@7869@ K23 = 9 × 104
28 ErkP d[ErkP] dt = k 21 ( [MekP] + [MekPP] ) .[Erk]  K 21 + [ E r k ] V 22 [ E r k P ] K 22 + [ E r k P ] k 23 ( [MekP] + [MekPP] ) .[ErkP]  K 23 + [ E r k P ] + V 24 [ E r k P P ] K 24 + [ E r k P P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGceaqabeaajuaGdaWcaaqaaiabbsgaKjabbUfaBjabbweafjabbkhaYjabbUgaRjabbcfaqjabb2faDbqaaiabbsgaKjabbsha0baakiabg2da9KqbaoaalaaabaGaee4AaS2aaSbaaeaacqqGYaGmcqqGXaqmaeqaamaabmaabaGaee4waSLaeeyta0KaeeyzauMaee4AaSMaeeiuaaLaeeyxa0Laey4kaSIaee4waSLaeeyta0KaeeyzauMaee4AaSMaeeiuaaLaeeiuaaLaeeyxa0facaGLOaGaayzkaaGaeeOla4Iaee4waSLaeeyrauKaeeOCaiNaee4AaSMaeeyxa0LaeeiiaacabaGaee4saS0aaSbaaeaacqqGYaGmcqqGXaqmaeqaaiabgUcaRiabcUfaBjabbweafjabdkhaYjabdUgaRjabb2faDbaakiabgkHiTKqbaoaalaaabaGaeeOvay1aaSbaaeaacqqGYaGmcqqGYaGmaeqaaiabcUfaBjabdweafjabdkhaYjabdUgaRjabdcfaqjabc2faDbqaaiabbUealnaaBaaabaGaeeOmaiJaeeOmaidabeaacqGHRaWkcqGGBbWwcqWGfbqrcqWGYbGCcqWGRbWAcqWGqbaucqGGDbqxaaaakeaacqGHsisljuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeOmaiJaee4mamdabeaadaqadaqaaiabbUfaBjabb2eanjabbwgaLjabbUgaRjabbcfaqjabb2faDjabgUcaRiabbUfaBjabb2eanjabbwgaLjabbUgaRjabbcfaqjabbcfaqjabb2faDbGaayjkaiaawMcaaiabb6caUiabbUfaBjabbweafjabbkhaYjabbUgaRjabbcfaqjabb2faDjabbccaGaqaaiabbUealnaaBaaabaGaeeOmaiJaee4mamdabeaacqGHRaWkcqGGBbWwcqqGfbqrcqWGYbGCcqWGRbWAcqWGqbaucqqGDbqxaaGccqGHRaWkjuaGdaWcaaqaaiabbAfawnaaBaaabaGaeeOmaiJaeeinaqdabeaacqGGBbWwcqWGfbqrcqWGYbGCcqWGRbWAcqWGqbaucqWGqbaucqGGDbqxaeaacqqGlbWsdaWgaaqaaiabbkdaYiabbsda0aqabaGaey4kaSIaei4waSLaemyrauKaemOCaiNaem4AaSMaemiuaaLaemiuaaLaeiyxa0faaaaaaa@BFB3@ V24 = 4.0 × 105;
K24 = 6 × 105
29 ErkPP d[ErkPP] dt = k 23 ( [MekP] + [MekPP] ) .[ErkP]  K 23 + [ E r k P ] V 24 [ E r k P P ] K 24 + [ E r k P P ] MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqqGKbazcqqGBbWwcqqGfbqrcqqGYbGCcqqGRbWAcqqGqbaucqqGqbaucqqGDbqxaeaacqqGKbazcqqG0baDaaGccqGH9aqpjuaGdaWcaaqaaiabbUgaRnaaBaaabaGaeeOmaiJaee4mamdabeaadaqadaqaaiabbUfaBjabb2eanjabbwgaLjabbUgaRjabbcfaqjabb2faDjabgUcaRiabbUfaBjabb2eanjabbwgaLjabbUgaRjabbcfaqjabbcfaqjabb2faDbGaayjkaiaawMcaaiabb6caUiabbUfaBjabbweafjabbkhaYjabbUgaRjabbcfaqjabb2faDjabbccaGaqaaiabbUealnaaBaaabaGaeeOmaiJaee4mamdabeaacqGHRaWkcqGGBbWwcqqGfbqrcqWGYbGCcqWGRbWAcqWGqbaucqqGDbqxaaaccaGccqWFsisljuaGdaWcaaqaaiabbAfawnaaBaaabaGaeeOmaiJaeeinaqdabeaacqGGBbWwcqWGfbqrcqWGYbGCcqWGRbWAcqWGqbaucqWGqbaucqGGDbqxaeaacqqGlbWsdaWgaaqaaiabbkdaYiabbsda0aqabaGaey4kaSIaei4waSLaemyrauKaemOCaiNaem4AaSMaemiuaaLaemiuaaLaeiyxa0faaaaa@7F6A@  
  1. Units are as for Table 1. All constants are taken directly from [14].