Skip to main content
Figure 7 | BMC Systems Biology

Figure 7

From: Modeling cellular deformations using the level set formalism

Figure 7

Pressure profile drives cell shape. A. During chemotaxis, wild type Dictyostelium cells acquire a polarized, elongated morphology. B. Eqn. 19 was used to compute the pressure profile (red dots) necessary to maintain the elongated cell shape (inset) along the cell membrane, and this is plotted as a function of the local chemoattractant (cAMP) concentration. The maximum and minimum refer to the concentrations experienced by the cell around the membrane. Pressure profile used in the simulations (blue line) was obtained by fitting the computed pressure profile, details are given in the Additional file 1. C. Chemotaxing cell using the pressure profile of panel B. The shapes of the cell are shown at times 0, 1.5, 10, 20, 40, 60, 80 and 100 s. Other details in the simulation are as in Fig. 6. D-F. Simulations of chemotaxis in Dictyostelium amiB- cells. These mutant cells acquire a fan-like morphology (panel D) and move along their broad axis. This form of movement was recreated using the pressure profile of panel E (colors as in panel B). F. Chemotaxing cell using the force profile of panel E. Times of the shapes are as in panel C.

Back to article page