Skip to main content

Table 4 Hierarchical transformation for the example system depicted in Figure 2B.

From: Exact model reduction of combinatorial reaction networks

[R(*, *)] = [R(0, 0)] + [R(0, P)] + [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, 0)] + [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[E1(*)] = [E1(0)] + [E1(P)] + [E1(E2)] + [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[E2(*)] = [E1(E2)] + [E2(0)] + [R(0, E2)] + [R(L, E2)]
[R(L, *)] = [R(L, 0)] + [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[R(*, P(*))] = [R(0, P)] + [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[E1(P (*)] = [E1(P)] + [E1(E2)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, E1(P))] + [R(L, E2)]
[R(L, P(*))] = [R(L, P)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[R(*, E1(*))] = [R(0, E1)] + [R(0, E1(P))] + [R(0, E2)] + [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[E1(E2(*)] = [E1(E2)] + [R(0, E2)] + [R(L, E2)]
[R(L, E1(*))] = [R(L, E1)] + [R(L, E1(P))] + [R(L, E2)]
[R(*, E1(P (*)))] = [R(0, E1(P))] + [R(0, E2)] + [R(L, E1(P))] + [R(L, E2)]
[R(L, E1(P (*)))] = [R(L, E1(P))] + [R(L, E2)]
[R(*, E2(*))] = [R(0, E2)] + [R(L, E2)]
[R(L, E2(*))] = [R(L, E2)]
  1. The new states correspond to the occurrence levels of different subcomplexes. The transformation can be structured in different tiers. The previously discussed case of single protein ligand systems can be considered as border case of the unterlying transformation pattern.