Skip to main content
Figure 1 | BMC Systems Biology

Figure 1

From: Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

Figure 1

Simplified representation of the main glucose repression pathways. Glucose is transported into the cell by hexose transporters with different affinities (HXT1-HXT16). Inside the cell, glucose is phosphorylated to glucose 6-phosphate by Hxk2, therefore entering into carbon metabolism. An unknown signal triggered by high glucose levels leads to inactivation of the Snf1 complex. This inactivation is regulated by the protein phosphatase Glc7-Reg1. Inactive Snf1 cannot phosphorylate Mig1, which thus remains in the nucleus under high glucose levels, exerting repression of transcription of several genes. At low glucose concentrations, when Snf1 becomes active, Mig1 is phosphorylated and translocates to the cytosol, releasing repression. Glucose is sensed by two sensors located in the cell membrane, Rgt2 and Snf3. At high glucose levels, the signal from these sensors leads to SCFGrr1 mediated ubiquitination and consequent degradation of Mth1 and Std1, which are required for Rgt1 activation.

Back to article page