# Table 1 Kinetic description of the ERK signaling cascade

N Reaction Rate Kinetic
constant*
1 MAP3K → pMAP3K $v 1 = k 1 cat · R a s − G T P · M A P 3 K / K m 1 1 + M A P 3 K / K m 1 · g F a$ $k 1 cat = 0.2$; $K m 1 = 50$
2 pMAP3K → MAP3K $v 2 = V max 2 · p M A P 3 K / K m 2 1 + p M A P 3 K / K m 2$ $V max 2 = 5$; $K m 2 = 50$
3 MAP2K → pMAP2K $v 3 = k 3 cat · p M A P 3 K · M A P 2 K / K m 3 1 + M A P 2 K / K m 3 + p M A P 2 K / K m 4$ $K 3 cat = 1$; $K m 3 = 130$
4 pMAP2K → ppMAP2K $v 4 = k 4 cat · p M A P 3 K · p M A P 2 K / K m 4 1 + M A P 2 K / K m 3 + p M A P 2 K / K m 4$ $k 4 cat = 5$; $K m 4 = 50$
5 ppMAP2K → pMAP2K $v 5 = V max 5 · p p M A P 2 K / K m 5 1 + p p M A P 2 K / K m 5 + p M A P 2 K / K m 6 + M A P 2 K / K i 1$ $V max 5 = 250$; $K m 5 = 100$
6 pMAP2K → MAP2K $v 6 = V max 6 · p M A P 2 K / K m 6 1 + p p M A P 2 K / K m 5 + p M A P 2 K / K m 6 + M A P 2 K / K i 1$ $V max 6 = 250$; $K m 6 = 100$; $K i 1 = 80$
7 MAPK → pMAPK $v 7 = k 7 cat · p p M A P 2 K · M A P K / K m 7 1 + M A P K / K m 7 + p M A P K / K m 8$ $k 7 cat = 1$; $K m 7 = 50$
8 pMAPK → ppMAPK $v 8 = k 8 cat · p p M A P 2 K · p M A P K / K m 8 1 + M A P K / K m 7 + p M A P K / K m 8$ $k 8 cat = 20$; $K m 8 = 50$
9 ppMAPK → pMAPK $v 9 = V max 9 · p p M A P K / K m 9 1 + p p M A P K / K m 9 + p M A P K / K m 10 + M A P K / K i 2$ $V max 9 = 380$; $K m 9 = 10$
10 pMAPK → MAPK $v 10 = V max 10 · p M A P K / K m 10 1 + p p M A P K / K m 9 + p M A P K / K m 10 + M A P K / K i 2$ $V max 10 = 50$; $K m 10 = 18 K i 2 = 100$
11 Feedback $g F a = 1 + F a · ( p p M A P K / K a ) 2 1 + ( p p M A P K / K a ) 2$ $K a = 100$; $F a = 5 ; 1 ; 0.5 PF ; US ; NF$
1. * Maximal rates, Michaelis and catalytic constants are expressed in [nM/s], [nM], and [s-1], respectively. Total protein concentrations are [MAPK3]total = 200nM, [MAPK2]total = 200nM, and [MAPK]total = 360nM.