Skip to main content

Advertisement

Table 5 Minimum sequence length and run time required in the computation of state transition matrices for a given accuracy, measured by Norm 2

From: Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

n N SBN (Norm 2 = 0.04) SBN (Norm 2 = 0.02) Method[22]
   Sequence length Std. deviation Avg. time (s) Std. deviation Sequence length Std. deviation Avg. time (s) Std. deviation Avg. time (s) Std. deviation
2 6 180 45 0.008052 0.005219 340 55 0.017285 0.010683 0.050477 0.010140
3 8 460 114 0.020473 0.011034 920 130 0.027358 0.010944 0.026389 0.014326
4 16 660 152 0.032089 0.023041 1220 148 0.055602 0.022138 0.053726 0.021034
5 32 880 130 0.071256 0.020862 1620 130 0.162794 0.047719 0.161462 0.039981
6 64 1320 228 0.235628 0.038845 2460 288 0.443522 0.056302 0.613840 0.047252
7 128 1480 130 0.574352 0.062129 4240 261 1.540875 0.071316 2.663523 0.180211
8 256 2420 319 2.124709 0.228612 5620 319 4.411751 0.413352 11.90834 1.412206
9 512 3220 650 7.248265 2.301722 6940 498 14.36077 3.253704 61.45203 6.881528
10 1024 4140 882 18.09032 4.112405 9400 1140 41.41356 5.289815 261.3189 12.29343
11 2048 4860 606 47.37403 5.822926 11800 837 120.3839 6.107372 975.3821 33.25207
12 4096 5820 782 132.8137 10.90686 14600 1342 373.7601 13.64551 4022.140 78.42531
  1. (perturbation probability = 0.01, n: the number of genes, and N: the number of BNs). The results are obtained from five randomly generated networks, so the standard deviations of the minimum sequence length and run time are also shown.