Skip to main content

Table 1 Outcome of the simulated drug target inhibitions

From: Network-based assessment of the selectivity of metabolic drug targets in Plasmodium falciparum with respect to human liver metabolism

EC

  

HN gene

PN gene

 

RF50 HN perturbed

RF50 PN perturbed

 

number

Enzyme

General reaction

deletion

deletion

RF Score

metabolites (deviation %)

metabolites (deviation %)

Sources

 

Acyl-CoA

Fatty Acid + ATP + CO2 →

   

Cardiolipin

Sphingomyelin

 

6.2.1.3

synthetase

Fatty Acid CoA + AMP + PPi

X

X

1.97

(mitochondrion) (-50%)

(-97.07%)

[17]

 

Thymidylate

dUMP + 5,10 Methylene THF ↔

      

2.1.1.45

synthase

dTMP + DHF

X

X0

1.00

dTTP (-50%)

DNA (nucleus) (-50.31%)

[12, 14, 17]

4.1.1.23

Orotidine 5P decarboxylase

Orotidine 5P →UMP + CO2

X

X

0.713

UDP-Glucose (-80.57%)

mRNA (nucleus) (-57.44%)

[12, 14, 17]

2.4.2.10

Orotate phosphoribosyltransferase

Orotidine 5P + PPi ↔

X

X

0.713

UDP-Glucose (-80.57%)

mRNA (nucleus) (-57.44%)

[17]

  

Orotate +PRPP

      

2.1.3.2

Aspartate carbamoyltransferase

Carbamoyl-P + Aspartate →

X

X1

0.713

UDP-Glucose (-80.57%)

mRNA (nucleus) (-57.44%)

[17]

  

Carbamoyl-Aspartate + Pi

      

3.5.2.3

Dihydroorotase

N-Carbamoyl-Aspartate →

X

X1

0.713

UDP-Glucose (-80.57%)

mRNA (nucleus) (-57.44%)

[14, 17]

  

S-Dihydroorotate + H2O

      

4.3.2.2

Adenylosuccinate lyase

Adenylsuccinate →

X

X

0.611

NADPH (-91.23%)

mRNA (nucleus) (-59.25%)

[17]

  

Fumarate + AMP

      

2.1.2.1

Serine hydroxymethyltransferase

5,10 Methylene THF + Glycine +

X

X2

0.514

NADPH (-91.92%)

DNA (nucleus) (-50.31%)

[12, 14, 17]

  

H2O ↔ THF + Serine

      

1.5.1.3

Dihydrofolate reductase

THF + NAD(P)H ↔ DHF + NAD(P)

X

X

0.50

dTTP (-50%);

DNA (nucleus) (-50.31%)

[12, 14, 17]

      

Tetrahydrofolate (-50%)

  

6.4.1.2

Acetyl-CoA carboxylase

ATP + Acetyl-CoA + HCO3- →

X

X

0.47

Triacylglycerol (+105.11 %)3

Protein N6 (lipoyl)lysine

[12, 17]

  

Malonyl-CoA + ADP + Pi

    

(apicoplast) (-50%)

 

6.3.5.5 & 6.3.4.16

Carbamoyl-P synthetase

2 ATP + Glutamine + HCO3- + H2O →

X

X1

0.404

UDP-Glucose (-80.56%);Urea (-61.3%)

mRNA (nucleus) (-57.43%)

[17]

  

2 ADP + Pi +Glutamate + Carbamoyl-P

      

2.3.1.15

Glycerol 3P acyltransferase

Acyl-CoA + glycerol 3P →

X

X4

0.37

Phosphatidyl ethanol amine (-55.77%);

Phosphatidyl choline (-94.53%)

[12]

  

CoA + 1-acyl-glycerol 3P

   

Triacylglycerol (-50%);

  
      

Phosphatidyl inositol (-50%);

  
      

Phosphatidyl choline (-50%); Cardiolipin (-50%)

  

2.3.1.50

Serine C-palmitoyl transferase

Serine + Palmitoyl-CoA ↔

O

X

-

-

[14]

  

3-Dehydrosphinganine + CoA + CO2

      
  

CoA + CO2

      

1.17.4.1

Ribonucleotide reductase

dNDP + Ox. Thioredoxin ↔

O

X

-

-

[12, 14, 17]

  

NDP + Thioredoxin

      

2.3.1.37

5-aminolevulinate synthase

Glycine + Succinyl-CoA ↔

O

X

-

-

[12, 14, 17]

  

5-aminolevulinate + CoA + CO2

      

2.5.1.6

S-Adenosyl methionine synthase

Methionine + ATP ↔

O

X

-

-

[17]

  

S-Adenosyl-Methionine + PPi + Pi

      

2.7.6.1

Phosphoribosyl pyrophosphate synthase

ATP + Ribose 5P ↔

O

X

-

-

[17]

  

PRPP + AMP

      

2.7.7.15

Choline phosphate citidyl transferase

CTP + Phosphocholine →

O

X

-

-

[17]

  

PPi + CDP-Choline

      

1.15.1.1

Superoxide dismutase

2 O2- + 2 H+ → O2 + H2O2

O

X

-

-

[12, 14, 17]

2.3.1.24

Sphingosine N-Acyl transferase

Acyl-CoA + Sphingosine ↔ CoA + Ceramide

O

X

-

-

[14]

1.8.1.7

Glutathione reductase

2 GSH + NADP+ ↔ GSSG + NADPH + H+

O

X

-

-

[14, 17]

1.8.1.9

Thioredoxin reductase

Thioredoxin + NADP+ ↔ Thioredoxin disulfide + NADPH

O

X

-

-

[14, 17]

4.2.1.24

Delta aminolevulinate dehydratase

2 5-aminolevulinate → porphobilinogen + 2 H2O

O

X

-

-

[12, 14, 17]

3.3.1.1

S-adenosyl-l-homocysteine hydrolase

S-adenosyl-L-homocysteine + H2O → L-homocysteine + Adenosine

O

X

-

-

[12, 14, 17]

1.10.2.2

mitochondrial Ubiquinone-Cytochrome C reductase

QH2 + 2 ferricytochrome c ↔ Q + 2 ferrocytochrome c + 2 H+

O

X

-

-

[12, 14, 17]

4.2.1.1

Carbonate dehydratase

H2CO3 ↔ CO2 + H2O

O

X

-

-

[14]

2.7.8.3

Sphingomyelin synthase

CDP-choline + a ceramide → CMP + sphingomyelin

O

X

-

-

[14, 17]

1.1.1.27

L-lactate dehydrogenase

(S)-lactate + NAD+ ↔ pyruvate + NADH + H+

O

X

-

-

[17]

6.3.2.2

Gamma-glutamylcysteine synthetase

ATP + Glutamate + Cysteine → ADP + Pi + gamma-Glutamyl-cysteine

O

X

-

-

[12, 14, 17]

6.3.4.2

CTP synthase

ATP + UTP + Glutamine + H2O → ADP + Pi + Glutamate + CTP

O

X

-

-

[17]

6.3.4.4

Adenylosuccinate synthase

GTP + IMP + Aspartate → GDP + Pi + Adenylosuccinate

O

X

-

-

[14],[17]

1.9.3.1

Cytochrome c oxidase

4 ferrocytochrome c + O2 + 4 H+ ↔ 4 ferricytochrome c + 2 H2O

O

X

-

-

[17]

2.4.2.1

Purine nucleoside phosphorylase

Inosine + Pi ↔ Ribose 1P + Hypoxanthine

O

X

-

-

[17]

6.2.1.1

Acetyl-CoA synthase

ATP + Acetate + CoA →Acetyl-CoA + AMP + PPi

O

X

-

-

[17]

2.4.2.8

Hypoxanthine guanine phosphoribosyl transferase

Nicotinate D-ribonucleoside + Pi -→Nicotinate + Ribose 1P

O

X

-

-

[12, 14, 17]

6.3.2.17

Folylpoly glutamate synthase

ATP + tetrahydropteroyl-[gamma-Glu]n + L-glutamate → ADP + phosphate +

O

X

-

-

[17]

  

tetrahydropteroyl-[gamma-Glu]n+1

      

1.1.1.205

IMP dehydrogenase

IMP + NAD + H2O →Xanthosine 5P + NADH

O

5

0

-

-

[12, 14, 17]

1.6.99.3

NADH dehydrogenase

Acceptor + H++ NADH ↔ Reduced Acceptor + NAD+

O

6

0

-

-

[14]

2.5.1.16

Spermidine synthase

S-Adenosylmethioninamine + Putrescine ↔ 5-Methylthioadenosine + Spermidine

O

7

0

-

-

[14] ,[12]

2.7.1.32

Choline kinase

Choline + ATP → Phosphocholine + ADP

O

8

0

-

-

[12, 14, 17]

3.5.4.4

Adenosine deaminase

Adenosine + H2O ↔ Inosine + NH3

O

9

0

-

-

[12, 14, 17]

4.1.1.50

S-Adenosyl methionine decarboxylase

S-Adenosylmethionine ↔ Adenosylmethioninamine + CO2

O

10

0

-

-

[12, 14, 17]

4.1.2.13

Aldolase

Fructose 1,6 PPi ↔ Glycerone P + Glyceraldehyde P

O

11

0

-

-

[12, 14, 17]

6.3.5.2

GMP syntethase

ATP + Xanthosine-5P + Glutamine + H2O → AMP + PPi + GMP + Glutamate

O

12

0

-

-

[14]

4.1.1.17

Ornithine decarboxylase

L-ornithine → putrescine + CO2

O

13

0

-

-

[12, 14]

2.7.1.1

Hexokinase

Glucose + ATP → Glucose 6P + ADP

O

14

0

-

-

[17]

2.1.1.103

Phospho ethanolamine N-methyl transferase

SAM + Ethanolamine-P ↔ SAH + N-Methylethanolamine-P

O

15

0

-

-

[14]

5.3.1.1

Triose phosphate Isomerase

D-glyceraldehyde 3-phosphate ↔ Glycerone phosphate

O

16

0

-

-

[17]

  1. 0lethal with block of the alternative reaction Q00007, EC 1.5.7.1.
  2. 1to activate the enzyme in the reference state, the import of dihydroorotate should be blocked.
  3. 2lethal with block of thetrahydrofolate recharging. Block of R 01221,Q 00007,R 07168,R 01224,R 01220,R 01218.
  4. 3Triacylglycerol is imported, instead to be exported, to compensate the inhibition consequences ( load value=0.063; RF50 inhibited target flux= -0.0032183).
  5. 4lethal with external depletion of glycerol, 1,2-diacyl glycerol, sn glycerol 3 phosphate, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine.
  6. 5lethal with external depletion of adenosine, adenine, hypoxanthine, inosine.
  7. 6acceptors of the respiratory electron chain are ubiquinone and cytochrome C (complex III), lethal if also complex III is blocked.
  8. 7lethal with external depletion of spermidine.
  9. 8lethal with external depletion of phosphatidylcholine.
  10. 9lethal with external depletion of 5’-methylthioinosine, xanthine, hypoxanthine, inosine.
  11. 10lethal with external depletion of spermidine.
  12. 11off-target effects due to the enzymatic role during host invasion.
  13. 12lethal with external depletion of guanine and guanosine.
  14. 13lethal with external depletion of putrescine, spermidine and blocked agmatinase (EC 3.5.1.53), in Plasmodium bergheii but not yet charaterized in Plasmodium flaciparum).
  15. 14topologically not essential, synthetically lethal with inhibition of glucose 6p isomerase (EC 5.3.1.9).
  16. 15lethal with external depletion of phosphatidylcholine and choline.
  17. 16off-target effects due to cytoskeleton association of the enzyme.
  18. 17RF Score = selectivity score predicted with the concept of reduced fitness.
  19. X = essential enzyme; O=non essential enzyme; ∙=conditional essential enzyme.
  20. HN = HepatoNet1; PN=PlasmoNet; RF50=Reduced Fitness at 50% of enzyme inhibition.