Skip to main content

Table 5 Origin of carbon mass within outputs for the two optimal flux distributions shown in Table 3

From: Exploring metabolism flexibility in complex organisms through quantitative study of precursor sets for system outputs

Origin of carbon mass in outputs for (CN) treatment
Input GLC Glycerol Acetate BHBA Lys Isoleucine Leucine Valine Arginine Glutamine
  Origin of the carbon mass of each output within input
  (in percentage of total carbon mass of each output)
Output  
Model (G) (H) (G) (H) (G) (H) (G) (H) (G) (H) (G) (H) (G) (H) (G) (H) (G) (H) (G) (H)
Glycerol3P 90.3 90.7 9.7 9.3 0 0 0 0 0 0 0 0 0
Lactose 100.0 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 100.0 0 0 0 0 0 0
c6 0 0 66.7 33.3 0 0 0 0 0 0
c8 0 0 75.0 25.0 0 0 0 0 0 0
c10 0 0 80.0 20.0 0 0 0 0 0 0
c12 0 0 83.3 16.7 0 0 0 0 0 0
c14 0 0 85.7 14.3 0 0 0 0 0 0
c16 0 0 87.5 12.5 0 0 0 0 0 0
Glycine 73.8 74.1 7.3 7.0 5.6 10.8 0.5 0.5 0.5 0.4 0.5 0.2
Alanine 90.3 90.7 9.7 9.3 0 0 0 0 0 0 0 0
Glutamate 2.5 3.0 0.2 0.3 28.7 28.6 56.1 55.8 1.6 2.4 2.5 1.7 3.0 1.2
Proline 2.5 3.0 0.2 0.3 28.7 28.6 56.1 55.8 1.6 2.4 2.5 1.7 3.0 1.2
Aspartate 3.8 4.3 0.4 27.8 27.6 54.2 53.9 1.6 1.5 3.2 2.4 2.6 2.9 1.2
Peptide 0 0 0 0 0 0 0 0 0 0
SERoutput 90.3 90.7 9.7 9.3 0 0 0 0 0 0 0 0
CO2Output 24.2 24.1 0.2 22.2 43.4 1.9 1.8 2.0 1.7 1.9 0.8
  1. Both models have empty flux through the reactions OAA → PYR (R 14), OAA → G3P (R 15) and G3P → G6P (R 8). Model (G) shows strong NADPH oxidation whereas model (H) has zero NADPH oxidation.