Skip to main content

Table 5 Origin of carbon mass within outputs for the two optimal flux distributions shown in Table 3

From: Exploring metabolism flexibility in complex organisms through quantitative study of precursor sets for system outputs

Origin of carbon mass in outputs for (CN) treatment

Input

GLC

Glycerol

Acetate

BHBA

Lys

Isoleucine

Leucine

Valine

Arginine

Glutamine

 

Origin of the carbon mass of each output within input

 

(in percentage of total carbon mass of each output)

Output

 

Model

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

(G)

(H)

Glycerol3P

90.3

90.7

9.7

9.3

0

0

0

0

0

0

0

0

0

Lactose

100.0

0

0

0

0

0

0

0

0

0

0

C4

0

0

0

100.0

0

0

0

0

0

0

c6

0

0

66.7

33.3

0

0

0

0

0

0

c8

0

0

75.0

25.0

0

0

0

0

0

0

c10

0

0

80.0

20.0

0

0

0

0

0

0

c12

0

0

83.3

16.7

0

0

0

0

0

0

c14

0

0

85.7

14.3

0

0

0

0

0

0

c16

0

0

87.5

12.5

0

0

0

0

0

0

Glycine

73.8

74.1

7.3

7.0

5.6

10.8

0.5

0.5

0.5

0.4

0.5

0.2

Alanine

90.3

90.7

9.7

9.3

0

0

0

0

0

0

0

0

Glutamate

2.5

3.0

0.2

0.3

28.7

28.6

56.1

55.8

1.6

2.4

2.5

1.7

3.0

1.2

Proline

2.5

3.0

0.2

0.3

28.7

28.6

56.1

55.8

1.6

2.4

2.5

1.7

3.0

1.2

Aspartate

3.8

4.3

0.4

27.8

27.6

54.2

53.9

1.6

1.5

3.2

2.4

2.6

2.9

1.2

Peptide

0

0

0

0

0

0

0

0

0

0

SERoutput

90.3

90.7

9.7

9.3

0

0

0

0

0

0

0

0

CO2Output

24.2

24.1

0.2

22.2

43.4

1.9

1.8

2.0

1.7

1.9

0.8

  1. Both models have empty flux through the reactions OAA → PYR (R 14), OAA → G3P (R 15) and G3P → G6P (R 8). Model (G) shows strong NADPH oxidation whereas model (H) has zero NADPH oxidation.