Skip to main content

Advertisement

Table 6 Definition of calibration penalties related to Cyclin A and Cyclin D levels

From: Differentiation resistance through altered retinoblastoma protein function in acute lymphoblastic leukemia: in silico modeling of the deregulations in the G1/S restriction point pathway

Cyclin A Levels
\( \begin{array}{l}Cyc{A}_{penalt{y}_i}={\displaystyle \sum_{Time=0}^{Time= SimulationTime}Cyc{A}_{instantpenalt{y}_i}}\\ {}\kern9.5em i=0,1,2,3,4\kern3em \end{array} \) \( Cyc{A}_{instant\ penalt{y}_0}=\left\{\begin{array}{c}\hfill CyclinA>150\ \left( molecules/ cell\right),\ Fla{g}_0\hfill \\ {}\hfill 0\hfill \end{array}\right. \)
\( Cyc{A}_{instant\ penalt{y}_1}=\left\{\begin{array}{c}\hfill CyclinA>300\ \left( molecules/ cell\right),\ Fla{g}_1\hfill \\ {}\hfill 0\hfill \end{array}\right. \)
\( Cyc{A}_{instant\ penalt{y}_2}=\left\{\begin{array}{c}\hfill CyclinA>300\ \left( molecules/ cell\right),\ Fla{g}_2\hfill \\ {}\hfill 0\hfill \end{array}\right. \)
\( Cyc{A}_{instant\ penalt{y}_3}=\left\{\begin{array}{c}\hfill CyclinA<300\ \left( molecules/ cell\right),\ Fla{g}_3\hfill \\ {}\hfill 0\hfill \end{array}\right. \)
\( Cyc{A}_{instant\ penalt{y}_4}=\left\{\begin{array}{c}\hfill CyclinA<300\ \left( molecules/ cell\right),\ Fla{g}_4\hfill \\ {}\hfill 0\hfill \end{array}\right. \)
\( Cyc{A}_{penalt{y}_{sum}}={\displaystyle \sum_i}Cyc{A_{penalt y}}_{{}_i},\ i=0,1,2,3,4 \)
Cyclin A Rate
\( CycA\ Rat{e}_{penalty}={\displaystyle \sum_{Time=0}^{Time= Simulation\ Time}} CycA\ Rat{e}_{instant\ penalt{y}_0} \) \( CycA\ Rat{e}_{instant\ penalt{y}_0}=\left\{\begin{array}{c}\hfill \frac{d\ CyclinA}{dt}>0\ \left(\left( molecules/ cell\right)/ min\right),\ Fla{g}_0\hfill \\ {}\hfill 0\hfill \end{array}\right. \)
Cyclin D Levels
\( CycD\ Va{r}_{penalty}={\displaystyle \sum_{Time=0}^{Time= Simulation\ Time}} CycD\ Va{r}_{instant\ penalty} \) \( CycD\ Va{r}_{instant\ penalty}=\left\{\begin{array}{c}\hfill Cyc{D}_{initial\ levels}-Cyc{D}_{instant\ levels}>500\left( molecules/ cell\right),\ 1\hfill \\ {}\hfill 0\hfill \end{array}\right. \)